
Energy-Aware Lossless Data Compression

KENNETH C. BARR and KRSTE ASANOVIĆ

MIT Computer Science and Artificial Intelligence Laboratory

Wireless transmission of a single bit can require over 1000 times more energy than a single 32-bit

computation. It can therefore be beneficial to perform additional computation to reduce the number

of bits transmitted. If the energy required to compress data is less than the energy required to send

it, there is a net energy savings and an increase in battery life for portable computers. This article

presents a study of the energy savings possible by losslessly compressing data prior to transmission.

A variety of algorithms were measured on a StrongARM SA-110 processor. This work demonstrates

that, with several typical compression algorithms, there is a actually a net energy increase when

compression is applied before transmission. Reasons for this increase are explained and suggestions

are made to avoid it. One such energy-aware suggestion is asymmetric compression, the use of one

compression algorithm on the transmit side and a different algorithm for the receive path. By

choosing the lowest-energy compressor and decompressor on the test platform, overall energy to

send and receive data can be reduced by 11% compared with a well-chosen symmetric pair, or up

to 57% over the default symmetric zlib scheme.

Categories and Subject Descriptors: C.4 [Performance of Systems]—Performance attributes

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Compression, energy-aware, lossless, low-power, power-aware

1. INTRODUCTION

Wireless communication is an essential component of mobile computing, but the
energy required for transmission of a single bit has been measured to be over
1000 times greater than for a single 32-bit computation. Thus, if 1000 computa-
tion operations can compress data by even 1 bit, energy should be saved. Com-
pression algorithms which once seemed too resource- or time-intensive might
be valuable for saving energy. Implementations which made concessions in com-
pression ratio to improve performance might be modified to provide an overall
energy savings. Ideally, the effort exerted to compress data should be variable to
allow a flexible tradeoff between speed and energy. Earlier work has considered
lossy compression techniques which sacrifice the quality of compressed audio

This work was supported by MIT Project Oxygen, DARPA PAC/C award F30602-00-2-0562, NSF

CAREER award CCR-0093354, and an equipment grant from Intel.

Authors’ addresses: The Stata Center, Building 32-G776, 32 Vassar Street, Cambridge, MA 02139;

email: {kbarr,krste}@mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0734-2071/06/0800-0250 $5.00

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006, Pages 250–291.

Energy-Aware Lossless Data Compression • 251

or video data streams to reduce the bit rate and energy required [Flinn 2001;
Sinha et al. 2000; Taylor and Dey 2001; Noble and Satyanarayanan 1999]. In
this work, we consider the challenge of reducing wireless communication energy
for data that must be transmitted faithfully.

We provide an in-depth examination of the energy requirements of several
lossless data compression schemes. We take energy measurements using the
StrongARM-based Skiff platform developed by Compaq Cambridge Research
Labs, which allows energy consumption of the CPU, memory, network card, and
peripherals to be measured separately. The platform is similar to the popular
iPAQ handheld computer, so the results are relevant to designers of embedded
and mobile systems. Several families of compression algorithms are analyzed
and characterized, and it is shown that compression prior to transmission may
actually cause an overall energy increase. We highlight behaviors and resource-
usage patterns which allow for energy-efficient lossless compression of data.
Finally, a new energy-aware data compression scheme composed of these be-
haviors is presented and measured.

Section 2 contains a brief overview of important lossless compression con-
cepts, algorithms, and the implementations that we study. Section 3 describes
the experimental setup including benchmark selection and methodology.
Section 4 begins with the measurement of an encouraging communication-
computation gap, but shows that modern compression tools do not exploit the
the low relative energy of computation versus communication. Factors which
limit energy reduction are presented. Section 5 applies an understanding
of these factors to reduce overall energy of transmission though hardware-
conscious optimizations and asymmetric compression choices. Section 6
discusses related work, and Section 7 concludes the article.

2. LOSSLESS COMPRESSION OVERVIEW

In this section, we review the concepts and terminology of data compression to
provide background for our discussion on what constitutes energy-aware loss-
less data compression. The descriptions in this section are simplified versions
of those that appear in Lelewer and Hirschberg [1987] and Sayood [2002], each
of which contains bibliographic references to seminal articles. Particular im-
plementations of algorithms will be discussed as each algorithm is introduced
in Section 2.3.

2.1 Terminology

In applications where some loss or degradation of data can be tolerated (such as
the transmission of images or sounds) much work has been done to exploit this
tolerance in order to reap higher lossy compression ratios. When transmitting
text or a binary executable, one must be able to reconstruct every bit perfectly—
hence the need for lossless data compression.

Compression is usually broken into two steps: modeling and coding. With a
perfect, concise model that describes the generation of the input source which
is to be compressed, one could reproduce the data without transmitting the
source data. (i.e., if the sequence 1 1 2 3 5 · · · 6765 were to be transmitted, one

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

252 • K. C. Barr and K. Asanović

could express it with a “model” of Fibonacci numbers). In practice, one must
approximate and construct an approximate mathematical model for the data.
In English text, for example, one can model the probability of a letter occurring
as a probability conditioned on letters that have already been transmitted. This
probabilistic model is transmitted with a description of how the data differs
from the model.

In a coding step, information is mapped to compact codewords. Obviously,
a codeword must decode to a unique value so there can be no doubt of the
original message. Prefix codes are used so that no codeword is the prefix of
any other codeword. It has been proved [McEliece 1977] that, for any nonprefix
code that may be uniquely decoded, a prefix code can be found with the same
codeword lengths. Often the modeling and coding steps are tightly coupled. For
instance, Lempel-Ziv codes can be constructed as an input source is parsed
into a “dictionary” model. When it is difficult to extricate the coding from the
modeling, the two will be discussed together.

2.2 Coding Methods

Coding maps symbols from the input alphabet into compact binary sequences.
Discussion in this section is based on an alphabet made up of the set of 256
symbols that can be represented in an 8-bit byte. Though many coding schemes
exist, we focus on the most popular schemes for data compression tools.

2.2.1 Huffman Coding. If the probability of each source symbol is known
a priori (perhaps by scanning through the source), a procedure known as static
Huffman coding can be used to build an optimal code in which the most fre-
quently occurring symbols are given the shortest codewords. Huffman codes are
established by storing the symbols of the alphabet in a binary tree according
to their probability. As the tree is traversed from root to leaf, the code grows in
length. When visiting the right child, a 0 is appended to the code. When visit-
ing the left child, a 1 is appended. Thus, symbols which occur frequently are
stored near the root of the tree and have the shortest codes. Since data com-
pression tools rarely have the luxury of a priori knowledge and cannot afford
two passes through the data source, variants of the Huffman algorithm have
been developed that work dynamically and update the tree as source symbols
are encountered.

2.2.2 Arithmetic Coding. Optimal compression ratio for a data source is
traditionally described with respect to Claude Shannon’s definition of source
entropy [Shannon 1948]: a measure of the source’s information and therefore the
average number of bits required to represent it. Sometimes the most frequently
occurring symbol can contain so little information that it would be ideal to
represent it with less than 1 bit. Huffman codes are restricted to using an
integral number of bits per symbol, increasing the coding overhead. Arithmetic
codes have been designed to support a fractional number of bits per symbol to
bring the average length of a codeword much closer to the optimal.

Knowing the probability of occurrence for each symbol, a unique identifier
can be established for a series of symbols. This identifier is a binary fraction in

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 253

the interval [0,1). Unlikely symbols narrow this interval so that more bits are
required to specify it, while highly likely symbols add little information to a mes-
sage and require the addition of fewer bits as the interval refinement is coarser.
As the fraction converges, the most significant bits become fixed, so the fraction
can be transmitted most-significant-bit-first as soon as it is known. Arithmetic
coding requires frequent division and multiplication, but our experiments show
that an optimized implementation can run faster than the well-optimized Unix
compact program, an adaptive Huffman encoder.

2.2.3 Lempel-Ziv Codes. A Lempel-Ziv codebook is made up of fixed-length
codewords in which each entry has nearly the same probability of appearing,
but in which longer groups of symbols are represented in the same length as
single symbols. Thus, it may require extra bits to send the coded version of a
single symbol, but a string of frequently occurring symbols can be represented
with a fraction of the bits ordinarily required. Since only n codewords can be
represented with lg(n) bits, systems for dynamically increasing the length of
codewords exist.

2.3 Lossless Compression Algorithms

The coding techniques described above are used in the algorithm families intro-
duced below. There are two fundamental methods for constructing Lempel-Ziv
codes. Introduced in the late 1970s, these methods are known by the initials
of their creators and the year of introduction: LZ77 and LZ78. Prediction with
Partial Match (PPM) uses Markov modeling followed by arithmetic coding. The
Burrows-Wheeler Transform (BWT) reversibly permutes a block of source data
so that it can easily be compressed. After introducing each algorithm, an im-
plementation is presented. The implementations (bzip2, compress, LZO, PPMd,
and zlib) are the benchmarks used for the investigation in Section 4.

2.3.1 Sliding Window—LZ77. LZ77 maintains a current pointer into the
source data, a search buffer, and a look-ahead buffer [Ziv and Lempel 1977].
The search buffer is made up of symbols encountered prior to the current sym-
bol, and the look-ahead buffer contains symbols which appear after the current
symbol. Together, the buffers comprise a “window” which specifies the section
of the input source under consideration. As the current pointer advances, the
window “slides” over the input. As symbols are encountered in the look-ahead
buffer, the algorithm searches backward for the longest match in the search
buffer. Instead of transmitting the matched symbols, they can be encoded with
a triple: <offset from pointer, length of match, next codeword>. The “next code-
word” is the codeword corresponding to the symbol in the look-ahead buffer
following the match. It is necessary in case a match for the look-ahead buffer
cannot be found (in which case <0,0,s> is transmitted where s is the codeword
of the current symbol).

This scheme can be enhanced by using a variable length coder (e.g., Huffman
coding) to reduce the size of the fixed-length triples. Another popular en-
hancement involves a more efficient way to represent a single character with-
out an entire triple, using a flag to indicate whether a literal or match is
being transmitted.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

254 • K. C. Barr and K. Asanović

Fig. 1. Hash table implementation of LZ77.

