
Appears inKool Chips Workshop, 33rd International Symposium on Microarchitecture, Monterey, CA, December 2000

Highly-Associative Caches for Low-Power Processors

Michael Zhang and Krste Asanovi´c
MIT Laboratory for Computer Science, Cambridge, MA 02139

frzhang|krste g@lcs.mit.edu

1 Introduction

Since caches consume a significant fraction of total pro-
cessor energy, e.g., 43% for StrongARM-1 [8], many stud-
ies have investigated energy-efficient cache designs [1, 5,
12, 13, 14, 15, 18]. However, none of these design stud-
ies have considered using content-addressable-memory
(CAM) tags in highly-associative caches. This is partic-
ularly surprising given that the leading commercial low-
power processors over the last decade have all employed
CAM-tag caches. For example, the ARM3 with 4 KBytes
of 64-way set-associative CAM-tag cache was released in
1989 [9] and the new Intel XScale processor employs 64-
way set-associative CAM tags. Publications which de-
scribe processors with CAM-tag caches [8, 9, 11, 16] in-
clude some discussion of the reasons for choosing CAM
tags but do not include detailed quantitative arguments in
favor of these designs.

In this paper, we restate the advantages of CAM-tag
caches based on a new cache energy model extracted from
circuit designs for aggressive low-power cache designs in
a 0.25�m 2.5 V CMOS process. We show that CAM-tag
caches have comparable access latency, but give lower hit
energy and higher hit rates than RAM-tag set-associative
caches at the expense of approximately 10% area over-
head. Although direct-mapped caches have lower hit ener-
gies and faster access, they suffer higher miss rates which
result in much larger total memory access energy as well as
reduced performance. Our results demonstrate that CAM-
tag caches are fast and energy-efficient, and are well-suited
for both high-performance and low-power designs.

The rest of this paper is structured as follows. Section 2
describes the circuit design and layout for our cache de-
signs. Section 3 gives evaluation results for some bench-
marks taken from SPECint95 and MediaBench. Section 4
compares our design and energy model with the popular
CACTI cache model [17, 19] and illustrates the limitations
of CACTI energy model when applied to low-power de-
signs, then Section 5 summarizes the paper.

2 Cache Design and Energy Models

This section describes the designs of our low-power
caches and their accompanying energy models. We first
describe the RAM arrays that are common to all designs,
then describe RAM and CAM tag designs.

2.1 RAM Array Design

The RAM arrays used in our designs employ con-
ventional six-transistor SRAM cells with differential
reads and writes. The area of the RAM cell is
4.32�m�4.56�m=19.7�m2. For RAM reads, a self-
timed circuit is used to pulse word-lines to limit bitline
swing to only about 15% ofVdd and bitline isolating latch-
ing sense-amplifiers are used to provide a full rail re-
sult [2, 10]. To further reduce bitline energy, we divide
wordlines every 32 columns and have a single sense-amp
per bit column, so that we only discharge the bitlines for
the 32-bit word we are accessing [2]. The additional sense-
amps do not increase energy because they are conditionally
enabled. The per-bit sense-amps and output drivers add
about 3% area overhead to the array compared to a scheme
with column muxes. Writes are performed differentially
with full rail voltage swings.

The main disadvantage of using a sense-amp on each
bit-column is that it increases the amount of multiplexing
required between the sense-amps and the CPU. We employ
pulsed low-swing differential I/O bus drivers to connect
word output drivers to the CPU which limits the perfor-
mance and energy impact of multiplexing additional sense-
amps. We also segment the cache-to-CPU bus to minimize
the bus wire capacitance that is driven, improving both
speed and energy consumption.

The cache storage is divided into smaller sub-banks,
balancing energy savings with area overhead. By com-
bining sub-banking with word-line segmentation, we re-
duce the active RAM array for each word access to just 32
columns and 32 to 64 rows.



