
Way Memoization to Reduce Fetch Energy in Instruction Caches

Albert Ma, Michael Zhang, and Krste Asanovi´c
MIT Laboratory for Computer Science, Cambridge, MA 02139

fama|rzhang|krste g@lcs.mit.edu

Abstract

Instruction caches consume a large fraction of the total
power in modern low-power microprocessors. In particu-
lar, set-associative caches, which are preferred because of
lower miss rates, require greater access energy on hits than
direct-mapped caches; this is because of the need to locate
instructions in one of several ways. Way prediction has
been proposed to reduce power dissipation in conventional
set-associative caches; however, its application to CAM-
tagged caches, which are commonly used in low-power
designs, is problematic and has not been quantitatively ex-
amined. We proposeway memoizationas an alternative to
way prediction. As in way prediction schemes, way mem-
oization stores way information (links) within the instruc-
tion cache, but in addition maintains a valid bit per link that
when setguaranteesthat the way link is valid. In contrast,
way prediction schemes must always read one tag to verify
that the prediction is correct.

Way memoization requires a link invalidation mecha-
nism to maintain the coherence of link information. We
investigate several invalidation schemes and show that
simple conservative global invalidation schemes perform
similarly to exact invalidation schemes but with much
lower implementation cost. Based on HSPICE simula-
tions of complete cache layouts in a 0.25�m CMOS pro-
cess, and processor simulations running SPECint95 and
MediaBench benchmarks, we show that way memoization
reduces the energy of a highly-optimized 16 KB 64-way
CAM-tag low-power instruction cache by 21%, an addi-
tional 13% savings compared to a way-predicting cache.

1 Introduction

Energy dissipation has become a key constraint in the
design of microprocessors. In simple pipelined RISC mi-
croprocessors common in embedded applications, instruc-
tion cache energy accounts for a significant fraction of to-
tal processor energy. For example, the StrongARM SA-
110 low-power RISC microprocessor dissipates 27% of
total processor power in the instruction cache [13]. Mi-

croprocessors usually avoid using direct-mapped caches
since higher conflict miss rates lead to larger miss energy
penalties as well as reduced performance. However, set-
associative instruction caches require greater access energy
than direct-mapped caches because of the need to locate in-
structions in one of several possible locations or ways. In
conventional set-associative caches, all ways are accessed
in parallel, i.e., includes reading out and comparing cache
tags as well as reading out instruction words from each
way. Thus, for a fixed cache subbank size, a conventional
n-way set-associative cache access requires almostn times
the amount of energy as the access of a direct-mapped
cache (excluding I/O driver energy).

There are several existing techniques that aim to re-
duce instruction lookup energy in set-associative caches.
One simple optimization is not to perform this search
for sequential fetch within each cache line (intra-line se-
quential flow) since we know the same line is being ac-
cessed, but for non-sequential fetch such as branches (non-
sequential flow) and sequential fetch across a cache line
boundary (inter-line sequential flow) [14, 16], full instruc-
tion lookups are performed. This eliminates around 75% of
all lookups. This reduces the number of tag readouts and
comparisons as well as the number of instruction words
read out. We include this optimization in the baseline cache
to which we will compare our results.

Another approach uses a two-phase associative cache:
access all tags to determine the correct way in the first
phase, and then only access a single data item from the
matching way in the second phase. Although this approach
has been proposed to reduce primary cache energy [8], it is
more suited for secondary cache designs due to the perfor-
mance penalty of an extra cycle in cache access time [2].

A higher performance alternative to phased primary
cache is to use CAM (content-addressable memory) to hold
tags. CAM tags have been used in a number of low-power
processors including the StrongARM [13] and XScale [5].
Although they add roughly 10% to total cache area, CAMs
perform tag checks for all ways and read out only the
matching data in one cycle. Moreover, a 32-way associa-
tive cache with CAM tags has roughly the same hit energy
as a two-way set associative cache with RAM tags, but has

1

a higher hit rate [3, 13, 20]. Even so, a CAM tag lookup
still adds considerable energy overhead to the simple RAM
fetch of one instruction word.

