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Abstract

We present a scheme to compress branch trace information
for use in snapshot-based microarchitecture simulation. The
compressed trace can be used to warm any arbitrary branch
predictor’s state before detailed microarchitecture simulation
of the snapshot. We show that compressed branch traces re-
quire less space than snapshots of concrete predictor state. Our
branch-predictor based compression (BPC) technique uses a
software branch predictor to provide an accurate model of the
input branch trace, requiring only mispredictions to be stored
in the compressed trace file. The decompressor constructs
a matching software branch predictor to help reconstruct the
original branch trace from the record of mispredictions. Eval-
uations using traces from the Journal of ILP branch predictor
competition show we achieve compression rates of 0.013-0.72
bits/branch (depending on workload), which is up to 210X bet-
ter than gzip; up to 52X better than the best general-purpose
compression techniques; and up to 4.4x better than recently
published, more general trace compression techniques. More-
over, BPC-compressed traces can be decompressed in less time
than corresponding traces compressed with other methods.

1. Introduction

As full-system simulation becomes more popular and
workloads become longer, methodologies such as statistical
simulation and phase detection have been proposed to pro-
duce reliable performance analysis in a small amount of time
[12, 21, 22, 30]. When such techniques are adopted, the bulk
of simulation time is spent fast-forwarding the simulator to
relevant points in a program rather than performing detailed
cycle-accurate simulation. To amortize the cost of lengthy fast-
forwarding, snapshots containing architectural state can be cap-
tured at each sample point [2, 29]. The snapshots can then
be used to initialize different machine configurations without
repeating the fast-forwarding. Microarchitectural state can be
reconstructed using a “detailed warming” phase before results
are gathered at each sample point, but if the microarchitectural
state is large, such as for caches and branch predictors, the time
required for detailed warming can be prohibitive.

Microarchitectural state can also be captured in the snap-
shot, but this will then require regeneration of the snapshot

every time a microarchitectural feature is modified. Ideally,
the snapshots should be microarchitecture independent, to sup-
port microarchitectural exploration with a standard set of stored
snapshots. For caches, various microarchitecture-independent
snapshot schemes have been proposed, which take advantage
of the simple mapping of memory addresses to cache sets
[1, 13, 27, 28]. Branch predictors, however, are much more dif-
ficult to handle in the same way, as the common use of global
branch histories smears the effect of a single branch address
across many locations in a branch predictor. One possibility is
to store microarchitectural state snapshots for a set of of poten-
tial branch predictors, but this limits flexibility and increases
snapshot size, particularly when many samples are taken of a
long-running multiprocessor application. We explore an alter-
native approach in this paper, which is to store a compressed
version of the complete branch trace in the snapshot. This ap-
proach is microarchitecture-independent because any branch
predictor can be initialized before detailed simulation begins
by uncompressing and replaying the branch trace.

The main contribution of our paper is a branch predictor-
based compression (BPC) scheme, which exploits a software
branch predictor in the compressor and decompressor to reduce
the size of the compressed branch trace snapshot. We show that
when BPC is used, the snapshot library can require less space
than one which stores just a single concrete predictor configu-
ration, and it allows us to simulate any sort of branch predictor.

We describe the structure of our BPC compressor in Sec-
tion 2. In Section 3, we examine the improvement of our tech-
nique versus general-purpose compressors and snapshots, and
we show how it scales with program size in terms of storage
and performance. Section 4 notes related work in compression
and simulation acceleration, and Section 5 concludes.

2. Design of a branch predictor-based
trace compressor

In general, lossless data compression can be partitioned
into two phases: modeling and coding. The modeling phase
attempts to predict the data symbols. For each symbol in the
input text, the compressor expresses any differences from the
model. The coding phase creates concise codewords to repre-
sent these differences in as few bits as possible. BPC uses a
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collection of internal predictors to create an accurate, adaptive
model of branch behavior. We delegate the coding step to a
general-purpose compressor.

To model the direction and targets of branches in a trace,
we can draw on years of research in high accuracy hardware
branch predictors. When using branch predictors as models in
software, we have two obvious advantages over hardware pre-
dictors. First, the severe constraints that usually apply to branch
prediction table sizes disappear; second, a fast functional sim-
ulator (which completes the execution of an entire instruction
before proceeding) can provide oracle information to the pre-
dictor such as computed branch targets and directions. We use
the accurate predictions from software models to reduce the
amount of information passed to the coder. When the model
can predict many branches in a row, we do not have to include
these branches in the compressor output; we only have to ex-
press the fact that the information is contained in the model.

2.1. Structure

Figure 1 shows the different components in our system. A
benchmark is simulated with a fast functional simulator, and
information about branches is passed to the BPC Compres-
sor. The BPC Compressor processes the branch stream, filters
it through a general-purpose compressor, and creates a com-
pressed trace on disk. We will show momentarily how the BPC
Compressor can improve its compression ratios by using its
own output as input to compress the next branch.

We define a concrete branch predictor to be a predictor
with certain fixed parameters. These parameters may include
size of global history, number of branch target buffer (BTB)
entries, indexing functions, et cetera. To evaluate the perfor-
mance of various concrete branch predictors, we retrieve the
compressed trace from disk, remove the general-purpose com-
pression layer, and process it with the BPC Decompressor. The
structure of the decompressor is identical to that of the com-
pressor. The output of the BPC Decompressor is used to up-
date state in each concrete predictor used in the experiment.
Branches later in the trace will overwrite entries in the concrete
predictor according to its policies.