As one of our representative implementations for LZ77, we chose the zlib
library form of the popular gzip utility [Gailly and Adler 2002]. The library
form was chosen because it provides more options to trade off memory for per-
formance. Unless specified, it is configured with similar parameters as gzip in-
cluding a default 32-KB sliding window. Most of the window is a search buffer;
the rest is a fixed-size, 262 symbol look-ahead buffer. Literals and offsets are
encoded with Huffman trees. These trees are compacted with another round of
Huffman coding using either a tree built in to the library or an adaptive one that
must be sent with the compressed data, with zlib choosing the optimal scheme
on a block-by-block basis. The LZ77/Huffman algorithm in this form is called
deflate. Window size and memory size may be set by the user. A larger window
improves the ability to find a match. More memory allows for less collisions in an
internal hash table. Users may also set an “effort” parameter which dictates how
hard the compressor should try to extend matches it finds in its history buffer.

zlib implements its longest-match search with the three arrays depicted in
Figure 1. As the current pointer moves through the window, a hash of the current
symbol and the two that follow is computed. This hash is used to index into
a table. If the entry is empty, a pointer to the current symbol is added. If a
corresponding match pointer into the window is already present, the program
scans forward from current and match in an attempt to extend the match.
To further extend the match, a chain of previous matches is maintained for
each index into the window. The chain is followed, and the longest match is
selected. In the interest of speed, the user may limit traversal of the chain,
settling for a match rather than the longest match. To decompress the data, no
searching is needed as the compressor has issued an explicit stream of literals,
locations, and match lengths. Note that the process becomes even more efficient
if the window is contained entirely in the cache, so that retrieving a match
is fast no matter where it occurs in the window.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 255

As an alternative LZ77 implementation, we examine the LZO compression
library designed for “real-time” compression [Oberhumer 2000]. Like zlib, it
uses LZ77 with a hash table to perform searches. LZO is unique in that its hash
table dictionary fits in 16 KB of memory so it can remain in cache. Its small
footprint, coding style (it is written completely with macros to avoid function
call overhead), and ability to read and write data “in-place” without additional
copies make LZO extremely fast. In the interest of speed, its hash table can
only store pointers to 4096 matches, and no effort is made to find the longest
match. Match length and offset are coded more simply than in zlib; large offsets
are represented by combining their least significant bits with short markers.

2.3.2 Dictionary—LZ78. The LZ78 scheme was introduced to account for
cases in which a nearby match cannot be found [Ziv and Lempel 1978]. In-
stead of the sliding search-buffer, LZ78 uses a separate dictionary, which also
serves as a codebook. As each group of symbols is encountered, the dictionary is
checked. An <index, code> pair is output where index corresponds to the longest
prefix (if any) that matches the current input, and code is the unmatched sym-
bol which follows. The pair is then added to the dictionary. The decompressor
builds its dictionary in a corresponding fashion so that received indices refer to
the same symbol as they did in the compressor. A popular improvement to LZ78
is called LZW [Welch 1984]. It seeds the dictionary with letters from the source
alphabet which eliminates the need to send the second element of the pair,
shortening the number of bits that must be sent for a single character. With
every symbol present in the dictionary, only the index need be sent. Since each
new dictionary entry contains a pointer to a previous entry, decoding occurs
recursively, requiring decompression to buffer symbols in a stack and reverse
them before output.

Such a system results in the quick accumulation of long patterns which can be
stored indefinitely, but has several drawbacks. Until the dictionary is filled with
longer frequently seen patterns, “compressed” output will be larger than in its
original form. Since the dictionary can grow without bound, implementations
of LZ78 must erase the dictionary when it gets too large, freeze the dictionary
and continue in a nonadaptive fashion, or adopt another policy to limit memory
usage.

We chose the popular Unix utility compress as a representative implemen-
tation of the LZW algorithm. It implements LZW with codewords beginning at
nine bits. When all 9-bit codes have been used, the codebook size is doubled
and 10-bit codes are used. This doubling continues until codes are 16 bits long,
inclusive. The dictionary becomes static once it is entirely full. Whenever com-
press detects a decreasing compression ratio, the dictionary is cleared and the
process begins anew. Dictionary entries are stored in a hash table.

Each hash table entry contains its code, the code of its immediate predeces-
sor, and a symbol. Figure 2 shows the table entries for the word baseball. The
blank space serves as a reminder that since the entries are in a hash table,
they are not stored consecutively. As each symbol from the input string is en-
countered, it is hashed with the previous code to determine its location in the
table. The hashing repeats until a symbol (rather than another hash index)

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

256 • K. C. Barr and K. Asanović

Fig. 2. Hash table implementation of LZW.

is found in the “previous code” field. Hashing allows constant access time on
average to any <prefix, symbol> pair, but has the disadvantage of poor spatial
locality when combining multiple entries to form a string. To reduce collisions,
the table should be sparsely filled, which results in wasted memory. During
decompression, each pair may be inserted into a table in the location specified
by its code, so no collisions will occur and no space is wasted. Despite the ran-
dom dispersal of codes throughout the table, common strings will benefit from
temporal locality.

2.3.3 Prediction with Partial Match—PPM. The fact that a certain string
of symbols has appeared can aid in predicting which symbol will come next. For
instance, if the letters compr appear in this article, there is a strong probability
they will be followed by an e. The PPM scheme maintains such context infor-
mation to estimate the probability of the next input symbol to appear [Cleary
and Witten 1984]. An arithmetic coder can use this stream of probabilities to
code the source efficiently. Clearly, longer contexts will improve the probability
estimation, but require more time to arise (this is similar to the startup effect
in LZ78). To account for this, “escape symbols” exist to progressively step down
to shorter context lengths. This introduces a tradeoff in which encoding a long
series of escape symbols can require more space than is saved by the use of large
contexts. Much effort has gone into choosing probabilities for the escape sym-
bols to minimize their overhead. Storing and searching through each context
accounts for the large memory requirements of PPM schemes.

PPMd is a recent implementation of the PPM algorithm [Shkarin 2002b].
Windows users may unknowingly be using PPMd as it is the text compression
engine in the popular WinRAR program. The length of the maximum context
can be varied, but defaults to four. When the context tree fills up, PPMd can
clear and start from scratch, freeze the model and continue statically, or prune
sections of the tree until the model fits into memory.

2.3.4 Burrows-Wheeler Transform—BWT. The newest technique among
those examined, the Burrows-Wheeler Transform, converts a block S of length
n into a pair consisting of a permutation of S (call it L) and an integer in the

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 257

interval [0..n − 1]. Though the transformation is simple to describe, it is not
obvious how it may be reversed. Curious readers are referred to Burrows and
Wheeler [1994]. More important than the method is its effect. The transform
collects groups of identical input symbols such that the probability of finding
a symbol ch in a region of L is very high if another instance of ch is nearby.
Such an L can be processed with a move-to-front (MTF) coder which will yield
a series consisting of a small alphabet: runs of zeros punctuated with low num-
bers which in turn can be processed with the coders seen above (Huffman or
Arithmetic). For processing efficiency, long runs can be filtered with a run length
encoder (RLE) which replaces them with a <symbol, run-length> pair. As block
size is increased, compression ratio improves. Diminishing returns (with En-
glish text) do not occur until block size reaches several tens of megabytes. Un-
like the other algorithms, one could consider BWT to take advantage of symbols
which appear in the future, not just those that have passed.

In latency-critical single-threaded applications, the block-based processing
of BWT could be a bottleneck. Several distinct operations must be performed
in series (transform, move to front, run-length encode, entropy coding) and
entire blocks of data must be processed before moving on to the next. Sorting is
the critical operation. Although BWT-based compression could be performed in
very little memory with in-place sorting, common implementations use fast sort
algorithms and/or structures such as the suffix tree which require substantial
memory to provide speed.

We use the popular bzip2 application as a representative Burrows Wheeler
Transform code. It reads in blocks of data, using run-length-encoding to improve
sort speed. It then applies the BWT and uses a variant of move-to-front coding
to produce a compressible stream. Though the alphabet may be large, codes are
only created for symbols in use. This stream is run-length encoded to remove
any long runs of zeros. Finally Huffman encoding is applied. To speed sorting,
bzip2 applies a modified quicksort which has memory requirements over five
times the size of the block.

2.4 Performance and Implementation Concerns

The original Lempel-Ziv-inspired methods have remained popular since their
newer competitors require more time and memory to achieve compression. PPM
variants have been recognized as the leader in compression ratios since their
introduction in 1984, but these ratios come at a tremendous time and memory
expense. BWT has grown in popularity because its implementations, based
on efficient sorting, lead to greater speed than PPM implementations while
giving similar excellent compression ratios. Recently, BWT has been recast as
a problem similar to PPM, inspiring PPM programs to exploit advances in BWT
implementations. It has taken nearly 20 years for implementations of PPM to
approach the speed of the LZ77, LZ78, and BWT methods [Effros 2000; Shkarin
2002a].

A compression algorithm may be implemented with many different, yet rea-
sonable, data structures (including binary tree, splay tree, trie, hash table, and
list) and yield vastly different performance results [Bell and Kulp 1989]. The

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

258 • K. C. Barr and K. Asanović

Fig. 3. Benchmark comparison by traditional metrics.

quality and applicability of the implementation is as important as the underly-
ing algorithm. This section has presented example implementations from each
algorithmic family. Choosing the top representative in each family is how we
level the implementation playing field, making it easier to gain insight into the
underlying algorithm and its influence on energy. Nevertheless, software may
be continually optimized, as we show in Section 5.1, so our evaluation focuses
on inherent patterns in addition to a direct quantitative comparison.

3. EXPERIMENTAL SETUP

This section begins with brief demonstration of the differences among our cho-
sen applications. Next the Skiff platform is introduced along with an explana-
tion of how it can be used to make energy measurements of algorithms. We
discuss the error inherent in these measurements, but show that hardware
measurements are more accurate than a naive simulation.

3.1 Benchmark Selection

Figure 3 shows the performance of several lossless data compression applica-
tions using metrics of compression ratio, execution time, and static memory

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 259

Table I. Compression Applications and Their Algorithms

Application Notes

Version Algorithm Defaults

bzip2 [Seward 1999] BWT RLE→BWT→MTF→RLE→Huffman

0.1pl2 900k block size

compress [Jannesen et. al 1996] LZW Unix Compress program

4.2.4 16-bit codes (maximum), fast hashing

LZO [Oberhumer 2000] LZ77 Favors speed over compression

1.07 lzo1x 12 (4K entry hash table uses 16 KB)

PPMd [Shkarin 2002b] PPM Used in “rar” compressor

variant I Order 4, 10 MB memory, restart model

zlib [Gailly and Adler 2002] LZ77 Library form of gzip

1.1.4 Chaining level 6/32 k Window/32 k Hash Table

allocation. The datasets are the first megabyte (English books and a bibliogra-
phy) from the Calgary Corpus [Bell et al. 1989] and 1 MB of easily compressible
Web data (mostly HTML, Javascript, and CSS) obtained from the homepages
of the Internet’s most popular Web sites [Lycos 2002; Nielsen NetRatings
Audience Measurement Service 2002]. Graphics were omitted as they are
usually in compressed form already and can be recognized by application-layer
software via their file extensions. Most popular repositories for comparison of
data compression do not examine the memory footprint required for compres-
sion or decompression [Bell et al. 1997; Gailly 1999; Gilchrist 2002]. Though
static memory usage may not always reflect the size of the application’s work-
ing set, it is an essential consideration in mobile computing where memory is
a more precious resource. A detailed look at the memory used by each applica-
tion, and its effect on time, compression ratio, and energy will be presented in
Section 4.3.