2.2 RAM Tag Designs

Figure 1 shows the organization of a traditionaln-way
set-associative cache. Each cache is divided inton par-
titions, each with its own tag array. RAM tags are often
stored in smaller RAM arrays to allow faster access than
data RAM. Once the address is decoded, tags and data from
all ways are read out concurrently. Tags are compared in
parallel to select the correct way and to generate the hit
signal. This approach, however, is not particularly energy
efficient since the bits read out from then � 1 incorrect
ways are discarded. A more energy-conscious two-phased
cache [6] first checks tags, then only reads data out from
the correct way, practically doubling access latency for a
primary cache. Two-phased accesses are more appropriate
for secondary caches [7] where an extra cycle of latency to
check tags has less overall performance impact.

Direct-mapped caches (n = 1) can be considerably
faster than set-associative caches because they do not need
to wait for the tag compare result before forwarding the
data value to the CPU. Also, they have lower access en-
ergy because only one set of tag and data is accessed.
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Figure 1:Organization of a set-associative RAM-tag cache.

2.3 CAM Tag Designs

Figure 2 shows the overall organization of one sub-bank
of a CAM-tag cache [10]. Each cache line in the sub-bank
has a local tag that compares its contents with the broadcast
search tag bits. Each CAM cell is a standard ten-transistor
design laid out to be exactly twice the RAM cell area at
4.32�m�9.12�m=39.4�m2 as shown in Figure 3. The
cell contains a SRAM cell and a dynamic XOR gate used
for comparison. The match line is precharged high and
conditionally discharged on a mismatch. All match lines
are OR-ed to generate the hit signal.

The search bitlines, match lines, and buffers that drive
control signals across the tag array are the main consumers
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Figure 2:Organization of a highly-associative CAM-tag cache.
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Figure 3:CAM cell circuitry.

of energy in the CAM-tag cache. To reduce the capaci-
tance switched during a search operation, we separate the
search bitlines from the write bitlines. To reduce the energy
dissipated on the match lines, they are only precharged to
Vdd� Vtn through n-type precharge transistors and single-
ended sense-amps are used to regenerate a full-rail match
signal. As shown in Figure 4, we also break the entire
row of tags into two equal partitions such that the worst-
case delay of the match line capacitance discharge can be
halved [17].

As with RAM-tag designs, we break up the cache into
sub-banks using low order address bits and only activate a
search within the enabled sub-bank. We can further reduce
the energy of a CAM-tag design by only enabling a smaller
number of rows within a sub-bank, effectively reducing the
associativity. For example, the StrongARM design [10]
has 64 CAM rows (128 RAM rows) in each cache sub-
bank but only enables one 32-way subset on each access.

Figure 5 shows the layout of a complete 1 KB 32-way
set-associative cache sub-bank. This consumes around
10% greater area than a 1 KB RAM-tag sub-bank. CAM
tags have the property of providing very high associativ-
ity within a single sub-bank without having to partition the
RAM array. There would be significant area overhead for
sense-amps and muxes if we were to try to implement a
small and highly-associative RAM-tag cache sub-bank.
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Figure 4:Split CAM row operation.
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Figure 5: Layout of a 1 KB 32-way set-associative CAM-tag
cache sub-bank holding 32 lines with 32 bytes each.

Another advantage of CAM-tag designs is that they sim-
plify the handling of cache stores. In a CAM-tag design,
the data RAM word lines are only enabled on a cache hit
and so stores can happen in a single cycle. A conventional
RAM-tag design has to split the store access across two
cycles: the first cycle checks the tag, and the second cycle
writes the data storage on a hit. To allow full speed writes,
RAM-tag designs often include a write buffer ahead of the
primary cache to avoid stalling on stores, adding additional
complexity and energy overhead. We ignore this additional
delay and energy cost in the comparison below.

2.4 Energy Modeling

To obtain accurate energy models, we performed com-
plete circuit design and layout of both RAM and CAM ar-
rays of various sizes in a 0.25�m 2.5 V TSMC CMOS pro-
cess. A 2-dimensional circuit extractor was used to obtain
a SPICE netlist including detailed circuit parasitic capaci-

tances. We used HSPICE to simulate the extracted netlist
and from these simulations we extracted effective capaci-
tance for our energy models. These simulations capture the
effects of inter-wire coupling capacitance and short-circuit
currents. Our simplified models predict RAM and CAM
array energy very accurately (within 2%) since these pieces
are extremely regular, and predict within 10% error for the
entire cache energy including decoders and I/O.