The particular collection of internal predictors has nothing
to do with the concrete branch predictors that BPC will warm.
The implementation of BPC merely uses predictors to aid com-
pression of the complete branch trace which, by its nature, can
be used to fill any branch predictor with state based on infor-
mation in the trace. Furthermore, the precise construction of a
BPC scheme is up to the implementor who may choose to sac-
rifice compression for speed and simplicity or vice versa. We
merely describe what appears to be a happy medium.

Note this implementation differs from other proposed
value predictor-based compression (VPC) techniques, which
feed several predictors in parallel and emit a code indicating
which predictor is correct [4, 26]. We have found that, for our
datasets of branch traces, indicating in the output stream which
one of a set of predictors has succeeded results in a stream of
indicator codes which is itself difficult to compress.

Concrete
Benchmark Branch
Predictors
Functional
Simulator

BPC
Decompressor

General purpose
compressor

General purpose
decompressor

Compressed
Trace

Figure 1. System diagram. The compressed trace is stored
on disk until it is needed to reconstruct concrete branch
predictors.

2.2. Branch notation and representation

Before getting into the details of the compressor, we de-
scribe the information stored in the compressed trace and in-
troduce some notation used in this paper.

Using the Championship Branch Prediction (CBP) frame-
work [26], the uncompressed branch traces in our study con-
sist of fixed-length branch records as shown in Table 1. Each
branch record contains the current instruction address, the fall-
through instruction address (not obvious in CISC ISAs), the
branch target, and type (not mutually exclusive) which indi-
cates whether the branch is a call, return, indirect, or con-
ditional. The branch records are generated by a functional
simulator which can resolve the branch target and provide a
taken/not-taken bit. The taken bit is stored in a one-byte field
to facilitate compression via popular bytewise algorithms such
as gzip [11], bzip2 [23], or PPMd [24].

Table 1. Format of branch records.

field size
(Bytes)
instruction address 4
fall-through instruction address
branch target address

taken
is_indirect

—_— =

is_conditional | is_call | is_return
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Rather than predicting the direction and target of the cur-
rent branch, B, as in a hardware direction predictor and branch
target buffer (BTB), we predict information about the next
branch, B, ;. We denote the actual branch stream as By
and predicted branches as B ;. If the predictor proves correct
(Bu+1 = Bn+1) we concisely note that fact and need not provide
the entire B, branch record. Furthermore, we use 3,41 to
produce B2, »+; for as large an i as possible. This allows us to
use a single symbol to inform the decompressor that i chained
predictions will be correct.

Figure 2 depicts an example using this notation. Given
B, we must provide information about §,, . In this case, we
have predicted 3,1 to be not-taken with a specific fall-through
address. If these are correct predictions, BPC can continue by
chaining: using f3,+ as input to request predictions about 3,1 5.
The longer the chain of correct predictions, the less information
has to be written by the compressor.

B,.branch target
Basic

Basic
Block 1 Block 2

By, ﬁnJrl >
Bni1.fall through

Basic
Block 3

ﬁn+2

Figure 2. Graphic depiction of our notation.

The output of the compressor is a list of pairs. The first
element indicates the number of correct predictions that can
be made beginning with a given branch; the second element
contains the data for the branch that cannot be predicted. An
example output is shown in Table 2. As in most branch traces,
the example shows that the first few branches cannot be pre-
dicted and must be transmitted in their entirety. Eventually the
compressor outputs By and uses Bjg as an input to its internal
predictors, coming up with a prediction, 8. Comparing 3] to
the next actual branch, B, a match is detected. This process
continues until the internal predictors fail to guess the incoming
branch (at By4). Thus, we output “13” to indicate that, by chain-
ing predictor output to the next prediction’s input, 13 branches
in a row will be predicted correctly, but Br4 # By4. We emit By
and repeat the process.

We store the output in two separate files and use a general-
purpose compressor (such as gzip or bzip2) to catch patterns
that we have missed and to encode the reduced set of symbols.

Table 2. Example compressor output.

l skip amount [ branch record ‘

0 Bo
0 By
0 B,
Bio
13 Boy

2.3. Algorithm and implementation details

The internal structure of a BPC Compressor is shown in
Figure 3. Each box corresponds to one predictor. When multi-
ple predictors are present at a stage, only one is consulted. In
BPC, the criteria for choosing a predictor stems from branch
type which expresses characteristics of the branch such as
whether it is a return instruction or if it is conditional. The de-
tails of how type determines predictor selection are explained
in Sections 2.3.3 and 2.3.4.

The description below refers to the steady-state operation.
We do not describe handling of the first and last branch, nor
do we detail the resetting of the skip counter. These corner
cases are addressed in our code. We use diff to ensure a
compressed trace can be uncompressed correctly.

Initially, a known address, target, and taken bit of B,, are
received from the functional simulator and used to predict the
address of 1. This address is used to look up static informa-
tion about 3,41 including its fall-through address, type, and tar-
get. In the absence of context switches or self-modifying code,
the branch address corresponds directly with a type and fall-
through address. If the branch target is not computed, a given
branch address always has the same branch target. The type
prediction helps the direction predictor decide whether 3, is
a taken branch. The type also helps the target predictor make
accurate predictions. Once components of 3,1 have been pre-
dicted, it can be used to generate a prediction for f3,., and so
on. Before continuing, the predictors are updated with correct
data for B, provided by the simulator.

