MIT Laboratory for Computer Science, March 2003 121

Energy Aware Lossless Data Compression

Kenneth C. Barr and Krste Asanovi¢

Introduction: Wireless transmission of a bit can require over 1000 times more energy than a single 32-bit computa-
tion. It would therefore seem desirable to perform significant computation to reduce the number of bits transmitted.
If the energy required to compress data is less than the energy required to send it, there is a net energy savings and
consequently, a longer battery life for portable computers. We report on the energy of lossless data compressors as
measured on a StrongARM SA-110 system. We show that with several typical compression tools, there is a net energy
increase when compression is applied before transmission. Reasons for this increase are explained, and hardware-
aware programming optimizations are demonstrated.

Approach: We examine the energy requirements of several lossless data compression schemes using the “Skiff”
platform developed by Compaq Cambridge Research Labs. Energy usage for the StrongARM CPU, memory, network
card, and peripherals can be measured individually. The platform is similar to the popular Compaq iPAQ handheld
computer, so the results are relevant to handheld hardware and developers of embedded software. Several families of
compression algorithms are analyzed and characterized, and it is shown that carelessly applying compression prior to
transmission may cause an overall energy increase. Behaviors and resource-usage patterns are highlighted which allow
for energy-efficient lossless compression of data by applications or network drivers. We focus on situations in which
the mixture of high energy network operations and low energy processor operations can be adjusted so that overall
energy is lower. This is possible even if the number of total operations, or time to complete them, increases. Finally, a
new energy-aware data compression strategy composed of an asymmetric compressor and decompressor is presented
and measured. Complete results and analysis, including tests with compressible web data (HTML, Javascript, and
CSS from popular websites) appear in [1] and [2].

Progress: To quantify the gap between wireless communication and computation, we have measured wireless idle,
send, and receive energies on the Skiff platform. With the measured energy of the transmission and the size of data
file, the energy required to send or receive a bit can be derived. The results of these network benchmarks appear in
Table 1. Next, a microbenchmark is used to determine the minimum energy for an ADD instruction. From these
initial network and ADD measurements, we can conclude that sending a single bit is roughly equivalent to performing
485-1267 ADD operations depending on the quality of the network link. This gap of 2-3 orders of magnitude suggests
that much additional effort can be spent trying to reduce a file’s size before it is sent or received. However, to acheive
high compression, it is generally necessary to store large amounts of context in memory. Table 1 also shows the results
of microbenchmarking the Skiff memory system: hitting in the cache requires more energy than an ADD, and a cache
miss requires up to 145 times the energy of an ADD. Store misses are less expensive as the SA-110 has a store buffer
to batch accesses to memory.

Category | Operation System Energy
Required (nJ)

CPU 32-bit ADD 0.86
Network Send bit (near) 417.00
Send bit (far) 1095.00

Receive bit (near) 329.00

Receive bit (far) 863.00

Memory | Load Hit 2.72
Load Miss 125.00

Load Miss + Writeback 181.00

Store Hit 241

Store Miss 78.34

Table 1: Energy per operation on the Skiff

Figure 1 shows the energy required for the Skiff to compress and send a IMB text file. Popular compressors are
examined with various parameters. Despite the large communication-to-computation energy ratio, in many cases the
energy saved by reducing the amount of data to transmit is outweighed by the cost of performing the compression.
Figure 2 shows the reverse operation: receiving data and uncompressing it. One sees that decompression is usually
less energy intensive than compression, but does not always yield a net energy savings.

122

Compress + Send Energy (5.70Mb/sec)

[Peripherals
[Network

Joules
o

S & N 0;3‘ S &y

S o A
VA, &
ST Fy e

X
v @ @"9 NG %
& §

§ & &
Figure 1: Energy required to trans-
mit (send) IMB text data using
various compressors.

MIT Laboratory for Computer Science, March 2003

Receive + Decompress (5.70Mb/sec)

e
[Peripherals
[Network

10H{ I Memory
I CPY

Joules
o

S o N o ® Py 2 b A g
LSS FYEy S
¥ & &

& QQQ‘ & Q

Figure 2: Energy required to trans-
mit (recv.) IMB text data using
various decompressors.

Il Text
[Web

Joules
© 4 v w s e o N o © B

Figure 3: Asymmetric compression:
energy to send and receive a com-
pressible 1MB File.

On the Skiff, compression and decompression energy are roughly proportional to execution time. The Skiff re-
quires lots of energy to work with aggressively compressed data due to the amount of high-latency/high-power memory
references. However using the fastest-running compressor or decompressor is not necessarily the best choice to min-
imize total transmission energy. For example, during decompression both zlib and compress run slower than LZO,
but they receive fewer bits due to better compression so total energy is less than LZO. These applications successfully
walk the tightrope of computation versus communication cost. Despite the greater energy needed to decompress the
data, the decrease in receive energy makes the net operation a win. More importantly, we have shown that reducing
energy is not as simple as choosing the fastest or best-compressing program.

Optimizing the way a compressor uses memory can result in significant energy savings. For example, the same
amount of data can be spread out across more memory to reduce collisions in a hash table thereby reducing the number
of cache misses. Rearranging a structure in the compress benchmark to avoid wasted space permitted the program’s
dictionary to fit in the Skiff’s cache. This resulted in 10X fewer cache misses. After a series of optimizations, we were
able to reduce the energy of the compress benchmark by 51%. We also note that many usage models do not require the
compression engine to match the decompression engine. By choosing the best compressor and decompressor for each
side of a client-server connection (Figure 3), we were able to reduce energy of text transmission by 57% compared to
the common zlib-6 + zIlib-6 arrangement; a 31% reduction is seen for web data. Even when compared to the minimum
symmetric arrangement, asymmetric compression saves up to 12% of energy.

Future: One may wish to examine the second order benefits of compression such as reduction in packet loss and less
contention for the fixed wireless bandwidth. When looking at an entire system of wireless devices, it may be reasonable
to allow some to individually use more energy in order to minimize the total energy used by the collection. We are
also working on a portable, realtime hardware energy monitor, EProf, which could be used to create feedback-driven
compression software.

Research Support: This work is supported by MIT Project Oxygen, DARPA PAC/C award F30602-00-2-0562, NSF
CAREER award CCR-0093354, and an equipment grant from Intel.

References:

[1] K. Barr and K. Asanovi¢, “Energy aware lossless data compression,” M.S. thesis, Massachusetts Institute of
Technology, Sept. 2002.

[2] K. Barr and K. Asanovié, “Energy aware lossless data compression,” in The First International Conference on
Mobile Systems, Applications, and Services, May 2003.