2.5 Delay Comparison

The critical paths for RAM and CAM-tag caches are
shown in Figure 6. From the figure, we observe that the de-
lays of the CAM-tag and RAM-tag caches are very similar
— they share many of the same components. The CAM-
tag critical path includes buffers to drive the search bit-
lines, the dynamic match comparators, the data RAM ar-
ray, and then the tristate I/O drivers connecting back to the
CPU. The RAM-tag critical path has the address index bits
decoder, tag RAM array, the dynamic match comparator,
match signal buffering to drive the data mux control, and
then a tristate mux connecting back to the CPU. The tristate
bus that connects one 32-bit sub-bank column back to the
CPU 32-bit load datapath has the same fan-in in all config-
urations. There are two main differences between the two
critical paths. First, the RAM block has a faster address
decoder to set up the data word lines whereas the CAM
block performs a slower tag match operation. Second, the
RAM block has to compare the output of the RAM tags,
then buffer up the match signal to enable 32 tristate bus
drivers, whereas for the CAM block all the tristate enables
are setup using low-order address bits before the RAM data
appears. We assume that the tag RAM array has half the
number of rows as the data RAM, and hence part of the tag
compare and tristate enable setup overlaps with the slower
data RAM access. From HSPICE simulations, we have
found that the delay to valid data of RAM-tag and CAM-
tag cache designs with same sub-bank size are within 1%
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Figure 6: (a) Critical path of RAM-tag cache. (b) Critical path
of CAM-tag caches.

of each other (2.92 ns and 2.89 ns respectively). A direct-
mapped scheme is considerably faster at around 2.82 ns ac-
cess time. CAM tags generate the hit signal faster than
RAM tags, which can be an advantage for controlling ma-
chine pipelines.

3 Results

In this paper, we reduce the design space to a small
set of candidate primary data cache designs. We compare
8 KB and 16 KB capacities with 32 byte lines, which are
typical sizes for embedded processor primary caches. The
optimal size of data RAM sub-banks, balancing lower en-
ergy with increased area, is found to be around 1–2 KB.
Thus, we fixed the data capacity of each sub-bank for all
configurations to be 1 KB organized as 64 rows with 128
columns, where the 128 columns are divided into four 32-
bit word groups, i.e., a cache line fits on two rows of a sub-
bank. For lower energy and faster access, the RAM tags
are held in separate smaller tag RAM arrays with 32 rows.
The double-height CAM tag bits are built into the middle
of the data RAM arrays stretching over the two RAM rows
of each cache line. The RAM tag caches treat each sub-
bank as a way, and accessn sub-banks together to form an
n-way set-associative cache. Within each way, the word-
line segmentation ensures that only the required word is
fetched from the data array. The CAM tag caches access
only one sub-bank at a time, with a maximum of 32-way
set-associativity, when all rows are activated on search.

We simulated a few SPECint95 and Mediabench bench-
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Figure 7:Miss rate versus associativity for 8 KB and 16 KB data
caches.

marks to obtain representative data cache miss rate infor-
mation for a 16 KB cache and a 8 KB cache. The results
are shown in Figure 7. We note a wide variation in miss
rate, withLZWandpegwit having much higher miss rates
dominated by capacity misses, whilem88ksim andperl
have almost no misses in small caches once associativity is
used to remove conflict misses. We see that direct-mapped
caches perform poorly compared with associative designs
averaging around 2–3% higher miss rates, and that for most
benchmarks, larger associativities give some small bene-
fits. As expected, we also see that increased associativity
is more important for the smaller cache.

Figure 8 plots the energy for each access that hits in an
8 KB cache for each of the benchmarks and for a range of
RAM and CAM associativities. The variation in energy
across benchmarks is due to differences in the mixture of
reads and writes. We observe that as we vary CAM asso-
ciativity from 8-way to 32-way, the hit energy is compara-
ble to the 2-way RAM design but significantly lower than
the 4-way RAM tag. The more highly associative RAM
tag designs waste considerable energy fetching multiple
data and tag items that are usually discarded. The direct-
mapped cache has significantly lower hit energy than any
of the associative designs, but this metric ignores the en-
ergy and performance cost of cache misses.