Way-prediction can also reduce the cost of tag accesses
by using a way-prediction table and only accessing the tag
and data from the predicted way. Correct prediction avoids
the cost of reading tags and data from incorrect ways, but a
misprediction requires an extra cycle to perform tag com-
parisons from all ways. This scheme has been used in
commercial high-performance designs to add associativity
to off-chip secondary caches [19]; to on-chip primary in-
struction caches to reduce cache hit latencies in superscalar
processors [4, 10, 18]; and has been proposed to reduce
the access energy in low-power microprocessors [9]. Since
way prediction is a speculative technique, it still requires
that we fetch one tag and compare it against the current
PC to check if the prediction was correct. Though it has
never been examined, way-prediction can also be applied
to CAM-tagged caches. However, because of the specula-
tive nature of way-prediction, a tag still needs to be read
out and compared. Also, on a mispredict, the entire access
needs to be restarted; there is no work that can be salvaged.
Thus, twice the number of words are read out of the cache.

In this paper, we present an alternative to way-
prediction —way memoization. Way memoization stores
tag lookup results (links) within the instruction cache in a
manner similar to some way prediction schemes. How-
ever, way memoization also associates avalid bit with
each link. These valid bits indicate, prior to instruction
access, whether the link is correct. This is in contrast to
way prediction where the access needs to be verified af-
terward. This is the crucial difference between the two-
schemes, and allows way-memoization to work better in
CAM-tagged caches. If the link is valid, we simply follow
the link to fetch the next instruction and no tag checks are
performed. Otherwise, we fall back on a regular tag search
to find the location of the next instruction and update the
link for future use. The main complexity in our technique
is caused by the need to invalidate all links to a line when
that line is evicted. The coherence of all the links is main-
tained through an invalidation scheme.

Way memoization is orthogonal to and can be used in
conjunction with other cache energy reduction techniques
such as sub-banking [12], block buffering [6], and the filter
cache [11]. Another approach to remove instruction cache
tag lookup energy is the L-cache [1], however, it is only
applicable to loops and requires compiler support.

The remainder of this paper is structured as follows.
Section 2 describes the implementation and operation of
the way-memoizing cache and shows that way-memoizing
instruction cache avoids most tag lookups. Section 3
presents several invalidation schemes that maintain the cor-

rectness of way-memoization. Section 4 describes in de-
tail one invalidation scheme that was chosen. Section 5
presents energy and performance estimates for the different
variations of the way-memoizing cache and compares the
cache with other low-energy instruction caching schemes.
Section 6 discusses future work to be explored and Sec-
tion 7 summarizes the paper.

2 Way-Memoizing Instruction Cache

The way-memoizing instruction cachekeeps links
within the cache. These links allow instruction fetch to
bypass the tag-array and read out words directly from the
instruction array. Valid bits indicate whether the cache
should use the direct access method or fall back to the nor-
mal access method. These valid bits are the key to main-
taining the coherence of the way-memoizing cache. When
we encounter a valid link, we follow the link to obtain
the cache address of the next instruction and thereby com-
pletely avoid tag checks. However, when we encounter an
invalid link, we fall back to a regular tag search to find the
target instruction and update the link. Future instruction
fetches reuse the valid link.

Way-memoization can be applied to a conventional
cache, a phased cache, or a CAM-tag cache. Table 1
compares a way-memoizing cache with the other low-
power caches that have been proposed. Of particular in-
terest is the comparison between way-predicting and way-
memoizing caches. On a correct way prediction, the
way-predicting cache performs one tag lookup and reads
one word, whereas the way-memoizing cache does no tag
lookup, and only reads out one word. On a way mispredic-
tion, the way-predicting cache is as power-hungry as the
conventional cache, and as slow as the phased cache. Thus
it can be worse than the normal non-predicting caches. The
way-memoizing cache, however, merely becomes one of
the three normal non-predicting caches in the worst case.
However, the most important difference is that the way-
memoization technique can be applied to CAM-tagged
caches.

To see how the way-memoizing cache works, we need
to examine the different cases of how program execution
proceeds. The flow of program execution (and thus in-
struction fetch) at each point can be classified as either se-
quential, that is, proceeding from one address to the next
sequentially adjacent address, or non-sequential. A MIPS
RISC ISA is assumed in the following discussion and also
in the results.