Figure 3 confirms that the chosen array of applications spans a range of
compression ratios and execution times. Each application represents a differ-
ent family of compression algorithms as noted in Table I. The table includes
the default parameters used with each program. To avoid unduly handicapping
any algorithm, it is important to work with well-implemented code. Mature ap-
plications such as compress, bzip2, and zlib reflect a series of optimizations that
have been applied since their introduction. While PPMd is an experimental pro-
gram, it is effectively an optimization of the Prediction by Partial Match (PPM)
compressors that came before it. LZO represents an approach for achieving
great speed with LZ77. Consideration was also given to popularity and docu-
mentation, as well as quality, parameterizability, and portability of the source
code.

3.2 Methodology

This section describes the hardware platform we used to take energy mea-
surements and the test harness used for running compression programs.
The energy measurement methodology is described, along with an analy-
sis of sources of error. Finally, the results of a simulation-based study are

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

260 • K. C. Barr and K. Asanović

Fig. 4. Simplified Skiff power schematic.

presented which motivate the use of the hardware-only technique for measuring
long-running programs.

3.2.1 Equipment. The Compaq Personal Server, codenamed Skiff, is es-
sentially an initial, “spread-out” version of the Compaq iPAQ built for research
purposes [Hicks et al. 1999]. Powered by a 233-MHz StrongARM SA-110
[Montanaro et al. 1996; Intel Corporation 2000], the Skiff is functionally
similar to the popular Compaq iPAQ handheld (based on the SA-1110 [Intel
Corporation 2001]). For wireless networking, we add a 5-V Enterasys 802.11b
wireless network card (part number CSIBD-AA). The Skiff has 32 MB of
DRAM, support for the Universal Serial Bus, a RS232 Serial Port, Ethernet,
two Cardbus sockets, and a variety of general-purpose I/Os. The Skiff PCB
boasts separate power planes for its CPU, memory and memory controller,
and other peripherals, allowing each to be measured in isolation (Figure 4).
With a Cardbus extender card, one can isolate the power used by a wireless
network card as well. A programmable multimeter and sense resistor provide
a convenient way to examine energy in a active system with error less than
5% [Viredaz and Wallach 2001].

The Skiff runs ARM/Linux 2.4.2-rmk1-np1-hh2 with PCMCIA Card Ser-
vices 3.1.24. The Skiff has only 4 MB of nonvolatile flash memory to contain
a file system, so the root filesystem is mounted via NFS using the wired Eth-
ernet port. For benchmarks which require file system access, the executable
and input dataset is brought into RAM before timing begins. This is verified

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 261

by observing the cessation of traffic on the network once the program com-
pletes loading. I/O is conducted in memory using a modified SPEC harness
[Standard Performance Evaluation Corporation 2000] to avoid the large cost of
accessing the network filesystem.

3.2.2 Energy Calculations. To minimize resource contention and the effect
of context-switching, all unnecessary user-level programs are stopped, leaving
only kernel threads. No modular kernel drivers are present. The application
under test is placed in an infinite loop, and a digital multimeter is used to
statistically sample the supply voltage (e.g., the voltage supplied to the CPU
in Figure 4 is Vcpu = V2 − GND). In a subsequent experiment, the application
runs in a loop while current is determined by measuring the voltage across the
known sense resistance (Icpu = V1−V2

Rcpu
). The multimeter internally acquires the

average of 285 samples over the course of 6.5 s, sending five such acquisitions
back to the host PC. The five acquisitions are averaged. This measured voltage
and current comprise average power as Pcpu = IcpuVcpu. The multimeter also
reports the maximum and minimum observed voltages which can be used to
bound the error (Section 3.2.3). Network energy was measured in a one-time
experiment (Section 4.1). This leaves six distinct measurements which must
be made per experiment to obtain the total nonnetwork system power (P =
Pcpu + Pmem + Pperipheral).

To compute total energy, the running time of each application is required.
The application is run n times in a row, and total time is measured with the
Skiff ’s real-time clock. Applications which complete quickly must be run for
large n to minimize timing error and eliminate one-time effects. The duration,
t, is (t1 + t2 +· · ·+ tn)/n where {ti|i = 1..n} is the set of times for each individual
run of the application. We can now calculate the energy of the application as
Energy = P × t.

3.2.3 Error Analysis. This method of measurement involves two sources
of error: hardware and averaging. Hardware error may effect the measured
value of the sense resistor as well as any voltages that are measured. While
the precision sense resistors on the Skiff board have a tolerance of 1%, short
leads (≈3 in) must be soldered to the board so that the multimeter may be
attached. The resistance, rated at 0.20 �, increased to as much as 0.48 � with
the addition of the leads and solder. This resistance is measured using the
four-wire ohmmeter capability of the multimeter as it is most accurate for low
resistances. Resistance measured by the multimeter includes error stated as a
percentage of reading and percentage of the 100 -� range [Agilent Technologies
2000].

Voltage measurement error takes a similar form, consisting of error in read-
ing (dependent on the input level) and an error inherent to the range. Inte-
gration time of an analog-to-digital converter, the time required to charge or
discharge its capacitor, affects its sample rate. By choosing an integration pe-
riod matched to the period of the wall supply’s alternating current, the inte-
gration noise is mimimized. Operating with 60 integrations/s, we add a small
additional noise error. The sample rate could be made faster, but this would

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

262 • K. C. Barr and K. Asanović

increase the integration error to as much as 0.12 mV per volt or 0.03 mV to a
measured millivolt due to poorer noise reduction. To increase sampling speed,
the multimeter’s auto-zero functionality is turned off. We allow the multimeter
to warm up to reduce auto-zero error due to temperature variation.

Hardware error also includes the problem that the Skiff is not observed con-
tinuously, only during an analog-to-digital integration cycle. Since the clock
period of the Skiff is much shorter than the sample period and overhead time
of the multimeter, many cycles may pass in between measurements. We rely on
the uniform, repetitive nature of each application combined with several 6.5-s
acquisition periods to increase the probability of observing all parts of the appli-
cation. Repeated acquisitions are especially important for the few applications
which take greater than 6.5 s to complete. Each acquisition period is separated
by a upload to the host computer. This upload takes a varying amount of time
which prevents the acquisitions from being synchronized with the application
being measured. These effects decrease the probability that important events
are going unobserved. Observing too much energy is another source of hard-
ware error. For example, the Skiff ’s wired Ethernet controller is enabled for the
duration of the benchmark even though the network is not required. Inability
to isolate such components leads to an inflated peripheral energy. While this
energy is indeed consumed on the Skiff, it tells us little about the compression
algorithm itself.

Since the methodology involves the averaging of discrete voltage samples
within the multimeter and multiplying them by the average of another set of
current samples, we can only estimate the true average power over a particular
integration period. The formula for maximum error due to combination of un-
correlated samples is stated in Viredaz and Wallach [2001] (Equation 12). It is
derived from the number of samples and the maximum and minimum observed
voltages.

System level effects (e.g., broadcast network traffic and OS maintenance
tasks) can vary the runtime of an application. Thus, each application is run
multiple times in a loop amortizing any timing error across each iteration. The
hardware timer granularity is about 20 ns, but software rounds off times to
the nearest microsecond. Nevertheless, looped applications run on the order
of seconds, so any error in timing is negligible. It should be noted that the
“real time clock” of the Skiff is not real time at all since it runs at 48 MHz
while Linux treats it as a 50-MHz clock. Thus, the Skiff overestimates the
number of seconds in a wall-clock minute. This only effects absolute timing and
is constant across all experiments; thus comparisons between applications are
unaffected.

Energy error is comprised of the product of current, voltage, and time, so
the total error for an acquisition is the sum of each component’s relative error.
By this method, the experiments that follow have energy measurement error
less than 1%, as shown in Tables II and III. The applications with the highest
margin of error are hurt mostly by the error-in-averaging component of total
error. The CPU is most affected since it draws the least current; any change
in current causes a large relative change. In addition, the CPU clocks more
slowly while waiting for reads from memory, so applications which alternate

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 263

Table II. Maximum Measurement Error: Compression

CPU (percent) Memory (percent) Peripheral (percent)

bzip2 0.36 0.10 0.11

compress 0.31 0.09 0.06

lzo 0.15 0.09 0.06

PPMd 0.18 0.09 0.07

zlib 0.60 0.09 0.12

Table III. Maximum Measurement Error: Decompression

CPU (percent) Memory (percent) Peripheral (percent)

bzip2 0.53 0.10 0.13

compress 0.28 0.09 0.08

lzo 0.13 0.09 0.06

PPMd 0.19 0.10 0.08

zlib 0.12 0.10 0.06

memory access with computation have less uniform power profiles, increasing
the error due to averaging. Network card energy error is omitted from the
tables, but can be expected to be very small as the network energy benchmark
is very uniform; in addition, a larger sense resistance is used which decreases
the voltage measurement error.

3.2.4 Simulation. One popular approach for modeling power in software is
to multiply event counts generated by an architectural simulator by the power
they consume (as measured offline on real hardware). Unfortunately, such sim-
ulators are highly tied to the hardware on which they were calibrated, and
they can require a very detailed architectural model to be of any use. To ex-
amine the feasibility of a simulator-based approach, we used the SimpleScalar
execution-driven simulator [Burger and Austin 1997]. Though SimpleScalar is
inherently an out-of-order, superscalar simulator, it has been modified to read
statically linked ARM binaries and model the five-stage, in-order pipeline of
the SA-110x. The modified simulator reports IPC within 4% of real hardware
[Austin and Burger 2001]. No attempt was made to verify cycle counts produced
by the simulator against the Skiff, as SimpleScalar relies on the host as a proxy
for OS calls. As such, cycle counts are underestimated by the simulator. Using
Skiff execution time as baseline, the simulated cycle count is off by a factor of
1.8× − 2.3× depending on the benchmark. Events such as taken branches and
cache hits are more closely related to the instructions executed and the layout
of the cache and may be used more reliably.

We predicted the energy that would be consumed by several applications by
multiplying event counts generated by the simulator with the actual measured
CPU and memory energy of operations. Events were grouped into the follow-
ing classes: computation, load hit, load miss, store hit, buffered store miss,
unbuffered store miss, and network. The number of instruction misses was
negligible for all five compressors so we do not attempt to quantify instruction
cache energy. The energy-per-operation is measured as in Section 4.1 and 4.3.2.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

264 • K. C. Barr and K. Asanović

Fig. 5. Using a simulator to predict energy.

The following formula was used:

Epredicted = Ecompute(computes + predicted branches + 2 ∗ mispredicted branches)

+ Eload hit ∗ load hits

+ Eload miss ∗ load misses

+ Ewriteback ∗ writebacks

+ Estore hit ∗ store hits

+ Estore miss combined in write buffer (estimated) ∗ store misses near

+ Euncombined store miss ∗ store misses far

+ Esend a bit ∗ bits sent.