2.3.1. Predicting the next branch address. Normally,
branch targets must be predicted, but in the case of BPC,
they are known by the functional simulator. Instead, we must
predict the address of the next branch. Since the next branch
seen by a program is the first branch to appear after reaching a
target, knowing the target allows us to know the next branch. If
the branch is not taken, the next branch should appear shortly
a few instructions later. This prediction will be 100% correct
unless we are faced with self-modifying code or process
swaps.

If B, is a taken branch, we use a simple mapping of current
branch target to next branch address. This map can be consid-
ered a Last-1-Value predictor or a cache. Our map is imple-
mented with a 256K-entry hash table. The hash tables and fixed
sized predictors of BPC provide O(1) read and write time with
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Figure 3. Prediction flow used during branch trace compression. Input left of the dashed line is from the current branch,
B,. To the right of the dashed line are predictions for the next branch, S, ;.

respect to trace length. Since the hash table merely provides
predictions, it need not detect or avoid collisions. This property
permits a fast hash function and immediate insertion/retrieval,
but we choose to use linear probing to avoid collisions and
achieve higher prediction accuracy.

If B, is not taken, we use a separate table indexed by cur-
rent branch address to reduce aliasing. By using two tables we
insure that taken and not-taken instances of the same branch do
not stomp on each other’s next address mapping.

Recall that BPC is benefiting from the oracle information
provided by the functional simulator. Hardware target predic-
tors are accessed early in the cycle before the instruction has
been decoded and resolved. Here, the simulator has produced
B,,.taken and B,,.target which it uses to select and index the
maps.

2.3.2. Predicting the next branch’s static information. The
compressor looks up f,11.branch address in a hash table
to find B,.1.type, Bui1.fall-through address, and a potential
Bny1.target. Note that this target may be overridden if the
branch type indicates an indirect branch or return instruction.
The lookup table is implemented as in Section 2.2.1.

2.3.3. Predicting the next branch’s direction. If the (pre-
dicted) type indicates the next branch is conditional, we look
up its direction in a direction predictor. Recall that our soft-
ware predictors are not constrained by area or cycle time as
in a hardware predictor. Thus, we chose a large variation of
the 21264-style tournament predictor [15]. We XOR the pro-
gram counter with a 16 bit global branch history to access a
global set of two-bit counters, and use 216 1ocal histories (each
16 bits long) to access one of 2!© three-bit counters. A chooser
with 216 two-bit counters learns the best-performing predictor
for each PC/History combination. This represents 1.44 Mbits
of state, much more than one would expect in a real machine.
Branches predicted to be non-conditional are marked Taken.

2.3.4. Predicting the next branch’s target. If the next branch
is a return, we use a 512-deep return address stack to set its tar-
get. This extreme depth was necessary to prevent stack over-
flows in some of our traces that would have hidden easily-
predicted return addresses.

If the next branch is a non-return indirect branch, we use
a large filtered predictor to guess the target [9]. We introduce
a 32 K-entry BTB leaky filter in front of a path-based indirect
predictor. The path-based predictor is a 2% entry version of
the predictor provided by the Championship Branch Prediction
contest [26]. It has a PAg structure and uses the last four targets
as part of the index function. The filter quickly learns targets
of monomorphic branches, reducing the cold-start effect and
leaving more room in the second-stage, path-based predictor.

If the next branch is neither a return nor an ordinary indi-
rect branch, we set the target equal to the last target found in
Section 2.3.2.

2.3.5. Emitting the output stream and continuing. The
Bnt1 structure created thus far is compared with the actual next
branch, B, ;. If they match, we increment a skip counter; if
not, we emit < skip,B,.1 >. To keep a fixed-length output
record, we do not allow skip to grow past a threshold (e.g., a
limit of 2'® allows the skip value to fit in two bytes).

Before repeating, all predictors are updated with the cor-
rect information: for each B,,, the instruction address tables are
indexed by B,’s address or target address and updated with
B,y 1.instruction address, while the remaining predictors are
indexed by B, 1.instruction address and updated with B, ’s
resolved target, taken bit, fall-through address, and type. Fi-
nally, we increment n and repeat the above steps.

2.3.6. Entropy Coding. The output of the BPC compressor is
significantly smaller than the original branch trace, but better
results are possible by employing a general-purpose compres-
sor such as gzip, bzip2, or PPMd. These highly tuned com-
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pressors are sometimes able to capture patterns missed by BPC
and use Huffman or arithmetic coding to compress the output
further.

2.3.7. Decompression Algorithm. The decompressor must
read from these files and output the original branch trace one
branch at a time and in the correct order. The BPC decom-
pression process uses the same structures described in Sec-
tions 2.3.1-2.3.5 so it can be described quickly. As above, we
assume a steady state where we have already read B,,.

After reversing the general-purpose compression, the de-
compressor first reads from the skip amount file. If the skip
amount is zero, it emits B, as found in the branch record
file, and updates its internal predictors using B, and B, .

If it encounters a non-zero skip amount, it uses previous
branch information to produce the next branch. In other words,
to emit B, it queries its internal predictors with B, and out-
puts the address, fall-through, target, type, and taken informa-
tion contained in the internal predictors. Next, the skip amount
is decremented, B,+1 becomes the current branch (B},), and the
process repeats. Eventually, the skip amount reaches 0, and
the next branch must be fetched from the input file rather than
emitted by the predictors.

As the decompressor updates its internal predictors using
the same rules as the compressor, the state matches at every
branch, and the decompressor is guaranteed to produce correct
predictions during the indicated skip intervals. The structure
of the decompressor is identical to that of the compressor, so
decompression proceeds in roughly the same time as compres-
sion.