2

normal way-predicting way-memoizing
conventional phased CAM conventional phased CAM

Cache type I/D-Cache I/D-Cache I/D-Cache I/D-Cache I-Cache I-Cache I-Cache
Speculative? N/A N/A N/A yes no no no
Predicted/ n tag n tag 1 search 1 tag 0 tag 0 tag 0 search
memoized n word 1 word 1 word 1 word 1 word 1 word 1 word
cost 1 cycle 2 cycles 1 cycle 1 cycle 1 cycle 1 cycle 1 cycle
Mispredicted/ n tag n tag n tag 1 search
unmemoized N/A N/A N/A n word n word 1 word 1 word
cost 2 cycles 1 cycle 2 cycles 1 cycle

Table 1:N-way set-associative cache comparison.

2.1 Sequential Flow Optimization

Sequential flow can be classified as either intra-line, in
which adjacent addresses are within the same cache line, or
inter-line, in which adjacent addresses lay across a cache
line boundary. These two forms of sequential accesses can
be differentiated simply by checking the low-order bits of
the instruction address. In the case of intra-line flow, the
tag access never needs to be performed, as the current word
is guaranteed to be found in the same cache line as the
previous word. We include this optimization in all of our
cache designs considered in this paper.

To handle the cases of inter-line flow, we augment each
cache line with asequential link. A sequential link consists
of avalid bit, which indicates whether this link is valid, and
away field, which points to the way within a cache set that
holds the next word to be fetched. The program counter
provides the rest of the information to locate the word. To-
gether, these form a unique address in the cache which is
guaranteed to hold the desired word when the valid bit is
set. If the cache associativity isn, then the way field re-
quireslog

2
n bits.

2.2 Non-sequential Flow Optimization

Non-sequential flow can be further classified as fixed
or variable. In fixed non-sequential flow, corresponding
to branches and absolute jumps, the branch target address
to which instruction fetch flows is fixed. In variable non-
sequential flow, corresponding to indirect jumps, the ad-
dress to which instruction fetch flows depends on program
execution. These instructions are less often encountered
than standard branches, thus we do not include any opti-
mizations for them in this paper. However, it is possible to
optimize this case also, such as by tagging the link register
or a return address stack.

To handle the cases of fixed non-sequential flow, we use
branch links. A branch link, like a sequential link, holds
a valid bit and a way field. However, it points to the way

0 1 2 3 4 5+
0

10

20

30

40

50

60

70

80

90

Branch links invalidated

P
er

ce
nt

ag
e

of
 e

vi
ct

io
ns

LZW
epic_d
epic_e
g721_d
g721_e
gcc
go
jpeg_d
jpeg_e
li
m88k
mpeg_e
pegwit_d
pegwit_e
perl
vortex

Figure 1:Distribution of the number of branch links cleared per
line eviction. The unfilled rectangle overlay shows the average
across the benchmarks.

holding the target of the branch or jump, rather than the
way hold holding the next sequential instruction. In some
ISAs, we need a branch link on every instruction word,
since it is possible for each instruction to be a branch. In
the MIPS ISA we only need a branch link on every other
instruction word, since back-to-back branches are disal-
lowed. These branch links are stored alongside the instruc-
tion words in the cache line.

3 Link Invalidation

When a cache line is evicted, there may be valid links
elsewhere in the cache that point to the victim line. These
links need to be invalidated; otherwise, when they are
traversed, instructions from the wrong cache line will be
fetched. Asequentiallink to a cache line is easy to find
since it can come from only one cache line (correspond-
ing to the preceding cache line address). A tag search lo-

3

cates that cache line (if it is in the cache) and clears the
link. However, anybranch link in the entire cache can
point to the victim cache line. We can either search the
entire cache for these broken branch links, or we can build
a data-structure in the cache to record which lines point to a
particular line in the cache, so that only those branch links
that need to be are invalidated. We call such schemes exact
invalidation schemes. They all require large area overhead
and complex control logic.