The factor of 2 represents the extra cycle required by a mispredicted branch.
Near and far refer to the spatial locality of stores; near misses are those which
should be found in the combining store buffer, while far addresses are spatially
restricted from being present in the buffer. We approximate these near and far
counts by instrumenting loads and stores in the simulator. Figure 5 shows that
the difference between observed energy (the sum of memory and CPU energy)
and predicted energy varies from about 4% for the simple, fast LZO compressor
to 28% for the slow, memory-intensive bzip2. Adding 1.12 nJ, per executed
instruction to account for bias in the model (e.g., unsimulated operating system
instructions) lowers the difference between observed and predicted energy to
0.0%–18%. This bias amount was chosen to completely remove the error from
one application while minimizing the error of the application with the largest
error.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 265

We see that generalizing a system’s operations can lead to inaccuracy. For
example, the Skiff has a relatively simple datapath, but its unique memory
hierarchy is not accurately modeled by the simulator. Measurement error, sim-
ulator inaccuracies, and error due to generalization of instruction classes are
compounded over long periods of time to produce significant error. For short
programs, however, the ≈4% error in Figure 5 is close to other studies of small
programs [Sinha and Chandrakasan 2001]. As discussed in Section 3.2.3, en-
ergy measured with hardware may be inaccurate as well, but has the advantage
of corresponding more closely to reality.

Executing programs on a simulator requires more time than running them on
hardware. Hosted on a 1.2-GHz Athlon, the simulator operates around 500 kHz,
467 times slower than running applications on the Skiff. However, the current
experimental setup in the hardware laboratory requires six distinct measure-
ments per application, each taking roughly 30 s (not including the time it takes
to rearrange the multimeter probes). Whether or not to use a simulator is de-
pendent on desired accuracy and the relative convenience of obtaining actual
measurements. For greatest accuracy, pure energy measurements were made
exclusively with hardware. While simulators may be tuned to provide reason-
ably accurate estimations of a particular system’s energy, observing real hard-
ware ensures that complex interactions of components are not overlooked or
oversimplified.

4. OBSERVED ENERGY OF COMMUNICATION, COMPUTATION,
AND COMPRESSION

In this section, we observe that over 1000 32-bit ADD instructions can be exe-
cuted by the Skiff with the same amount of energy it requires to send a single bit
via wireless Ethernet. This fact motivates the investigation of pretransmission
lossless compression of data to reduce overall energy. However, initial experi-
ments revealed that reducing the number of bits to send does not always reduce
the total energy of the task. This section elaborates on both of these points,
which necessitate the in-depth experiments of Section 4.3. After examining the
performance of common lossless compression schemes, we derive guidelines to
minimize the energy consumption of compressed data transmission.

4.1 Raw Communication-to-Computation Energy Ratio

To quantify the smallest gap between wireless communication and computa-
tion, we measured 802.11b wireless idle, send, and receive energies on the Skiff
platform. To eliminate competition for wireless bandwidth from other devices
in the lab, we established a dedicated channel and ran the network in ad hoc
mode consisting of only two wireless nodes. UDP packets were streamed from
one node to the other; UDP was used to eliminate the effects of waiting for
a transport layer ACK. This also ensures that receive tests measure only re-
ceive energy and send tests measure only send energy at the transport layer
and above. Clear-to-send/ready-to-send is disabled, but it is unknown whether
media access control (MAC-layer) retransmissions are enabled; our wireless
drivers do not support the retry setting. This setup is intended to mimimize
the impact of components of wireless communication that we can control so

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

266 • K. C. Barr and K. Asanović

Fig. 6. Measured communication energy of Enterasys wireless NIC.

that we do not artificially exaggerate the cost of communication. In fact, others
have used detailed power simulations to show that TCP and UDP have similar
energy profiles in both low-noise and high-noise environments [Banerjee and
Misra 2004].

With the measured energy of the transmission and the size of data file, the
energy required to send or receive a bit can be derived. The results of these
network benchmarks appear in Figure 6 and are consistent with other studies
[Jamieson 2002]. The card was set to its maximum speed of 11 Mb/s and two
tests were conducted. In the first, the Skiff communicated with a wireless card
mere inches away and achieved 5.70 Mb/s. In the second, the second node was
placed as far from the Skiff as possible without losing packets. Only 2.85 Mb/s
was achieved. These two cases bounded the performance of our 11-Mb/s wireless
card; typical performance should be somewhere in between. For each of the two
transfer rates, we showed sending a bit requires more energy than receiving
one. The energy required for the platform to sit idle for 1 bit’s worth of trans-
mission time is shown as well to highlight the marginal cost of communication.
Recall that our platform allowed us to separate the cost of four components of
our system. In Figure 6, it is mostly the network card’s energy variation that
leads to the total energy variation.

Next, a microbenchmark was used to determine the minimum energy for
an ADD instruction. Drawing on earlier work [Nathuji 2000], we used Linux
boot code to bootstrap the processor; select a cache configuration; and launch
assembly code unencumbered by an operating system. One thousand ADD in-
structions were placed in a loop body closed by a single unconditional branch.
Once the program had been loaded into instruction cache, the energy used by
the processor for a single add was 0.86 nJ. From these initial network and ADD

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 267

Table IV. Total Energy of an ADD

Network card 0.43 nJ

CPU 0.86 nJ
Mem 1.10 nJ

Periph 4.20 nJ

Total 6.59 nJ

measurements, we can conclude that sending a single bit is roughly equiva-
lent to performing 485–1267 ADD operations depending on the quality of the

network link (4.17×10−7 J
0.86×10−9 J

≈ 485 or 1.09×10−6 J
0.86×10−9 J

≈ 1267). This gap of two to three
orders of magnitude, even with limited wireless communication use, suggests
that much additional effort can be spent trying to reduce a file’s size before it
is sent or received. But the issue is not so simple.

4.2 Application-Level Communication-to-Computation Energy Ratio

On the Skiff platform, memory, peripherals, and the network card remain pow-
ered on even when they are not active, consuming a fixed energy overhead.
They may even switch when not in use in response to changes on shared buses.
The energy used by these components during the ADD loop is significant and
is shown in Table IV. Once a task-switching operating system is loaded and
other applications vie for processing time, the communication-to-computation
energy ratio will decrease further. Finally, the applications we examined con-
tained more than a series of ADDs; the variety of instructions (especially Loads
and Stores) in compression applications shrank the ratio further.

The first rows of Figures 7 and 8 show the energy required to compress our
text and Web dataset and transmit it via wireless Ethernet. To avoid punishing
the benchmarks for the Skiff ’s high idle power, idle energy has been removed
from the peripheral component so that it represents only the amount of addi-
tional energy (due to bus toggling and arbitration effects) over and above the
energy that would have been consumed by the peripherals remaining idle for
the duration of the application. Idle energy is not removed from the memory
and CPU portions as they are required to be active for the duration of the ap-
plication. The network is assumed to consume no power until it is turned on
to send or receive data, and all data is sent or received in a single batch. The
popular compression applications discussed in Section 3.1 are used with their
default parameters, and the right-most bar shows the energy of merely copy-
ing the uncompressed data over the network. Along with energy due to default
operation (labeled bzip2-900, compress-16, lzo-16, ppmd-10240, and zlib-6), the
figures include energy for several invocations of each application with varying
parameters. bzip2 is run with both the default 900 KB block sizes as well as
its smallest 100 KB block. compress is also run at both ends of its spectrum
(12-bit and 16-bit maximum codeword size). LZO runs in just 16 KB of working
memory. PPMd uses 10 MB, 1 MB, and 32 KB memory with the cutoff mecha-
nism for freeing space (as it is faster than the default “restart” in low-memory
configurations). zlib is run in a configuration similar to gzip. The numeric suffix
(9, 6, or 1) refers to effort level and is analogous to gzip’s commandline option.
These various invocations will be studied in Section 4.3.3.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

268 • K. C. Barr and K. Asanović

Fig. 7. Energy required to transmit 1 MB of compressible text data.

While most compressors do well with the Web data, in several cases the en-
ergy to compress the file approaches or outweighs the energy to transmit it. This
problem is even worse for the harder-to-compress text data. The second rows of
Figures 7 and 8 show the reverse operation: receiving data via wireless Ethernet
and decompressing it. The decompression operation is usually less costly than
compression in terms of energy, a fact which will be helpful in choosing a low-
energy, asymmetric, lossless compression scheme. Section 4.3 will discuss how
such high net energy is possible despite the motivating observations.

4.3 Energy Analysis of Popular Compressors

We will look deeper into the applications to discover why they cannot exploit
the communication-computation energy gap. To perform this analysis, we rely

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 269

Fig. 8. Energy required to transmit 1 MB of compressible web data.

on empirical observations on the Skiff platform as well as the SimpleScalar
simulator. Since this version of SimpleScalar is beta software we will handle
the statistics it reports with caution, using them to explain the traits of the
compression applications rather than to describe their precise execution on a
Skiff. Namely, high instruction counts and high cost of memory access lead to
poor energy efficiency.

4.3.1 Instruction Count. We begin by looking at the number of instruc-
tions each requires to remove and restore a bit (Table V). The range of instruc-
tion counts is one empirical indication of the applications’ varying complexity.
The excellent performance of LZO is due in part to its implementation as a
single function; thus there is no function call overhead. In addition, LZO avoids

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

270 • K. C. Barr and K. Asanović

Table V. Instructions per Bit

bzip2 compress LZO PPMd zlib

Compress: instructions per bit removed (Text) 116 10 7 76 74

Decompress: instructions per bit restored (Text) 31 6 2 10 5

Compress: instructions per bit removed (Web) 284 9 2 60 23

Decompress: instructions per bit restored (Web) 20 5 1 79 3

superfluous copying due to buffering (in contrast with compress and zlib). As we
will see, the number of memory accesses plays a large role in determining the
speed and energy of an application. Each program contains roughly the same
percentage of loads and stores, but the great difference in dynamic number of
instructions means that programs such as bzip2 and PPMd (each executing
over 1 billion instructions) execute more total instructions and therefore have
the most memory traffic.

4.3.2 Memory Hierarchy. One noticeable similarity of the bars in Figures 7
and 8 is that the memory requires more energy than the processor. To pinpoint
the reason for this, microbenchmarks were run on the Skiff memory system.
The microbenchmarks fit in the instruction cache.

The SA-110 data cache is 16 KB. It has 32-way associativity and 16 sets.
Each block is 32 bytes. Data is evicted at half-block granularity and moves to a
16-entry × 16-byte write buffer. The write buffer also collects stores that miss
in the cache (the cache is writeback/non-write-allocate). The store buffer can
merge stores to the same entry.

The hit benchmark accesses the same location in memory in an infinite loop.
The miss benchmark consecutively accesses the entire cache with a 32-byte
stride followed by the same access pattern offset by 16 KB. Writebacks are
measured with a similar pattern, but each load is followed by a store to the
same location that dirties the block forcing a writeback the next time that
location is read. Store hit energy is subtracted from the writeback energy. The
output of the compiler is examined to ensure the correct number of load or
store instructions is generated. Address generation instructions are ignored
for miss benchmarks as their energy is minimal compared to that of a memory
access. When measuring store misses in this fashion (with a 32-byte stride),
the worse-case behavior of the SA-110’s store buffer is exposed as no writes
can be combined. In the best case, misses to the same buffered region can have
energy similar to a store hit, but in practice, the majority of store misses for the
compression applications are unable to take advantage of merging writes in the
store buffer.

