Rethink Hardware-Software Interface for Power-Aware Computing
Conventional Architectures only Expose Performance

Current RISC/VLIW ISAs only expose hardware features that affect critical path through computation
Energy Consumption is Hidden

Most energy is consumed in microarchitectural operations that are hidden from software!
Reward compile-time knowledge with run-time energy savings

- hardware provides mechanisms to disable microarchitectural activity, a software power grid
- compile-time analysis determines which pieces of microarchitecture can be disabled for given application

⇒ Co-develop energy-exposed architectures and energy-conscious compilers
Energy Management Layers

PACE Focus Areas

- Application
- Algorithm
- Source Code
- Compiler
- Run-Time/O.S.
- Instruction Set
- Microarchitecture
- Circuit Design
- Fabrication Technology
SCALE Strawman Processor

- 32 processing tiles
- Fast on-chip data network
- 128x32b FLOP/cycle total
- 4096x8b OP/cycle total
- 128MB on-chip DRAM/16MB SRAM
- External DRAM interface
- Chip-to-chip interconnect channels
- 20x20mm² in 0.1μm CMOS
Vector
- most streaming applications highly vectorizable
- vectors reduce instruction fetch/decode energy up to 20-60x (depends on vector length)
- mature programming and compilation model
⇒ **SCALE supports vectors in hardware**
- address and data units optimized for vectors
- hardware vector control logic

VLIW/Reconfigurable
- exploit instruction-level parallelism for non-vectorizable applications
- superscalar ILP expensive in hardware
⇒ **SCALE supports VLIW-style ILP**
- reuse address and data unit datapath resources
- expose datapath control lines
- single wide instruction = configuration
- provide control/configuration cache distributed along datapaths

Multithreading/CMP
- run separate threads on different tiles
- any mix of vector or VLIW across tiles
SCALE Exposes Locality at Multiple Levels

- 2D Tile and DRAM layout
 - software maps computation to minimize network hops

- Local SRAM within tile
 - software split between instruction/data/unified storage
 - software scratchpad RAMs or hardware-managed caches

- Distributed cached control state within tile
 - control unit: instruction buffer
 - data/address unit: vector instructions or VLIW/configuration cache

- Distributed register file and ALU clusters within tile
 - Control Unit: scalar (C) registers versus branch (B) registers
 - Address Unit: address (A) registers
 - Data Unit: Four clusters of data registers (D0-D4)
 - Accumulators and sneak paths to bypass register files
- Turn off unused register banks and ALUs
- Reduce datapath width
 - set width separately for each unit in tile (e.g., 32b in control unit, 16b in address unit, 64b in data unit)
- Turn off individual local memory banks
- Configure memory addressing model
 - From hardware cache-coherence to local scratchpad RAM
- Turn off idle tiles and idle inter-tile network segments
- Turn off refresh to unused DRAM banks
Existing Infrastructure

- RAW Compiler Technology
 - SUIF-based C/FORTRAN compiler for tiled arrays
 - SPAN pointer analysis
 - Bitwise bitwidth analysis
 - Superword Level Parallelism
 - Space/Time scheduling
 - MAPS compiler-managed memory system

- Pekoe Low-Power Microprocessor Library Cells
 - Full-custom processor blocks in 0.25µm CMOS process
 - Designed for voltage-scaled operation

- SyCHOSys Energy-Performance Simulator
 - Fast, multi-level compiled simulation
 - Energy models for Pekoe processor blocks
Bitwidth Analysis

- Compile-time detection of minimum bitwidth required for each variable at every static location in the program
- A collection of techniques
 - Arithmetic operations
 - Boolean operations
 - Bitmask operations
 - Loop induction variable bounding
 - Clamping optimization
 - Type promotion
 - Back propagation
 - Array index optimization
- Value-range propagation using data-flow analysis
- Loop analysis
- Incorporated pointer alias analysis
- Paper in PLDI’00
Methodology

- C → RTL
- RTL simulation gives switching
- Synthesis tool reports dynamic power
- IBM SA27E process, 0.15μm drawn, 200 MHz
SyCHOSys compiles a custom cycle simulator from a structural machine description

- Supports gate level to behavioral level, or any mixture
 - Behavior specified in C++, compiles to C++ object

- Can selectively compile in transition counting on nets
 - Automatically factors out common counts for faster simulation

- Arbitrary energy models for functional units/memories
 - Capacitances extracted from circuit layout or estimated
 - Use fast bit-parallel structural energy models (much faster than lookups)

- Paper in Complexity-Effective Workshop, ISCA’00
SyCHOSys Evaluation

- GCD circuit benchmark
 - full-custom datapath layout (0.25µm TSMC CMOS process)
 - mixture of static and precharged blocks

<table>
<thead>
<tr>
<th></th>
<th>Simulation Speed (Hz)</th>
<th>Error in power prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-Behavioral (gcc)</td>
<td>109,000,000.00</td>
<td>N/A</td>
</tr>
<tr>
<td>Verilog-Behavioral (VCS)</td>
<td>544,000.00</td>
<td>N/A</td>
</tr>
<tr>
<td>Verilog-Structural (VCS)</td>
<td>341,000.00</td>
<td>N/A</td>
</tr>
<tr>
<td>SyCHOSys-Structural</td>
<td>8,000,000.00</td>
<td>N/A</td>
</tr>
<tr>
<td>SyCHOSys-Power</td>
<td>195,000.00</td>
<td>0.5% - 8.2%</td>
</tr>
<tr>
<td>PowerMill (extracted layout)</td>
<td>0.73</td>
<td>7.2% - 13.7%</td>
</tr>
<tr>
<td>Star-Hspice (extracted layout)</td>
<td>0.01</td>
<td>0%(reference)</td>
</tr>
</tbody>
</table>
SyCHOSys Processor Model

- Five-stage pipelined MIPS RISC processor+caches
- User/kernel mode, precise interrupts, validated with architectural test suite+random test programs
- Runs SPECint95 benchmarks
- Simulation speeds (Sun Ultra-5, 333MHz workstation)
 - (ISA-level interpreter 3 MHz)
 - Behavioral RTL 400kHz
 - Structural model 40kHz
 - Energy model 16kHz
- A Gigacycle/CPU-day or Megacycle/CPU-minute with better accuracy than Powermill
PACE Milestones

- **Year 2000: Baseline design**
 - Baseline SCALE architecture definition
 - RAW compiler generating code for baseline SCALE design
 - Baseline SCALE architecture energy-performance simulator

- **Year 2001: Single tile**
 - Energy-exposed SCALE tile architecture definition
 - Energy-conscious compiler passes for SCALE tile
 - Energy-exposed SCALE tile energy-performance simulator
 - Evaluation of energy-exposed SCALE tile

- **Year 2002: Multi-tile**
 - Energy-exposed SCALE multi-tile architecture definition
 - Multi-tile energy-performance simulator
 - Multi-tile energy-conscious compiler passes
 - Evaluation of multi-tile SCALE processor

- (Options: Fabricate SCALE prototype)