To show the effects that misses have on memory access
energy consumption, we plot in Figures 9 and 10 the to-
tal energy per access forperl andpegwit respectively,
which represent two extremes in terms of miss rate. Rather
than pick a single design of a memory hierarchy, we show
how total access energy varies as a function of miss en-
ergy where miss energy is expressed as a multiple of the
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Figure 8:Hit energy per access for 8 KB cache for various cache
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energy required to read a single 32-bit data word from pri-
mary cache. At minimum, a cache miss will require that 8
words are read from second level memory and written into
primary cache. This will generally consume considerably
greater than 32� single word read energy. In practice, miss
energies could easily be in the range of 128–1024� single
word read energy once victim writebacks are accounted for
and if external DRAM accesses are involved.

These large miss energy penalties amplify small differ-
ences in miss rate. Forperl , we see that the CAM tag
cache can reduce effective access energy by greater than a
factor of 2 compared with direct-mapped caches for high
miss energies. Compared with the direct mapped cache,
it has greater hit energy but much lower total miss energy
due to considerably fewer misses. Compared with the more
associative RAM-tag designs, it has lower hit energy and
slightly lower total miss energy due to fewer misses. The
pegwit benchmark is dominated by miss energy across
all configurations, but the slightly lower miss rate of the
CAM tag solutions gives them comparable or lower total
energy across all realistic miss energies.

The CAM tag variants also provide better performance
by having fewer cache miss stalls. This combined effect
of higher performance and lower effective access energy
explains the popularity of CAM tag caches in low-power
processors. We also note that we have not optimized the
CAM tag circuitry as heavily as the RAM tag circuitry,
which includes pulsed low-swing techniques. We believe
there is considerable room for further reductions in CAM
hit energy through circuit techniques.
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Figure 9: Total energy per access forperl in an 8 KB data
cache for varying miss energy cost.

4 Related Work

The CACTI model [17, 19] has been used in many ar-
chitectural cache studies and has recently been extended
to include CAM-tag cache designs [17] and energy mod-
els. However, the base CACTI cache design is not particu-
larly energy-efficient. We attempted to replicate our 8 KB
CAM-tag cache configurations using the CACTI model
scaled to our technology and power supply. We found that
CACTI agreed to within 10% on our access time numbers,
but over-estimated energy consumption by around a factor
of ten for a single sub-bank. Our model gave RAM energy
figures in close agreement with those from the experimen-
tal circuit measured in [3]. We will try to discuss some of
the factors which might attribute to this difference.

Our design uses a low-power sensing scheme which
limits bitline swing to only 15% ofVdd by using self-timed
pulsed word lines and bitline-isolating latching sense am-
plifiers [4, 10]. In the CACTI model, however, reads use
a sensing scheme with a statically-biased sense amplifier
and large bitline voltage swings that will not scale to lower
supply voltages. The CACTI model also assumes that mul-
tiple words are read for each access with a column mux
before the sense-amps, whereas low-power designs need
only discharge the individual word that is being accessed
and employ a single sense amp per bit column [2].

The new CAM tag model in CACTI 2.0 do not use split
the write bitlines and the search bitlines in CAM tags, and
assume all match lines are charged toVdd. It also assumes
that CAM tags will always be used in fully-associative con-
figurations, where all tags in the cache are active, whereas
existing commercial designs employ sub-banking to acti-
vate only 8–64 ways in one cache sub-bank. When we
tried to configure CACTI 2.0 to model the entire CAM-tag
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Figure 10:Total energy per access forpegwit in an 8 KB cache
for varying miss energy cost.

cache, we obtained a factor of thirty difference due to this
effect.

5 Summary

In this paper, we have presented results modeling RAM-
tag and CAM-tag data cache energy dissipation through
HSPICE simulation of extracted layout. Using our energy
model, we have shown how CAM-tag caches can provide
lower total memory access energy by reducing the hit en-
ergy cost of the high associativities required to avoid costly
misses. We also show that there is no significant perfor-
mance overhead associated with CAM designs, although
there is around a 10% area overhead.
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