Table VI shows the energy of the CPU and off-chip memory for various oper-
ations. Hitting in the data cache requires energy similar to an ADD, but cache
misses require up to 63 times the energy of an ADD. Store misses are less
expensive as the SA-110 has a store buffer to batch accesses to memory. To
minimize energy, then, we must seek to minimize cache misses, which require
prolonged access to higher voltage components.

4.3.3 Minimizing Memory Access Energy. One way to minimize misses is
to reduce the memory requirements of the application. Figure 9 shows the effect

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 271

Table VI. Measured Memory Energy Versus

ADD Energy

Cycles Energy (nJ)

Load hit 1 2.72

Load miss 80 124.89

Writeback 107 180.53

Store hit 1 2.41

Store miss 33 78.34

ADD 1 1.96

Fig. 9. Memory, time, and ratio (Text data). Memory footprint is indicated by area of circle; foot-

prints shown range from 3 KB to 8 MB.

of varying memory size on compression/decompression time and compression
ratio. Looking back at Figures 7 and 8, we see the energy implications of choos-
ing the right amount of memory. Most importantly, we see that merely choos-
ing the fastest or best-compressing application does not result in lowest overall
energy.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

272 • K. C. Barr and K. Asanović

In the case of compress and bzip2, a larger memory footprint stores more
information about the data and can be used to improve compression ratio.
However, storing more information means less of the data fits in the cache
leading to more misses, longer runtime and hence more energy. This tradeoff
need not apply in the case where more memory allows a more efficient data
structure or algorithm. For example, bzip2 uses a large amount of memory, but
for good reason. When we replaced the provided sort routine with the standard
C library quicksort routine, we saved significant memory but compression took
over 2.5 times longer due to large constants in the runtime of the library quick-
sort. This slowdown occurred even when 16-KB block sizes [Seward 2000] were
used to further reduce memory requirements.

PPMd has three performance regions. Without enough memory, it has no
room to model source data and is inefficient. Adding memory buys both im-
proved speed and greater compression because the work became more produc-
tive, but there were points at which adding memory had the expected effect of
slowing down compression as a deeper tree had to be examined. Finally, com-
pression ratio approached a limit, and additional memory served to improve
speed. This behavior was due to the complexity in handling escapes (situa-
tions in which the symbol has not been seen in the current context). With more
memory, more context information can be stored and less complicated escape
handling is necessary.

The widely scattered performance of zlib, even with similar footprints, sug-
gest that one must be careful in choosing parameters for this library to achieve
the desired goal (speed or compression ratio). Increasing window size affects
compression; for a given window, a larger hash table improves speed. Thus,
the net effect of more memory is variable. The choice is especially important if
memory is constrained as certain window/memory combinations are inefficient
for a particular speed or ratio.

The decompression half of the figure underscores the valuable asymmetry
of some of the applications. Often decompressing data is a simpler operation
than compression and requires less memory (as in bzip2 and zlib). The simple
task requires a relatively constant amount of time as there is less work to do:
no sorting for bzip2 and no searching though a history buffer for zlib, LZO,
and compress since all the information to decompress a file is explicit. The
contrast between compression and decompression for zlib is especially large.
PPM implementations must go through the same procedure to decompress a
file, undoing the arithmetic coding and building a model to keep probability
counts in sync with the compressor’s. The arithmetic coder/decoder used in
PPMd requires more time to perform the decode operation than the encode.

Each of the applications examined allocates fixed-size structures regardless
of the input data length. Thus, in several cases more memory is set aside than
is actually required. However, a large memory footprint may not be detrimental
to an application if its current working set fits in the cache. The simulator was
used to gather cache statistics. PPM and BWT were known to be quite memory
intensive. Indeed, PPMd and bzip2 accessed the data cache on to two orders
of magnitude more often than the other benchmarks. zlib accessed data cache
almost as much as PPMd and bzip2 during compression, but dropped from

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 273

Table VII. Application Throughputs (Mb/s)

bzip2 compress LZO PPMd zlib

Compress read throughput (Text data) 0.91 3.70 24.22 1.57 0.82

Decompress write throughput (Text data) 2.59 11.65 109.44 1.42 41.15

Compress read throughput (Web data) 0.58 4.15 50.05 2.00 3.29

Decompress write throughput (Web data) 3.25 27.43 150.70 1.75 61.29

150 million accesses to 8.2 million during decompression. Though LZ77 is local
by nature, the large window and data structures hurt its cache performance
for zlib during the compression phase. LZO also uses LZ77, but is designed to
require just 16 KB of memory and went to main memory over five times less
often than the next fastest application. The followup to the SA-110 (the SA-
1110 used in Compaq’s iPAQ handheld computer) has only an 8 KB data cache,
which would exaggerate any penalties observed here. Though large, low-power
caches are becoming possible (the X-Scale has two 32-KB caches), as long as the
energy of going to main memory remains so much higher, we must be concerned
with cache misses.

As an aside, while Figure 9 plots speed, Table VII notes the absolute through-
put of each application. We see that, with the Skiff ’s processor, several applica-
tions have difficulty meeting the line rate of the network which may preclude
their use in latency-critical applications. A faster processor would permit more
choices.

4.3.4 Instruction Mix. One rough characterization of any application is its
instruction mix. Figure 10 shows the static and dynamic instruction mix of
the five compression applications. In the figure, “compute” includes ALU, Logi-
cal, Compare, and register transfer operations. The “other” set of instructions,
which is negligible, includes software traps, and (in the static image) floating
point operations in library code. The absolute number of instructions is shown
in parenthesis below the graph. Static instructions include both the those for
compression and decompression as they are commonly contained in the same
program.

As we have seen, the number of memory accesses plays a large role in deter-
mining the speed and energy of an application. Each program contains roughly
the same percentage of loads and stores, but the great difference in dynamic
number of instructions means that programs such as bzip2 and PPMd (each
executing over 1 billion instructions) execute more total instructions and there-
fore have the most memory traffic. During compression, the LZ-based schemes
and PPMd involve mostly searching and thus execute more loads than stores.
bzip2’s has a slightly greater percentage of stores and it is based on sorting.

Branches are not a large cause of stalls in the StrongARM’s short pipeline,
but the static not-taken prediction scheme is rather poor (Figure 11). As em-
bedded processor pipelines grow, effective branch prediction will be needed to
minimize the number of flushes that must occur.

4.4 Summary

On the Skiff, compression and decompression energy are roughly propor-
tional to execution time. Figure 12 shows that CPU and memory power is

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

274 • K. C. Barr and K. Asanović

Fig. 10. Instruction mix. Number in parenthesis shows absolute number of instructions (static)

and billions of absolute instructions (dynamic).

Fig. 11. Branch behavior.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 275

Fig. 12. Average power of compression and decompression applications.

relatively constant for each application, making energy largely time-dependent,
though the power is divided in different ways among CPU, memory, and
peripherals.

Table VIII ranks our compression applications on a 5.70-Mb/s system with
more desirable attributes (smaller files, faster speeds, lower memory, and lower
energy) at the top of each column. When we neglect to consider the power and
time costs of sending the data, energy perfectly mirrors speed. However, we have
shown that there is a delicate balance between computation energy (including
memory energy) and communication energy. While we have access to impressive
lossless compression algorithms, the communication reduction they provide

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

276 • K. C. Barr and K. Asanović

Table VIII. Ranking Compression Applications by Four Metrics

Compress Decompress Compress Decompress Compress Decompress

File Size Speed Memory Energy

ppmd none none none none none none

bzip2 lzo lzo lzo lzo lzo lzo

zlib compress zlib zlib zlib compress zlib

compress ppmd compress compress compress ppmd compress

lzo bzip2 bzip2 bzip2 bzip2 bzip2 bzip2

none zlib ppmd ppmd ppmd zlib ppmd

Table IX. Ranking Total

Time (Computation plus

Communication Time)

Compress Decompress

lzo zlib

none lzo

compress compress

ppmd none

bzip2 bzip2

zlib ppmd

Table X. Ranking Energy of

Compression Applications

Including Network Energy

Compress Decompress

lzo zlib

compress compress

none lzo

ppmd bzip2

zlib none

bzip2 ppmd

is not always helpful given high computation cost. Likewise, merely choosing
the fastest-running compressor or decompressor does not necessarily minimize
total transmission energy. Even were we to include network transmission time
(Table IX), the speed ranking does not match the total energy ranking due to
the different power of each system component.

Table X reorders the applications in terms of total energy cost of the com-
pression and transmission task. We see that during decompression both zlib
and compress run slower than LZO, but they receive fewer bits due to better
compression so total energy is less than LZO. These applications successfully
balance computation versus communication cost. Despite the greater energy
needed to decompress the data, the decrease in receive energy makes the net
operation a win. More importantly, we have shown that reducing energy is not
as simple as choosing the fastest or best-compressing program or even com-
pressing the data at all.

We can generalize the results obtained on the Skiff in the following fashion.
Memory energy is some multiple of CPU energy. Network energy (send and
receive) is a far greater multiple of CPU energy. It is difficult to predict how

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 277

Fig. 13. Total energy as CPU energy decreases.

quickly energy of components will change over time. Even predicting whether
a certain component’s relative energy usage will grow or shrink can be difficult.
Many researchers envision ad hoc networks made of nearby nodes [Chang and
Tassiulas 2000; Hohlt et al. 2004]. Such a topology, in which only short-distance
wireless communication is necessary, could reduce the energy of the network
interface relative to the CPU and memory. On the other hand, for a given mo-
bile CPU design, planned manufacturing improvements may lower power and
energy relative to wireless technology with fixed, physical lower bounds. This
represents the current trend in “smartphones”: consumers want smaller de-
vices that can perform more impressive computational tasks. In order to stay
cool in a user’s pocket and have acceptable battery life, mobile devices must
stay within a fixed or shrinking power budget and find architectural ways to
provide more computation [Hicks 2005].

Figures 13 through 15 show the effect on overall compression energy as the
ratio between component energies vary. The graphs are produced by multiply-
ing the compute, memory, and network energy (measured by microbenchmarks
in Section 4.3.2) with simulated event counts as in Section 3.2.4. The leftmost
point of each graph represents the energy of the Skiff platform. Moving left to
right, we reduce the energy of one or more components until its contribution
disappears.

If one subscribes to the belief that CPU and/or memory energy will steadily
decrease while network energy remains constant, then current low-energy com-
pression tools (compress and LZO) face competition from their computation and
memory intensive peers (Figures 13 and 14). However, if only network energy

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

278 • K. C. Barr and K. Asanović

Fig. 14. Total energy as both CPU and memory energy decreases.

Fig. 15. Total energy as network energy decreases.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 279

decreases while the CPU and memory systems remain static, energy-conscious
systems may forgo compression altogether as it now requires more energy than
transmitting raw data (Figure 15). Thus, it is important for software developers
to be aware of such hardware effects if they wish to keep compression energy
as low as possible. Awareness of the type of data to be transmitted is impor-
tant as well. For example, transmitting our World Wide Web data required less
energy in general than the Text data. Trying to compress precompressed data
(not shown) requires significantly more energy and is usually futile.