Figure 1 shows the distribution of the number of branch
links that need to be invalidated on each cache line evic-
tion. This data was collected from a MIPS processor simu-
lator with a 16KB I-cache with 32-byte lines running a sub-
set of SPECint95 and MediaBench benchmarks. Around
74% of the time, there are no links to be invalidated.
Around 23% of the time, exactly one link needs to be in-
validated. The rest represent about 3% of evictions. This
graph strongly hints that we can use an inexact but conser-
vative invalidation scheme since there are usually no more
than one branch link to invalidate.

In the first inexact invalidation scheme we examine, we
augment the cache line with a singleinvalidatepointer plus
an overflow bitfor each cache line. The new cache line
structure is shown in Figure 2. The sequential and branch
links are shown associated with the tag and with the in-
struction pairs respectively. The invalidate pointer points
to the first branch link that is made to the line. The over-
flow bit for a line is set when a link is being created to
that line but the invalidate link is already occupied. If the
overflow bit is set on a line that is being evicted, all branch
links and all invalidate links in the entire cache are cleared.
This conservative clearing of all links potentially erases a
lot of useful way information. However, it avoids needing
to keep track of all possible links. Further, from Figure 1
we can see that this should only happen on at most 3% of
evictions. We call this theone-linkscheme since it reserves
space for one link.

The next simplification removes the invalidate link en-
tirely, leaving only the overflow bits. Any time a branch
link is created, the overflow bit is set on the target line.
This causes all the links to be cleared on at most 26% of
evictions. We call this thezero-linkscheme. Finally, for
completeness, we can remove the overflow bit and clear

tag

word0 word1 word2 word3 word4 word5 word6 word7

branch link

overflow bit

invalidate
 link

sequential
 link

Figure 2:Cache line augmented with the one-link structure im-
plementing an inexact invalidation scheme.

LZW adpcm_e epic_e g721_e go jpeg_e m88k pegwit_d perl avg
0

5

10

15

20

25

30

35

40

ligcc vortexadpcm_d epic_d g721_d jpeg_d mpeg_e pegwit_e

Benchmark

P
er

ce
nt

ag
e

of
 in

st
ru

ct
io

n
fe

tc
he

s

intra−line sequential
sequential
branch − oblivious
branch − zero link
branch − one link
branch − exact

Figure 3:Tag lookups for 4-way set-associative cache.

all the links on any eviction. We’ll call this theoblivious
scheme.

Figure 3 shows the performance of all the schemes on
a 4-way set-associative 16KB cache across the benchmark
set (X-axis). Figure 4 shows the same results on a 64-way
cache using CAM tags. The rightmost bar is the average
across the benchmarks. The top of each vertical subbar rep-
resents the fraction of tag lookups performed per instruc-
tion fetch for each variation of the cache. The topmost sub-
bar (22% on average) measures the baseline cache, which
implements the intra-line sequential optimization. The sec-
ond subbar (12%) measures a way memoizing cache which
implements only the sequential links. The third through
sixth bars (approximately 3%) are different variations of
the complete way memoizing cache. The bottommost im-
plements the exact invalidation scheme.

The surprising result is that even the oblivious scheme
does fairly well compared to the exact scheme. Based on
this result, we chose thezero-linkscheme to implement and
study in greater detail. The zero-link scheme has only one
extra bit of overhead per cache line compared to the oblivi-
ous scheme. The area overhead for the zero-link scheme is
6% on a 4-way set-associative cache and 13% on a 64-way
CAM-tagged cache, including the sequential and branch
links. Since the MIPS ISA has a branch delay slot, we
only need one branch link for every pair of instructions.

4 Operation of the Zero-Link Cache

In this section, we describe the operation of the zero-
link cache in detail. The operation of the cache depends on
whether it is CAM-tagged. On a non-CAM-tagged cache,
a write requires two cycles - the tag-readout and data-write

4

LZW adpcm_e epic_e g721_e go jpeg_e m88k pegwit_d perl avg
0

5

10

15

20

25

30

35

40

ligcc vortexadpcm_d epic_d g721_d jpeg_d mpeg_e pegwit_e

Benchmark

P
er

ce
nt

ag
e

of
 in

st
ru

ct
io

n
fe

tc
he

s
intra−line sequential
sequential
branch − oblivious
branch − zero link
branch − one link
branch − exact

Figure 4:Tag lookup reduction for 64-way set-associative cache.

cannot occur in parallel since it is not known beforehand
which way should be written. On a CAM-tagged cache,
however, a write can be performed in one cycle since only
the matching way is enabled for a write. [20] Figures 5
and 6 describes the timing of both CAM and non-CAM
designs. However, for simplicity, we will only describe the
CAM-tagged cache here.