Recall that the motivation for compressing a branch trace
is to replace concrete branch predictor snapshots for sampling-
based simulation. By piping the output of our decompressor
into a concrete branch predictor model, the model becomes
warmed-up with exactly the same state it would have contained
had it been in use all along. Furthermore, the decompressed
branch stream can be directed into multiple concrete branch
predictors so that each may be evaluated during detailed sim-
ulation. After each branch is examined it may be discarded to
minimize disk usage. Since the trace is generated with a fast
non-speculative model, the predictors do not capture wrong-
path effects, but the resulting bias has been shown to be accept-
able [30].

3. Evaluation

Our simulation framework is based on the CBP compe-
tition trace reader which provides static and dynamic informa-
tion about each branch in its trace suite. The trace suite consists
of 20 traces from four categories: integer, floating point, server,
and multimedia. Each trace contains approximately 30 million
instructions comprising both user and system activity [26] and
exhibiting a wide range of characteristics in terms of branch
frequency and predictability as shown in Table 3. The traces
are used to drive predictors from the competition as well as

custom models. Columns labeled CBP show the direction ac-
curacy and indirect target accuracy of the predictors used in the
Championship Branch Prediction trace reader: a gshare predic-
tor with a 14-bit global history register, and an indirect target
predictor in a PAg configuration with 2! entries and a path-
length of 4 (bits from the past four targets are hashed with the
program counter to index into a target table). The BPC column
shows the decreased misprediction rate available to BPC with
the configuration described in Section 2.3.3 and Section 2.3.4.

Using this framework we will show that BPC provides an
excellent level of compression. Not only does a compressed
trace require less space than compressed snapshots, but a BPC-
compressed trace is smaller and faster to decompress than other
compression techniques.

3.1. Compression ratio

Figure 4 shows the compression ratio resulting from vari-
ous methods of branch trace compression for each trace. Traces
were run to completion with snapshots taken every 1M instruc-
tions. This sampling interval was found to produce good re-
sults on Spec benchmarks [30]. Each trace provides enough
branches for 29 snapshots. We report bits-per-branch (rather
than absolute file size or ratio of original size to new size)
so that our results are independent from the representation of
branch records in the input file. From left-to-right we see com-
pression ratios for general-purpose compressors; compressed
concrete snapshots; VPC (a similar work which is discussed
in Section 3.4); and BPC as described in this paper. We use
the suffix +comp to denote the general-purpose second-stage
COMPIessor.

While slower, bzip2 and PPMd give astonishingly good
results on raw trace files composed of fixed-length records.
In fact, these general-purpose compressors use algorithms that
have a more predictive nature than the dictionary-based gzip.

The three bars labeled “concrete” show the size of a snap-
shot containing a single branch predictor roughly approximat-
ing that of the Pentium 4: a 4-way, 4096 entry BTB to predict
targets and a 16-bit gshare predictor to predict directions [20].
Together the uncompressed size of the concrete predictor is
43.6 KB, however we use a bytewise representation and store a
97 KB snapshot as it is more amenable to compression than a
bitwise representation — up to 20% smaller in some cases. The
figure shows the size of bytewise snapshots after compression
with gzip, bzip2, and PPMd.

The state of a given branch predictor (a concrete snapshot
in our terminology) has constant size of g bytes. However,
to have m predictors warmed-up at each of n detailed sample
points (multiple short samples are desired to capture whole-
program behavior), one must store mn g-byte snapshots. Con-
crete snapshots are hard to compress so p, the size of g af-
ter compression, is roughly constant across snapshots. Since
a snapshot is needed for every sample period, we consider
the cumulative snapshot size: mnp. This cumulative snap-
shot grows with m and n. In fact, it grows faster than a BPC-
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Table 3. Characteristics of traces. Note that indirect branches refer to those branches not already classified as Calls or
Returns. Unconditional branches are those that remain after classifying indirects, calls, and returns. Columns may not sum
to 100% due to rounding. For a description of the BPC and CBP predictors, please see text of Sections 2 and 3 respectively.

Name Branches | Insts/Branch | Cond- Return Call Indirect Uncond- [ CBP | BPC | CBP | BPC
itional itional Direction Indirect Target

(Millions) (percent of total) (Mispred. Rate) | (Mispred. Rate)

FP-1 2.6 11.3 84.6 5.5 5.5 0.0 4.4 | 0.051 0.039 | 0.314 0.288
FP-2 1.8 16.3 99.3 0.0 0.0 0.0 0.6 | 0.018 0.017 | 0.317 0.303
FP-3 1.6 18.7 98.3 04 04 0.0 0.9 | 0.009 0.008 | 0.286 0.277
FP-4 0.9 32.0 97.2 0.9 0.9 0.0 1.1 | 0.010 0.010 | 0.251 0.241
FP-5 2.7 10.8 89.0 4.6 4.6 0.0 1.8 | 0.010 0.004 | 0.598 0.563
INT-1 5.0 5.9 83.9 4.6 4.6 0.0 7.0 | 0.053 0.049 | 0.362 0.337
INT-2 3.7 8.0 78.1 6.2 6.2 0.8 8.7 | 0.078 0.074 | 0.597 0.526
INT-3 4.1 7.1 91.2 0.7 0.7 0.0 7.4 | 0.106 0.094 | 0.313 0.285
INT-4 24 12.1 85.1 5.8 5.8 0.0 3.3 | 0.036 0.032 | 0.009 0.008
INT-5 3.8 7.7 98.3 0.5 0.5 0.2 0.6 | 0.005 0.003 | 0.285 0.250
MM-1 2.8 10.6 80.1 5.2 5.2 0.0 9.6 | 0.099 0.108 | 0.001 0.001
MM-2 4.2 7.0 90.4 2.6 2.6 1.7 2.7 | 0.079 0.079 | 0.015 0.011
MM-3 5.0 6.0 60.9 16.7 16.7 0.1 5.7 | 0.030 0.014 | 0.114 0.101
MM-4 5.1 5.8 95.9 1.5 1.5 0.2 0.9 | 0.011 0.011 | 0.053 0.046
MM-5 34 8.7 75.3 8.9 8.9 2.6 4.3 | 0.067 0.055 | 0.172 0.062
SERV-1 5.6 5.3 65.3 123 124 04 9.6 | 0.040 0.021 | 0.357 0.024
SERV-2 5.4 5.4 65.0 123 123 0.4 10.0 | 0.043 0.023 | 0.377 0.026
SERV-3 54 5.5 71.1 8.3 8.3 0.2 12.0 | 0.045 0.037 | 0.113 0.057
SERV-4 6.3 4.7 67.7 10.3 10.3 0.3 11.3 | 0.040 0.026 | 0.242 0.023
SERV-5 6.4 4.6 66.9 104 104 0.3 12.0 | 0.040 0.025 | 0.258 0.019