Finally, we have seen that as transmission speed increases, the value of
reducing wireless energy through data compression is less. Thus, even when
compressing and sending data appears to require the same energy as sending
uncompressed data, it is beneficial to apply compression for the greater good:
more shared bandwidth will be available to all devices, allowing them to send
data faster and with less energy.

5. REDUCING TRANSMISSION ENERGY WITH ENERGY-AWARE
LOSSLESS DATA COMPRESSION

We have seen that energy can be saved by compressing files before transmitting
them over the network, but one must be mindful of the energy required by
this compression. Compression and decompression energy may be minimized
through wise use of memory (including efficient data structures and/or sac-
rificing compression ratio for cacheability). One must be aware of evolving
hardware’s effect on overall energy. Finally, knowledge of compression and
decompression energy for a given system permits the use of asymmetric
compression in which the lowest-energy application for compression is paired
with the lowest-energy application for decompression.

5.1 Understanding Cache Behavior

Figure 16 shows the compression energy of several successive optimizations of
the compress program. The baseline implementation is itself an optimization
of the original compress code. The number preceding the dash refers to the
maximum length of codewords. The graph illustrates the need to be aware of
the cache behavior of an application in order to minimize energy. The data
structure of compress consists of two arrays: a hash table to store symbols
and prefixes, and a code table to associate codes with hash table indexes. The
tables are initially stored back-to-back in memory. When a new symbol is read
from the input, a single index is used to retrieve corresponding entries from
each array. The 16-merge version combines the two tables to form an array of
structs. Thus, the entry from the code table is brought into the cache when the
hash entry is read. The reduction in energy is negligible: though one type of
miss has been eliminated, the program is actually dominated by a second type
of miss: the probing of the hash table for free entries. The Skiff data cache is
small (16 KB) compared to the size of the hash table (≈270 KB); thus the random
indexing into the hash table results in a large number of misses. A more useful
energy and performance optimization is to make the hash table more sparse.
This admits fewer collisions, which results in fewer probes and thus a smaller

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

280 • K. C. Barr and K. Asanović

Fig. 16. Optimizing compress (Text data).

number of cache misses. As long as the extra memory is available to enable this
optimization, about 0.53 J are saved compared with applying no compression
at all. This is shown by the 16-sparse bar in the figure. The baseline and 16-
merge implementations require more energy than sending uncompressed data,
but 16-sparse has made compression worthwhile. A 12-bit version of compress
is shown as well. Even when peripheral overhead energy is disregarded, it
outperforms or ties the 16-bit schemes as the reduced memory energy due to
fewer misses makes up for poorer compression.

Another way to reduce cache misses is to fit both tables completely in the
cache. Compare the following two structures:

struct entry{ struct entry{

int fcode; signed fcode:20;

unsigned short code; unsigned code:12;

}table[SIZE]; }table[SIZE];

Each entry stores the same information, but the array on the left wastes 4
bytes per entry. Overly wide types cause 12 wasted bits in fcode and 4 bits
wasted in code, while 2 bytes are used just to align the short code. Using bit-
fields, the layout on the right contains the same information yet fits in half the
space. If the entry were not 4 bytes, it would need further padding for align-
ment. Code becomes more complex as C does not support arrays of bitfields,
but unless the additional code introduces significant instruction cache misses,
the change is low-impact. A bitwise AND and a shift are all that is needed to
determine the offset into the compact structure. By allowing the whole table
to fit in the cache, the program with the compacted array has just 56,985 data

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 281

cache misses compared with 734,195 in the unpacked structure: a 0.26% miss
rate versus 2.88%. The energy benefit for compress with the compact layout
is negligible because there is so little CPU and memory energy to eliminate
by this technique. The 11-merge and 11-compact bars illustrate the similarity.
Nevertheless, 11-compact runs 1.5 times faster due to the reduction in cache
misses, and such a strategy could be applied to any program which needs to
reduce cache misses for performance and/or energy. Despite a dictionary with
half the size, the number of bytes to transmit increases by just 18% compared
to 12-merge. Energy, however, is lower with the smaller dictionary due to less
energy spent in memory and increased speeds, which reduce the overhead of
powering peripheral devices.

Similarly, data structures which contain groups of pointers (which are
4 bytes long regardless of what they point to) can be converted to groups of
16-bit integers to halve storage space when indices do not exceed 16 bits. As
long as network energy continues to dominate total energy, the effective dou-
bling of storage space should be used to improve compression ratios.

The fully associative sets of the SA-110 cache are useful for eliminating con-
flict misses, but the poor locality and large data structures of the compression
applications cannot exploit this. Redesigning the caching policy could play a
large role in reducing the energy of lossless compression applications. Disabling
the data cache can save over 50% of the energy of a load miss [Flinn et al. 2000].
Thus, when it is known that many load misses are bound to occur, disabling
the data cache may be wise. Fetching eight-word blocks is another inefficient
use of hardware for compression applications. Unless the benchmark can be
restructured with spatial locality at this granularity, single-word block fetches
would be just as useful and require less power.

5.2 Exploiting the Sleep Mode

When a platform has a low-power idle state, it may be sensible to sacrifice
energy in the short-term in order to complete an application quickly and enter
the low-power idle state [Miyoshi et al. 2002]. Figure 17 shows the effect of this
analysis for compression and sending of text. Receive/decompression exhibits a
similar, but less-pronounced variation for different idle powers. It is interesting
to note that, assuming a low-power idle mode can be entered once compression
is complete, the choice of compression strategies will vary. With its 1 W of idle
power, the Skiff would benefit most from zlib compression. A device which used
negligible power when idle would choose the LZO compressor. While LZO does
not compress data the most, it allows the system to drop into low-power mode
as quickly as possible, using less energy when long idle times exist. For Web
data (Figure 18), the compression choice is LZO when idle power is low. When
idle power is 1 W, bzip2 is over 25% more energy-efficient than the next best
compressor.

5.3 Asymmetric Compression

Consider a wireless client similar to the Skiff exchanging English text with
a server. All requests by the client should be made with its minimal-energy
compressor, and all responses by the server should be compressed in such a

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

282 • K. C. Barr and K. Asanović

Fig. 17. Compression + Send energy consumption with varying sleep power (Text data).

Fig. 18. Compression + Send energy consumption with varying sleep power (Web data).

way that they require minimal decompression energy at the client. Recalling
Figures 7 and 8, and recognizing that the Skiff has no low-power sleep mode, we
choose compress-12 (the 12-bit codeword LZW compressor) for our text compres-
sor as it provides the lowest total compression energy over all communication
speeds.

To reduce decompression energy, the client can request data from the server
in a format which facilitates low-energy decompression. If latency is not critical
and the client has a low-power sleep mode, it can even wait while the server
converts data from one compressed format to another. On the Skiff, zlib is the
lowest energy decompressor for both text and Web data. It exhibits the property
that, regardless of the effort and memory parameters used to compress data, the

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 283

Fig. 19. Choosing an optimal compressor-decompressor pair.

resulting file is quite easy to decompress. The decompression energy difference
between compress, LZO, and zlib is minor at 5.70 Mb/s, but more noticeable at
slower speeds.

Figure 19 shows several combinations of compressor and decompressor at
5.70 Mb/s. zlib-9 + zlib-9 represents the symmetric pair with the least decom-
pression energy, but its high compression energy makes it unlikely to be used
as a compressor for devices which must limit energy usage. compress-12 +
compress-12 represents the symmetric pair with the least compression en-
ergy. If symmetric compression and decompression is desired, then this “old-
fashioned” Unix compress program can be quite valuable. Choosing zlib-1 at
both ends makes sense as well—especially for programs already linked with the
ubiquitous zlib library. Compared with the minimum symmetric compressor-
decompressor, asymmetric compression on the Skiff saves only 11% of energy.
However, modern applications such as ssh and mod gzip use zlib-6 at both ends
of the connection. Compared to this common scheme, the optimal asymmetric
pair yields a 57% energy savings—mostly while performing compression.

It is more difficult to realize a savings over symmetric zlib-6 for Web data
as all compressors do a good job compressing it and zlib-6 is already quite fast.
Nevertheless, by pairing lzo and zlib-9, we save 12% of energy over symmetric
lzo and 31% over symmetric zlib-6.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

284 • K. C. Barr and K. Asanović

6. RELATED WORK

While related work can be found in fields ranging from coding theory to oper-
ating system design, this section is restricted to the three most relevant areas:
energy measurement and estimation; data compression for low-bandwidth de-
vices; and optimizing algorithms for low energy. Though much work has gone
into these fields individually, there has been little work that combines these ar-
eas to analyze the system-level effects of lossless compression for wireless trans-
mission. Computation-to-communication energy ratio has been been examined
before [Havinga 1999], but our work adds physical energy measurements and
applies the results to lossless data compression.

6.1 Energy Measurement and Estimation

To quantify energy savings, it is necessary to have an accurate measurement
methodology. Sometimes hardware can be measured in the lab directly or with
software-controlled tools. Simulators can allow for a quicker or more detailed
breakdown of energy consumption though they may due so at reduced accuracy.

Compaq’s Western Research Laboratory published a series of technical notes
outlining a methodology with bounded error for measuring the power consumed
by an actual handheld system based on the StrongARM SA-1100 [Flinn et al.
2000; Viredaz and Wallach 2000, 2001]. These technical notes examined power
usage corresponding to various idle and sleep states, and various cache and
buffer configurations. They observed a great energy difference between memory
references that hit in the cache versus those that missed. When the data cache
was enabled, a read cache miss cost twice the energy of a read from DRAM
without caching.

Disabling clock-switching, an implementation-specific function of the SA-
110, improves energy usage when done before a lengthy write to memory. The
trends observed should be similar to those presented in Section 4 as the systems
are very similar in design.

Powerscope is a portable tool for statistically sampling power consump-
tion, which requires markers be placed into the application code [Flinn and
Satyanarayanan 1999]. The bench equipment used in the original Power-
scope configuration allowed sampling at 1.6-ms intervals. The samples were
analyzed offline to associate each with a particular function in source code.
Powerscope measurement was used to characterize the various Odyssey
applications (see Section 6.3) before optimization work began [Flinn 2001]. An
energy-driven sampling technique was presented to improve the accuracy of
Powerscope-style tools [Chang et al. 2002]. Although it boasts an energy-driven
interrupt scheme to help hone in on energy hotspots and to avoid perturbing
the system-under-test during periods of lower energy consumption, initial
results were mostly within 4% of Powerscope.

Many simulators and activation models exist for estimating energy
consumption by counting events and applying an energy model. Jouletrack
[Sinha and Chandrakasan 2001] is one such tool which has been calibrated
with the SA-1100 and Hitachi SH-4. In designing the Jouletrack tool, it was
discovered that most StrongARM instructions fall into five classes in terms of

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 285

average current consumption corresponding to a range of 0.255 to 0.344 W.
No class varies more than 38% from the average, and the intrainstruction
variation—as a result of various addressing modes and data—is even smaller.
Sinha and Chandrakasan noted that most applications have similar power so
that their energy usage is roughly proportional to their execution time. To re-
fine this model, Jouletrack groups all StrongARM cycles into four classes based
on current consumption: instruction, sequential memory access, nonsequential
memory access, and internal cycle. This refined model shows less than 2% er-
ror. A good summary of other popular simulators such as SimplePower, Wattch,
Millywatt, Joulewatcher, etc., is contained in Chang et al. [2002].