When an instruction is fetched from the cache, the cor-
responding branch link is also read out. In addition, if the
instruction is fetched from a different cache line from the
last fetch, the sequential link is read out. If the instruction
does not take a branch and is not at the end of the cache
line these links are not used; on the fetch of the next in-
struction, the succeeding word on the cache line is read
out. Otherwise, if a branch is taken, the branch link is used
for the fetch of the next instruction. If a branch is not taken
and the instruction is at the end of the cache line, then the
sequential link is used. There are three cases to consider: a
valid link, invalid link with cache hit, and invalid link with
cache miss. LetT be the next instruction (or its address) to
be fetched. Assume that in cycle0, a instruction fetch of
instructionT is initiated.

In the case when the link to instructionT is valid, we
skip the tag lookup and directly read out the instruction in
cycle0 and complete the instruction fetch.

In the second case when the link is invalid, a standard
cache access (with tag lookup) is performed during cycle
0. Simultaneously, for a jump or taken branch, the over-
flow bit is written to indicate that a link to this line will be
created. By this time, hardware knows that there was a hit
in the cache. During cycle1, while the next instruction,
instructionT+1, is being fetched, the link on the referenc-
ing instruction to instructionT is created. This relies on
the fact that a low-power cache design would divide the

cycle0 cycle1 cycle2
valid fetchT

invalid lookupT
hit fetchT fetchT+1

set overflow write link
invalid lookup t readoutE lookupE-1
miss write link invalidateE-1seq.

invalidate all br.

Figure 5:CAM-tagged cache.

cycle0 cycle1 cycle2
valid fetchT

invalid lookupT
hit fetchT fetchT+1

set overflow
write link

invalid lookupT lookupE-1 invalidateE-1seq.
miss write link

invalidate all br.

Figure 6:Non-CAM-Based Cache

cache into multiple sub-banks that could be accessed in-
dependently given the right circuitry [12]. There is some
probability that the fetch and the rewrite occur to the same
bank. In this case, the pipeline is stalled for one cycle.

In the last case, a standard cache access is performed
in cycle 0 and results in a cache miss (thus no words are
read out). A cache line, lineE, is selected for eviction.
During cycle1, its tag field and overflow bit is read out.
The tag bits are used to invalidate the sequential link toE
and the overflow bit is used to determine whether to invalid
all links. Also during cycle1, the link on the referencing
instruction toT is created. During cycle2, using the tag
of the evicted line, the sequential link pointing to lineE
is invalidated through a tag search for lineE-1. Finally,
if the overflow bit on the evicted line was set, we clear
of all branch link valid bits using a flash clear. The fetch
completes some time later when the target line is loaded
into the cache from secondary memory. The added latency
for invalidating links is insignificant compared to the cache
refill latency.

5 Performance and Energy Evaluation

To evaluate the performance and energy dissipation of
alternative designs, we built performance and energy mod-
els based on a machine with a similar configuration to a
StrongARM microprocessor [13]. We use a low-power
16 KB instruction cache design with 8 sub-banks and 32-
byte cache lines. We use SPECint95 and MediaBench
benchmarks for our simulations and assume MIPS ISA in

5

LZW adpcm_e epic_e g721_e go jpeg_e m88k pegwit_d perl avg
0.9

0.95

1

1.05

1.1

1.15

ligcc vortexadpcm_d epic_d g721_d jpeg_d mpeg_e pegwit_e

N
or

m
al

iz
ed

 c
yc

le
s

pe
r

in
st

ru
ct

io
n

normal
memoized
phased
phased memoized
CAM
CAM memoized

Figure 7: Processor performance overhead for different set-
associative caches.

all our results.