compressed branch trace even for reasonable p and m = 1. Note
that combining the concrete snapshots before compression pro-
vides context which is helpful for compression, but neither re-
flects typical snapshot usage models nor approaches the trace
compression ratios.

On average, BPC+PPMd provides a 3.4 x, 2.9, and 2.7 x
savings over stored predictors compressed with gzip, bzip2,
and PPMd respectively. When broken down by workload, the
savings of BPC+PPMd over concrete+PPMd ranges from 2.0 x
(integer) to 5.6x (floating point). Using BPC+PPMd rather
than concrete predictors compressed with gzip, bzip2, and
PPMd, translates to an absolute savings (assuming 20 traces,
1 billion instructions per trace, and an average of 7.5 instruc-
tions per branch) of 257MB, 207MB, and 182MB respectively.
Note that this represents the lower bound of savings with BPC:
if one wishes to study m branch predictors of size P = Y7 | pi,
the size of the concrete snapshot will grow with mnP, while the
BPC trace supports any set of predictors at its current size.

From these results, we note that predictive compres-
sors (bzip2, PPMd, and BPC) outperform dictionary-based
compressors in all cases, often drastically. Furthermore,
BPC+bzip2 outperforms pure bzip2 in all cases. To be fair,
we considered PPMd, a fast implementation of the PPM al-
gorithm which feeds to an arithmetic encoder and tends to
produce better compression ratios than bzip2 in roughly equal
time. While PPM-based methods are often discounted due to
their slow speed, we found PPMd to perform faster than bzip2

for our source data. Of course, a mild speed penalty during the
compression phases could be accepted as snapshot generation
occurs just once. We capped PPMd’s memory to 32 MB and
used an order-14 model corresponding to the number of bytes-
per-record in the raw trace file; this corresponds to a 1st-order
model at the branch record granularity.

We exceed stand-alone PPMd compression in 15/20 cases.
In a sense, BPC is similar to the Markov modeling used by
PPM. However, the additional context (e.g., long global histo-
ries and deep return address stack) usually allows us to predict
better than the simpler model constructed by PPMd. In the
cases where PPMd does better, we may be able to tease out
additional improvement through the use of stride predictors or
improved direction and indirect branch predictors.

Figure 5 shows the length of correct prediction chains and
helps explain the success of BPC. Recall that long chains are
represented by a single number in the skip amount output file
and a single branch in the branch record file. These histograms
show sums rather than average skip counts for each application
domain, and we normalize to total number of branches to al-
low cross-domain comparison. In terms of total branches, we
remove over 90% of branches in all cases and we remove over
95% in all but four cases: integer and multimedia are the most
troublesome due to lower accuracy in the direction predictor.



In IEEE Int’l Symposium on Performance Analysis of Systems and Software (ISPASS), Austin, TX, March 2006.

Bits/Branch (Integer)
7 T

Il raw-+gzip
Bl raw+bzip2
Il raw-+ppmd
[ concrete+gzip ||
[concrete+bzip2
[Jconcrete+ppmd
[_JVPC+bzip2
[ VPC+ppmd
[ BPC+gzip
Il BPC+bzip2
Il BPC+ppmd

Size (Bits)

INT-1 INT-2 INT-3 INT-4 INT-5
Benchmark

Bits/Branch (Server)
25 T

Il raw+gzip
Il raw-+bzip2
[ raw-+ppmd
[ concrete+gzip
[concrete+bzip2
[Jconcrete+ppmd
[_]VPC+bzip2
[IVPC+ppmd
[ BPC+gzip
Il BPC+bzip2
Il BPC+ppmd

20

-
o
T

Size (Bits)

iy
(=]

SERV-1

SERV-2 SERV-3

Benchmark

SERV-4 SERV-5

Bits/Branch (Floating Point)

1.4 —
Il raw-+gzip
Il raw+bzip2
[l raw+ppmd
121 [ concrete+gzip
[Jconcrete+bzip2
M |C_Jconcrete+ppmd
1+ n [_]VPC+bzip2
[VPC+ppmd
n [ BPC+gzip
—_ B I BPC+bzip2
£208F i Il BPC+ppmd
8 -
8
» 0.6- q
0.4 :