6.2 Lossless Data Compression for Low-Bandwidth Devices

Like any optimization, compression can be applied at many points in the
hardware-software spectrum. When implemented in hardware, the benefits and
costs propagate to all aspects of the system. Compression in software may have
a more dramatic effect, but, for better or worse, its effects will be less global.
This section presents related work ranging from silicon solutions to World Wide
Web applications.

Modems have implemented the V.42bis standard in hardware since 1990.
The algorithm is simple and has low resource requirements; it was imple-
mented on existing 10-MHz Z80-powered modems with as little as 8 KB of ad-
ditional RAM [Thomborson 1992]. Compression is valuable in modems as they
are used on low-bandwidth telephone links. IBM has incorporated hardware
data compression in its disk arrays to increase capacity [Craft 1998]. By using
content-addressable memory (CAM) arrays for single-cycle dictionary lookups
and the density of CMOS technology to implement large history buffers on
a chip, gigabyte-per-second throughput has been achieved. An earlier design
found CAMs to be power-hungry and a fast, low-power systolic cell has been
designed which achieved over 5.5× speedup compared with software implemen-
tations [Jung and Burleson 1994, 1995].

The introduction of RISC sparked interest in executing compressed code in
the instruction cache to reduce the memory overhead of fixed-length instruc-
tions [Wolfe and Chanin 1992]. Code compression and bus compaction, reducing
the switching of used bits or sending fractions of words when possible, are re-
lated ways to reduce energy in hardware [Lekatsas et al. 2000]. IBM recently
introduced Memory Expansion Technology which uses hardware compression
and decompression to effectively double the size of main memory for most appli-
cations [IBM 2001]. A large L3 cache of uncompressed data is added to hide the
latency of the decompression operation, so there is negligible performance loss.

The introduction of low-power, portable, low-bandwidth devices has brought
about new (or rediscovered) uses for data compression. Van Jacobson introduced
TCP/IP Header Compression in RFC1144 to improve interactive performance
over low-speed (wired) serial links [Jacobson 1990], but it is equally applicable
to wireless. By taking advantage of uniform header structure and self-similarity
over the course of a particular networked conversation, 40-byte headers can
be compressed to 3–5 bytes. Three-byte headers are the common case. An

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

286 • K. C. Barr and K. Asanović

all-purpose header compression scheme (not confined to TCP/IP or any par-
ticular protocol) appears in Lilley et al. [2000]. TCP/IP payloads can also be
compressed with IPComp [Shacham et al. 2001], but this can be wasted effort
if data has already been compressed at the application layer.

The Low-Bandwidth File System (LBFS) exploits similarities between the
data stored on a client and server, to exchange only data blocks which differ
[Muthitacharoen et al. 2001]. Files are divided into blocks with content-based
fingerprint hashes. Blocks can match any file in the file system or the client
cache; if client and server have matching block hashes, the data itself need not
be transmitted. Despite the complexity of the scheme, much of its bandwidth
savings comes from simply applying gzip compression to its streams. Rsync
[Tridgell 2000] is a protocol for efficient file transfer which preceded LBFS.
Rather than content-based fingerprints, Rsync uses its rolling hash function to
account for changes in block size. Block hashes are compared for a pair of files
to quickly identify similarities between client and server. Rsync block sharing
is limited to files of the same name.

A protocol-independent scheme for text compression, NCTCSys, is presented
in Motgi and Mukherjee [2001]. NCTCSys involves a common dictionary shared
between client and server. The scheme chooses the best compression method
it has available for a dataset (or none at all), based on parameters such as file
size, line speed, and available bandwidth.

Along with remote proxy servers which may cache or reformat data for
mobile clients, splitting the proxy between client and server has been pro-
posed to implement certain types of network traffic reduction for HTTP
transactions [Housel and Lindquist 1996; Krashinsky 2003]. Because the de-
lay required for manipulating data can be small in comparison with the
latency of the wireless link, bandwidth can be saved with little effect on
user experience. Alternatively, compression can be built into servers and
clients as in the mod gzip module available for the Apache Webserver and
HTTP 1.1-compliant browsers (Hyperspace Communications, Inc; go online to
http://sourceforge.net/projects/mod-gzip/). Delta encoding, the transmis-
sion of only parts of documents which differ between client and server, can also
be used to compress network traffic [Hunt et al. 1996; Mogul 1999; Mogul et al.
1997; Santos and Wetherall 1998].

6.3 Optimizing Algorithms for Low Energy

Advanced RISC Machines (ARM) provides an application note which explains
how to write C code in a manner best-suited for its processors and ISA [Ad-
vanced RISC Machines Ltd (ARM) 1998]. Suggestions include rewriting code
to avoid software emulation and working with 32-bit quantities whenever pos-
sible to avoid a sign-extension penalty incurred when manipulating shorter
quantities. To reduce energy consumption and improve performance, the Op-
tAlg tool represents polynomials in a manner most efficient for a given architec-
ture [Peymandoust et al. 2002]. As an example, cosine may be expressed using
two MAC instructions and an MUL to apply a “Horner transform” on a Taylor
Series rather than making three calls to a cosine library function.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 287

Besides architectural constraints, high-level languages such as C may in-
troduce false dependencies which can be removed by disciplined programmers.
For instance, the use of a global variable implies loads and stores which can
often be eliminated through the use of register-allocated local variables. Both
types of optimizations are used as guidelines by PHiPAC [Bilmes et al. 1997],
an automated generator of optimized libraries. In addition to these general cod-
ing rules, architectural parameters are provided to a code generator by search
scripts which work to find the best-performing routine for a given platform.

Yang et al. [2001] measured the power and energy impact of various compiler
optimizations, and reached the conclusion that energy can be saved if the com-
piler can reduce execution time and memory references. S̆imunić et al. [2000]
found that floating point emulation requires much energy due to the sheer num-
ber of extra instructions required. They also discovered that instruction flow
optimizations (such as loop merging, unrolling, and software pipelining) and
ISA specific optimizations (e.g., the use of a multiply-accumulate instruction)
were not applied by the ARM compiler and had to be introduced manually.
Writing such energy-efficient source code saves more energy than traditional
compiler speed optimizations [S̆imunić et al. 1999].

The CMU Odyssey project studied “application-aware adaptation” to deal
with the varying and often limited resources available to mobile clients.
Odyssey trades data quality for resource consumption as directed by the op-
erating system. By placing the operating system in charge, Odyssey balances
the needs of all running applications and makes the choice best suited for the
system. Application-specific adaptation continues to improve. When working
with a variation of the Discrete Cosine Transform and computing first with
DC and low-frequency components, an image may be rendered at 90% qual-
ity using just 25% of its energy budget [Sinha et al. 2000]. Similar results
have been shown for FIR filters and beamforming using a most-significant-first
transform. Parameters used by JPEG lossy image compression can be varied to
reduce bandwidth requirements and energy consumption for particular image
quality requirements [Taylor and Dey 2001]. Research to date has focused on
situations where energy-fidelity tradeoffs are available. Lossless compression
does not present this luxury because the original bits must be communicated
in their entirety and reassembled in order at the receiver.

7. CONCLUSION AND FUTURE WORK

We have examined the energy implications of lossless compression of data be-
fore transmission over a wireless network. The value of this research is not
merely to show that one can optimize a given algorithm to achieve a certain
reduction in energy, but to show that the choice of how and whether to compress
is not obvious. It is dependent on hardware factors such as relative energy of
CPU, memory, and network, as well as software factors including compression
ratio and memory access patterns. These factors can change, so techniques for
lossless compression prior to transmission/reception of data must be reevalu-
ated with each new generation of hardware and software. On our StrongARM
computing platform, measuring these factors allows an energy savings of up

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

288 • K. C. Barr and K. Asanović

to 57% compared to a popular default compressor and decompressor. Compres-
sion and decompression often have different energy requirements. When one’s
usage supports the use of asymmetric compression and decompression, up to
12% of energy can be saved compared with a system using a single optimized
application for both compression and decompression.

On platforms which support low-power sleep mode, one’s choice of compres-
sion changes to favor schemes which best balance compression energy with low
sleep energy. Choices may change further when the relative energy of system
components change with technological advancement. When looking at an entire
system of wireless devices, it may be reasonable to allow some to individually
use more energy in order to minimize the total energy used by the collection.
Designing a low-overhead method for devices to cooperate in this manner would
be a worthwhile endeavor.

This work reminds hardware and software developers that committing to one
particular compression/decompression scheme is unlikely to be wise in terms
of energy. As portable, networked, battery-powered computers evolve and be-
come more popular, extended battery life will grow in importance. Careful,
perhaps automated, evaluation of a platform’s relative component energy can
help choose the most energy-aware lossless compression scheme.

ACKNOWLEDGMENTS

Thanks to John Ankcorn, Christopher Batten, Jamey Hicks, Ronny Krashinsky,
Hari Balakrishnan, and the anonymous reviewers for their comments and
assistance.

REFERENCES

Advanced RISC Machines Ltd. (ARM). 1998. Writing Efficient C for ARM. Application note 34.

Go online to www.arm.com/pdfs.

AGILENT TECHNOLOGIES. 2000. Agilent 34401A Multimeter: User’s Guide, 5th ed. Palo Alto, CA.

AUSTIN, T. M. AND BURGER, D. C. 2001. SimpleScalar version 4.0 release (tutorial). In Proceedings
of the 34th Annual International Symposium on Microarchitecture.

BANERJEE, S. AND MISRA, A. 2004. Power adaptation based optimization for energy efficient reliable

wireless paths. Tech. rep. Department of Computer Sciences, University of Wisconsin-Madison,

Madison, WI.

BELL, T. AND KULP, D. 1989. Longest match string searching for Ziv-Lempel compression. Tech.

Rep. 06/89. Department of Computer Science, University of Canterbury, Christchurch New

Zealand.

BELL, T., POWELL, M., HORLOR, J., AND ARNOLD, R. 1997. The Canterbury Corpus. Go online to

http://www.corpus.canterbury.ac.nz/.

BELL, T., WITTEN, I. H., AND CLEARY, J. G. 1989. Modeling for text compression. ACM Comput.
Surv. 21, 4, 557–591.

BILMES, J., ASANOVIĆ, K., CHIN, C.-W., AND DEMMEL, J. 1997. Optimizing matrix multiply using

PHiPAC: A portable, high-performance, ANSI C coding methodology. In Proceedings of the 11th
ACM International Conference on Supercomputing.

BURGER, D. C. AND AUSTIN, T. M. 1997. The SimpleScalar tool set, version 2.0. Tech. Rep. CS-TR-

97-1342. University of Wisconsin, Madison, Madison, WI.

BURROWS, M. AND WHEELER, D. J. 1994. A block-sorting lossless data compression algorithm. Tech.