0.2

FP-1 FP-2 FP-3 FP-4 FP-5
Benchmark

Bits/Branch (Multimedia)
T

9 T T
Il raw+gzip
Il raw-+bzip2
8 I raw-+ppmd
[ concrete+gzip
L [Iconcrete+bzip2||
7 [Jconcrete+ppmd
[ JVPC+bzip2
6F [IVPC+ppmd
[ BPC+gzip
_ [l BPC+bzip2
25+ Il BPC+ppmd
Q
8
@ 4
3l
2l

MM-1 MM-2 MM-3 MM-4 MM-5
Benchmark

Figure 4. Compressed size (bits/branch). Different y-axis scales used for visibility.
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3.2. Scaling

How can we be certain that the compression ratios ob-
served on this short trace will carry through an entire program
execution? We extrapolate from the data shown in Figure 6
which shows how storage requirements scale over time. Since
a single compressed trace suffices to represent all branches in
the program, we report the current size of the compressed trace
at every 1M instructions. For the concrete snapshots, we report
the cumulative snapshot size at the given instant. Note that Fig-
ure 4 is merely the final data point of Figure 6 divided by the
number of branches observed and multiplied by 8 bits.

As the program begins, the concrete predictors are largely
unused and the easily compressed. Thus, their total size is
less than a compressed trace. As the program progresses, the
concrete predictors are harder to compress and make a dra-
matic contribution to the overall snapshot size. For all work-
loads, trace compression scales better than storing concrete
predictors. In 15/20 cases, BPC compression fares better than
PPMd compression of a raw branch trace; in two other cases
(INT2 and FP1) it is competitive or nearly equal, leaving three
cases (MM1, MM2, and INT3) in which PPMd outperforms
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BPC+PPMd. The server benchmarks present an interesting
challenge to the compression techniques. In general, these
workloads contain branches which are harder to predict and
phase changes which are more pronounced. BPC, with its
hardware-style internal branch predictors, is more suited to
quick adaptation than PPMd which uses more generic predic-
tion. When returning to a phase, BPC’s large tables and long
history allow better prediction than PPMd, which must adjust
its probability models as new inputs are seen; when old inputs
return, the model’s representation of old data is less optimal.

The figure shows trends developing in the early stages of
execution that should continue throughout the program. A trace
compressed with BPC will grow slowly as new static branches
appear, but reoccurrence of old branches will be easily pre-
dicted and concisely expressed (unless purged from the model).
Storage of concrete snapshots grows with mnP as discussed in
Section 3.1.

3.3. Timing

We have shown the storage advantages of trace-based
reconstruction versus snapshot-based reconstruction, but we
must show that the time required to compress and decompress
the data does not outweigh the space savings. In the case of
BPC or BPC+general purpose compression, the cost is negli-
gible. BPC requires simple predictors and tables which adds
little time to functional simulation. The second-stage, general-
purpose compressors (gzip, bzip2, and PPMd) are highly op-
timized and use fixed-size tables, so they remain fast through-
out the compression process. Furthermore, compression is per-
formed once, so the creation time of a microarchitectural snap-
shot can be amortized over many detailed simulations. We no
longer have to guess likely configurations, fix a maximum size,
or regenerate a snapshot to reflect a microarchitectural change.

Decompression speed is more important. We presume a
parallel methodology in which independent snapshots are pro-
duced and used to warm up state for detailed samples on mul-
tiple machines. In such a situation, runtime is limited by the
time to warm the final sample in program order. When work-
ing with a non-random-access compressed trace such as BPC,
the warming for the final sample in the program requires ex-
amining every branch in the trace. While this is much slower
than directly loading a snapshot of microarchitectural state, it
is much faster than functional simulation. Intuitively, warming
via branch trace decompression can be faster than functional
simulation: not only are there many fewer branches than total
instructions, but for each branch, only a few table updates are
required rather than an entire decode and execute phase. We
have traded some speed for lots of flexibility while remaining
several times faster than traditional functional branch predictor
warming. On average, BPC adds 48 seconds for every billion
instructions in the program on our test platform.

Table 4 gives an estimate of the additional time needed to

use each compression scheme. The times were collected on
a Pentium 4 running at 3 GHz. BPC, VPC and PPMd were

Table 4. Performance of BPC and general purpose decom-
pressors. Table shows millions of branches decompressed
per second (harmonic means).

| [ SERV ] INT| MM | FP | average |
gzip 7.27 [ 17.71 | 15.68 | 20.23 13.02
bzip2 079 | 067 | 071 ] 065 0.70
PPMd 081 | L12 | 1.14 | 130 1.06
VPC+bzip2 129 | 190 | 203 | 247 1.82
VPC+PPMd | 095 | 143 | 146 | 1.68 1.32
BPC+PPMd 223 | 318 | 298 | 4.10 2.98
sim-bpred 1.09 0.34 0.50

compiled with gcc 3.4.3 -O3, and vendor-installed versions of
gzip and bzip2 are used. Timing information is the sum of user
and system time reported by /usr/bin/time. We require
each application to write its data to stdout, but redirect this out-
put to /dev/null. For VPC, we modify the generated code
so that 2nd-stage compression may be performed in a separate
step; the sum reported in the table may be slightly slower than
had the 2nd-stage compression been performed inline, but it
allows us to examine alternative 2nd-stage compressors. sim-
bpred is the branch predictor driver distributed with the popular
Simplescalar toolset [3]. We run Spec2000 benchmarks using
Minnespec datasets [16] with sim-bpred’s static not-taken pre-
dictor to show how quickly a fast functional simulator can de-
code and identify branch instructions. Note that the SpecFP
average speed is hurt by several benchmarks with a very small
percentage of control instructions (e.g., 50 or 120 instructions
per branch); while it is a representative average, it is difficult
to compare directly with the CBP traces which have closer to
= 15 instructions per branch.