Rep. 124. Digital Systems Research Center, Palo Alto, CA.

CHANG, F., FARKAS, K., AND RANGANATHAN, P. 2002. Energy-driven statistical profiling: Detect-

ing software hotspots. In Proceedings of the 2nd Workshop on Power-Aware Computer Systems
(HPCA-8).

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 289

CHANG, J.-H. AND TASSIULAS, L. 2000. Energy conserving routing in wireless ad-hoc networks. In

Proceedings of IEEE INFOCOM. 22–31.

CLEARY, J. G. AND WITTEN, I. H. 1984. Data compression using adaptive coding and partial string

matching. IEEE Trans. Commun. 32, 4 (Apr.), 396–402.

CRAFT, D. J. 1998. Data compression in ASIC cores. IBM J. Res. Devel. 42, 6.

EFFROS, M. 2000. PPM performance with BWT complexity: A new method for lossless data com-

pression. In Proceedings of the Data Compression Conference.

FLINN, J. 2001. Extending mobile computer battery life through energy-aware adaptation. Ph.D.

dissetation. Carnegie Mellon University, Pittsburgh, PA. Also Tech. rep. TR No. CMU-CS-01-171,

Computer Science Depatment, Carnegie Mellan University.

FLINN, J., FARKAS, K. I., AND ANDERSON, J. 2000. Power and energy characterization of the Itsy

pocket computer (version 1.5). Tech. Rep. TN-56. Compaq Computer Corporation, Houston, TX.

FLINN, J. AND SATYANARAYANAN, M. 1999. Powerscope: A tool for profiling the energy usage of mo-

bile applications. In Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and
Applications.

GAILLY, J. 1999. Go online to comp.compression Internet newsgroup: Frequently Asked Ques-

tions.

GAILLY, J. AND ADLER, M. 2002. zlib. Go online to http://www.gzip.org/zlib.

GILCHRIST, J. 2002. Archive comparison test. Go online to http://compression.ca.

HAVINGA, P. J. 1999. Energy efficiency of error correction on wireless systems. In Proceedings of
the IEEE Wireless Communications and Networking Conference.

HICKS, J. 2005. Director, MIT-Quanta T-Party Project. Personal communication.

HICKS, J. ET AL. 1999. Compaq personal server project. Go online to http://crl.research.

compaq.com/projects/personalserver/default.htm.

HOHLT, B., DOHERTY, L., AND BREWER, E. 2004. Flexible power scheduling for sensor networks. In

Proceedings of the IEEE and ACM Third International Symposium on Information Processing in
Sensor Networks.

HOUSEL, B. C. AND LINDQUIST, D. B. 1996. Webexpress: A system for optimizing Web browsing in a

wireless environment. In Proceedings of the Second Annual International Conference on Mobile
Computing and Networking. 108–116.

HUNT, J. J., VO, K.-P., AND TICHY, W. F. 1996. An empirical study of delta algorithms. In Software
Configuration Management: ICSE 96 SCM-6 Workshop. Springer, Berlin, Germany, 49–66.

IBM. 2001. IBM J. Res. Devel. 45, 2. Preface by Richard E. Harper, Guest Editor.

INTEL CORPORATION. 2000. SA-110 Microprocessor Technical Reference Manual. Intel Corporation,

Santa Clara, CA.

INTEL CORPORATION. 2001. Intel StrongARM SA-1110 Microprocessor Developer’s Manual. Intel

Corporation, Santa Clara, CA.

JACOBSON, V. 1990. RFC 1144: Compressing TCP/IP headers for low-speed serial links. Available

online at www.rfe-editer.org.

JAMIESON, K. 2002. Implementation of a power-saving protocol for ad hoc wireless networks. M.S.

thesis. Massachusetts Institute of Technology, Cambridge, MA.

JANNESEN, P. ET. AL 1996. (n)compress. Available, among other places, in Redhat 7.2 distribution

of Linux.

JUNG, B. AND BURLESON, W. P. 1994. A VLSI systolic array architecture for Lempel-Ziv based data

compression. In Proceedings of the International Symposium on Circuits and Systems.

JUNG, B. AND BURLESON, W. P. 1995. Real-time VLSI compression for high-speed wireless local

area networks. In Proceedings of the Data Compression Conference.

KRASHINSKY, R. 2003. Efficient Web browsing for mobile clients using HTTP compression. Tech.

Rep. MIT-LCS-TR-882. MIT Laboratory for Computer Science, Combridge, MA.

LEKATSAS, H., HENKEL, J., AND WOLF, W. 2000. Low-power techniques for code compression in

embedded systems. In Proceedings of the Design Automation Conference.

LELEWER, D. A. AND HIRSCHBERG, D. S. 1987. Data compression. ACM Comput. Serv. 19, 3, 261–

297.

LILLEY, J., YANG, J., BALAKRISHNAN, H., AND SESHAN, S. 2000. A unified header compression frame-

work for low-bandwidth links. In Proceedings of the 6th ACM MOBICOM.

LYCOS. 2002. Lycos 50. Top 50 searches on Lycos for the week ending September 21, 2002.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

290 • K. C. Barr and K. Asanović

MCELIECE, R. 1977. The theory of information and coding. In Encyclopedia of Mathematics and
Its Application. Vol. 3. Addison-Wesley, Reading, MA.

MIYOSHI, A., LEFURGY, C., HENSBERGEN, E. V., RAJAMONY, R., AND RAJKUMAR, R. 2002. Critical power

slope: Understanding the runtime effects of frequency scaling. In Proceedings of the International
Conference on Supercomputing.

MOGUL, J. C. 1999. Trace-based analysis of duplicate suppression in HTTP. Tech. Rep. 99.2.

Compaq Computer Corporation, Houston, TX.

MOGUL, J. C., DOUGLIS, F., FELDMANN, A., AND KRISHNAMURTHY, B. 1997. Potential benefits of delta

encoding and data compression for HTTP. Tech. Rep. 97/4a. Compaq Computer Corporation,

Houston, TX.

MONTANARO ET AL., J. 1996. A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor. IEEE J. Sol.-
State Circ. 31, 11 (Nov.), 1703–1714.

MOTGI, N. AND MUKHERJEE, A. 2001. Network conscious text compression systems (NCTCSys). In

Proceedings of the International Conference on Information and Theory: Coding and Computing.

MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D. 2001. A low-bandwidth network file system. In

Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP ’01, Chateau

Lake Louise, Banff, Alta., Canada). 174–187.

NATHUJI, R. 2000. Characterization of DRAM. MIT Advanced Undergraduate Project. Mas-

sachusetts Institute of Technology, Cambridge, MA.

NIELSEN NETRATINGS AUDIENCE MEASUREMENT SERVICE. 2002. Top 25 U.S Properties; Week of Sept.

15th. Go online to www.nielsen-netratings.com.

NOBLE, B. D. AND SATYANARAYANAN, M. 1999. Experience with adaptive mobile applications in

odyssey. Mobile Netw. Appl. 4, 4, 245–254.

OBERHUMER, M. F. 2000. Lzo. Go on line to http://www.oberhumer.com/opensource/lzo/.

PEYMANDOUST, A., S̆IMUNIĆ, T., AND MICHELI, G. D. 2002. Low power embedded software optimiza-

tion using symbolic algebra. In Proceedings of the Conference on Design, Automation and Test in
Europe.

SANTOS, J. AND WETHERALL, D. 1998. Increasing effective link bandwidth by suppressing replicated

data. In Proceedings of the USENIX Annual Technical Conference. 213–224.

SAYOOD, K. 2002. Introduction to Data Compression, 2nd ed. Morgan Kaufman San Francisco,

CA.

SEWARD, J. 1999. bzip2. Go online to http://www.spec.org/osg/cpu2000/CINT2000/256.bzip2/

docs/256.bzip2.html.

SEWARD, J. 2000. e2comp bzip2 library. Go online to http://cvs.bofh.asn.au/e2compr/

index.html.

SHACHAM, A., MONSOUR, B., PEREIRA, R., AND THOMAS, M. 2001. RFC 3173: IP payload compression

protocol. Available online at www.rfc-editor.org/.

SHANNON, C. E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423

and 623–656.

SHKARIN, D. 2002a. PPM: One step to practicality. In Proceedings of the Data Compression
Conference.

SHKARIN, D. 2002b. PPMd. Go online to ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmdi1.rar.

S̆IMUNIĆ, T., BENINI, L., AND MICHELI, G. D. 1999. Energy-efficient design of battery-powered em-

bedded systems. In Proceedings of the IEEE International Symposium on Low Power Electronics
and Design.

S̆IMUNIĆ, T., BENINI, L., MICHELI, G. D., AND HANS, M. 2000. Source code optimization and profiling

of energy consumption in embedded systems. In Proceedings of the International Symposium on
System Synthesis.

SINHA, A. AND CHANDRAKASAN, A. 2001. Jouletrack—a Web based tool for software energy profiling.

In Proceedings of the 38th Design Automation Conference.

SINHA, A., WANG, A., AND CHANDRAKASAN, A. 2000. Algorithmic transforms for efficient energy scal-

able computation. In Proceedings of the IEEE International Symposium on Low Power Electronics
and Design.

STANDARD PERFORMANCE EVALUATION CORPORATION. 2000. CPU2000. Go online to www.spec.org.

TAYLOR, C. N. AND DEY, S. 2001. Adaptive image compression for wireless multimedia communi-

cation. In Proceedings of the IEEE International Conference on Communication.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Energy-Aware Lossless Data Compression • 291

THOMBORSON, C. 1992. The V.42bis standard for data-compressing modems. IEEE Micro 12, 5.

TRIDGELL, A. 2000. Efficient algorithms for sorting and synchronization. Ph.D. dissertation. Aus-

tralian National University, Canberra, Australia.

VIREDAZ, M. A. AND WALLACH, D. A. 2000. Power evaluation of Itsy version 2.3. Tech. Rep. TN-57.

Compaq Computer Corporation, Houston, TX.

VIREDAZ, M. A. AND WALLACH, D. A. 2001. Power evaluation of Itsy version 2.4. Tech. Rep. TN-59.

Compaq Computer Corporation, Houston, TX.

WELCH, T. A. 1984. A technique for high-performance data compression. IEEE Comput. 17, 6,

8–19.

WOLFE, A. AND CHANIN, A. 1992. Executing compressed programs on an embedded RISC archi-

tecture. In Proceedings of the 25th Annual International Symposium on Microarchitecture.

YANG, H., GAO, G. R., MARQUEZ, A., CAI, G., AND HU, Z. 2001. Power and energy impact of loop

transformations. In Proceedings of the Workshop on Compilers and Operating Systems for Low
Power 2001, Parallel Architecture and Compilation Techniques.

ZIV, J. AND LEMPEL, A. 1977. A universal algorithm for data compression. IEEE Trans. Inform.
Theor. 23, 3 (May), 337–343.

ZIV, J. AND LEMPEL, A. 1978. Compression of individual sequences via variable rate coding. IEEE
Trans. Inform. Theor. 24, 5 (Sep.), 530–536.

Received February 2005; revised November 2005; accepted November 2005

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