Our original BPC implementations used state-of-the-art
perceptron predictors and the standard template library (STL)
which dominated runtime. The current implementation, which
uses a large tournament predictor and no STL, strikes a balance
between speed and compression. The table shows that while
the impressive compression ratios observed in Figure 4 do not
come for free, one can still obtain decompression speeds that
surpass an optimized simulator. Not only is BPC faster than a
fast RISC functional simulator, we note that the BPC rate will
remain constant while functional simulation becomes slower
as support for CISC instructions and full system simulation is
added.

We see that PPMd performs better than the more common
bzip2 when dealing with all categories of branch traces. Com-
bining BPC with PPMd gives us performance up to 3.9 x faster
than PPMd alone because BPC acts as a filter allowing PPMd
to operate on a smaller, simpler trace. The table also shows
VPC times for its default 2nd-stage compressor (bzip2) and
VPC combined with PPMd. VPC performs best with bzip2,
but appears slower than BPC. The speedup is due to a com-
bination of a BPC’s simpler hash function; fewer and smaller
predictors which may relieve cache pressure; and a more-easily
compressed output to the general-purpose compressor.
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Figure 6. BPC storage requirements grow slower than that of concrete snapshots.

The decompression time is dominated by BPC rather than
the general-purpose compression phase, but the fraction varies
depending on workload. For example, the small, highly com-
pressed floating point branch traces spend as little as 1.75% of
decompression time performing general-purpose decompres-
sion, while the server traces require at least 25.0%. Table 5
shows the percentage of time spent performing general-purpose
decompression for each class of trace.

3.4. Comparison

Value-predictor based compression (VPC) is a recent ad-
vance in trace compression [4]. Its underlying predictors (last-
n-value, strided, and (differential) finite context) are more gen-
eral than the branch direction and target predictors found in
BPC. As such, VPC has trouble with branch traces in which

branch outcome may only be predicted given a large context.
Both predictors must emit incorrectly-predicted branches, but
in contrast with BPC, VPC runs several predictors in parallel
and emits a code to indicate which predictors should be con-

Table 5. Decompression time is shared between general-
purpose decompressor and BPC. Table shows statistics for
percent of time spent performing general purpose decom-
pression.

| [ min [ max [ mean [ st. dev ‘
SERV | 25.1% | 42.0% | 30.8% 7.2%
INT 2.6% | 43.0% | 23.4% | 18.5%
MM 4.0% | 43.9% | 27.3% | 18.2%
FP 1.8% | 20.6% 9.1% 7.7%
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sulted for each record. When an internal predictor cannot be
used, the unpredictable portion of the record is output. Sep-
arate output streams are used corresponding to each internal
predictor.

To see the improvement possible with specialized predic-
tors, we used TCgen, an automated code generator, to generate
a VPC compressor/decompressor pair [6]. We begin as sug-
gested by the developers, by generating code with many pre-
dictors (we used 44 of different classes and context lengths);
running it on our traces; and refining to include only those pre-
dictors that perform best. Paring down the predictors eliminates
additional output streams and reduces variability in the correct-
predictor index that can negatively effect compression. Even-
tually we settled on the TCgen specification in Figure 7 which
uses 18 predictors, eliminates the simpler last-value predictor,
and uses finite-context predictors only where most useful. Fig-
ure 4 and Table 4 include data for VPC. We see that BPC com-
presses branch trace data better than VPC in 19/20 cases (all 20
if we always choose the best 2nd-stage compressor for each)
and is between 1.1 and 2.2 times faster. We compressed raw
VPC streams with both bzip2 and PPMd to show the effect of
the second stage compressor. VPC was tuned for integration
with bzip2, and this is evident in the results.

TCgen Trace Specification;
0-Bit Header;

32-Bit Field 1={L1l=1, L2=131072: DFCM3[2], FCM3[2], FCM1[2]}
32-Bit Field 2={L1=65536, L2= 131072: DFCM3[2]};

8-Bit Field 3={L1=65536, L2= 131072: DFCM3[2]};

32-Bit Field 4={L1=65536, L2= 131072: DFCM3[2], FCM1[2]};
8-Bit Field 5={L1=65536, L2= 131072: DFCM3[2], FCM1[2]};

PC = Field 1;

Figure 7. Tuned TCgen specification

The CBP trace reader was written to favor compression
ratio over decompression speed and was distributed without
excessive tuning [25]. CBP uses a simpler set of predictors:
gshare with 14 bits of history, a path-based indirect branch pre-
dictor with 219 entries, a 128-entry return address stack (RAS),
a static info cache with 2'8 entries, and two target caches with
a total of 28 + 210 entries. Like VPC, a code is emitted which
describes which predictors are correct. Unlike VPC, the code
is followed by a variable-length record that contains only the
information that must be corrected. CBP exploits the variable-
length nature of x86 instructions. In addition, it supports all
instructions, not just branches.

Though it uses similar techniques, a direct comparison
with CBP is not possible (CBP obtains near-perfect pro-
gram counter compression due to the interleaving of non-
branch instructions). When perfect PC prediction is possible,
CBP+bzip2 outperforms BPC in 10/20 cases, but when perfect
prediction is not allowed, BPC produces smaller files.

In a sense, CBP does chaining as well but outputs the chain
amount in a unary coding. For example, five 0’s in a row means
that internal predictors suffice to produce the next five branch
records. With BPC, we merely output “5”. While our encoding
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is simpler, the CBP encoding can lead to long runs of 0’s that
are easily compressed.

In conclusion, the specialized nature of our input data and
our exploitation of long runs of correct predictions, allow for
an extremely efficient implementation that generally exceeds
the performance of more general related work.

3.5. Summary

Figure 8 summarizes the space and time information from
Figure 4 and Table 4 and is a convenient way to choose the
optimal compressor for a particular goal (speed or size) and
dataset. For each of four workloads, we plot the average bits-
per-branch and speed of decompressing for each class of traces.
We use harmonic mean for the rate on the y-axis. The most
desirable compressors, those that are fast and yield small file
sizes, appear in the upper left of the plots. Note that gzip does
not appear on the plot: it is the clear winner in speed, but its
compression ratio makes it undesirable for snapshots as we saw
in Figure 4.

For each application domain, BPC+PPMd performs the
fastest. In terms of bits-per-branch, BPC+PPMd is similar to
VPC for highly-compressible floating point traces and simi-
lar to PPMd for integer benchmarks. For multimedia, PPMd
performs best, while BPC+PPMd performs significantly bet-
ter than all its peers for hard-to-predict server benchmarks.
High speed and small files across application domains are the
strengths of our technique.

4. Related work

The similarity between data compression and branch pre-
dictors was noted in [7]. The authors reduced two-level di-
rection predictors to implementations of Prediction by Partial
Match (PPM) data compression [8] to show that two-level pre-
dictors were optimal in the asymptotic best-case. PPM has
also been applied directly to direction prediction [10]; indi-
rect branch target prediction [14]; and revisited in a recent sub-
mission to the Championship Branch Prediction (CBP) contest
[17]. Despite asymptotic optimality, the resource-constrained
CBP submission was outmatched by predictors that could bet-
ter capture extremely long histories (80+ branches).

Branch trace compression has been attempted by reduc-
ing the entropy of a trace using blocking of symbols and em-
ploying short fixed-length codewords [19]. The dictionary and
codewords are then passed to gzip for impressive compression
ratios. This n-tuple scheme led to a more generic stream based
compression scheme by the same authors [18] which has re-
cently been surpassed by VPC [4]. Since BPC outperforms
VPC for branch traces, we believe it would outperform the
stream based compression as well, though different trace for-
mats make a direct comparison difficult.

VPC exploits the equivalence between hardware predic-
tors and data compressors to achieve excellent compression ra-
tios on a wider spectrum of values. In fact, the generic value
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Figure 8. The optimal compressed trace format is in the upper left of each plot. Decompression speed across applications

is reported with harmonic mean.

predictors used are quite useful for predicting indirect branch
targets [5]. The BPC technique presented in this paper differs
from VPC in two key ways. First, our branch traces are in-
herently more compressible than the extended data traces from
the VPC work: instead of bzip2 ratios of 10-31X on aver-
age, we see 50-1000X. Second, VPC relies on multiple pre-
dictors in parallel, choosing the best-performing predictor for
each record. BPC uses oracle information from a functional
simulator to choose the single predictor most likely to be cor-
rect. This allows us to express correctness as a boolean, rather
than a short code. Furthermore, it allows us to establish runs of
correctly predicted branches and express these runs concisely.

The traces provided in the CBP contest are encoded using
a public, but unpublished, scheme similar to VPC. They use a
variety of predictors: a RAS, indirect BTB, and generic load
value predictors to achieve compression [26]. As with BPC
and VPC, the decompressor uses the same set of predictors,
updating them along the way. When the compressor detects
that many of its predictors are correct it need only send a short
1-byte code and the decompressor consults its copy of the pre-
dictors. Longer codes may be necessary to patch an incorrect
prediction or provide unseen values. The CBP technique does
not directly perform the chaining of BPC. While CBP is most
similar to BPC, we were unable to perform a direct comparison
because CBP relies on information from non-branch instruc-
tions to improve compression.

Memory Reference Reuse Latency is a different approach
to speed warming [12]. Rather than store snapshots, an MRRL-
enabled simulator runs in an online mode. To reduce pro-
hibitive warmup times, only those instructions which occur
within a statistically relevant near-history are used for warm-
ing prior to a detailed snapshot. Because the determination of
relevance is based on memory interaction, subtle and long-lived
branch correlations may cause inaccurate predictors, though in
practice, there appears to be limited effect on estimated IPC.
The accuracy may vary, however, when different branch pre-
dictor configurations are evaluated as MRRL metrics are based
on load/store instructions instead of branches, and the correla-
tion is not obvious. One could envision applying MRRL-like
techniques along with BPC to limit the size of the trace to be
compressed.
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5. Conclusion

We have presented a technique, BPC, that utilizes software
branch prediction structures to produce highly compressed
branch traces for use in snapshot-based simulation. Utiliz-
ing fast, accurate predictors and chaining consecutive cor-
rect predictions, BPC achieves compression rates of 0.12-0.83
bits/branch (depending on workload), which is up to 210x bet-
ter than gzip, up to 52 better than the best general-purpose
compression techniques, and up to 4.4x better than recently
published, more general, trace compression techniques. In
the context of snapshot-based simulation, BPC-compressed
traces serve as microarchitecture-independent representations
of branch predictors. We have shown that this representation
can require less space than one which stores just a single con-
crete predictor configuration, and that it permits the reconstruc-
tion of any sort of branch predictor.
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