5.1 Performance Modeling

Figure 7 shows the performance impact for a range of
cache configurations, measured as CPI relative to the nor-
mal non-CAM cache configuration. We assume an in-
struction cache miss penalty of 20 cycles (data caches are
not modeled). The first bar shows a conventional 4-way
set-associative RAM-tag cache with an LRU replacement
policy. The second bar shows the effects of adding way-
memoization to the 4-way RAM-tag cache. Performance
is slightly reduced because when a link is created, the
cache sub-bank which is being accessed cannot simulta-
neously be used for instruction fetch. Since there are eight
sub-banks, this situation occurs about one in eight times a
branch link is created. In rare cases, this also causes a stall
when a sequential link is created. We see that overall there
is only a very slight performance degradation due to the
link update activity.

The third bar shows the performance penalty of using a
4-way set-associative phased RAM-tag cache. The phased
cache reads tags then data sequentially, and so adds a bub-
ble into the fetch pipeline whenever a branch is taken. This
adds a performance penalty of around 7% CPI for our sim-
ple pipeline. This number is highly dependent on the cache
miss rate and miss penalty. A higher miss rate or miss
penalty overshadows the effect of branch penalties such as
is the case withepic d.

The fourth bar shows the effect of adding way-
memoization to the phased cache. Most of the performance
penalty of using phased-caches is eliminated because we
avoid the branch-taken penalty whenever the branch tar-

get’s way is memoized. However, performance is still
worse than the non-phased cache schemes.

The fifth bar shows the performance of the 64-way
CAM-tagged cache. As in the StrongARM design, we
use a FIFO replacement policy within each sub-bank [13].
As expected, the CAM-tagged cache gives the best perfor-
mance overall with a lower miss rate than the 4-way asso-
ciative schemes. The sixth bar shows the very slight perfor-
mance degradation from adding way-memoization to the
64-way CAM tag cache.

5.2 Energy Modeling

We base our energy models on data extracted from
circuit layout of actual cache designs (without the way-
memoization modifications) in a TSMC 0.25�m CMOS
process with 5 Aluminum metal layers. A number of
circuit-level power reduction techniques are used in this
design, such as sub-banking, low-swing bitline, and seg-
mented wordline. For the RAM-tag cache variants, we as-
sume RAM tags are held in separate smaller arrays to im-
prove speed and reduce power dissipation. For the CAM-
tagged cache variants, we use a low-power CAM design
that has separate search and write bitlines and which em-
ploys a reduced voltage swing on the precharged match
lines [20]. We ran HSPICE simulations on circuit netlists
obtained with a two-dimensional circuit extractor (SPACE)
to obtain energy dissipation numbers for reads and writes
for the various components of the cache. These energy
simulation numbers are factored by the activity simulation
numbers to generate total energy numbers. The CACTI
model was not used here since it does not include many
of the circuit level energy reduction techniques used in our
design. When we used the CACTI model [17] to obtain
energy numbers for our cache configuration, we observed
that the CACTI result is (10�) greater than our result [20].

Figure 8 shows the energy per access for each of our
schemes. The data are grouped into three groups. The first
group, the first three bars, are comparisons between 4-way
set-associative caches. The middle group, the next four
bars, are comparisons between 4-way phased caches. The
third group, the last four bars are comparisons between 64-
way set-associative CAM-tagged caches. The top section
of each bar, labelled overhead, represents the energy used
in doing things not required in an unmodified cache such
as reading out links and overflow bits.

In the first group, the first bar (norm) is for a conven-
tional cache with only the intra-line sequential tag lookups
eliminated. The second bar (seq) shows the savings from
adding inter-line sequential links. Tag readout energy is al-
most halved and there are also savings in word read outs,
but also some overhead is added to read and write the se-
quential link fields. The third bar (br) shows the energy

6

norm seq br p−norm way p−seq p−br c−norm c−way c−seq c−br
0

10

20

30

40

50

60

70

80

90

100

I−Cache type

pJ
 p

er
 a

cc
es

s
overhead
read tag
decoder
read word
write word
other

Figure 8:Instruction cache power breakdown.

savings from adding the branch links. Although tag lookup
energy is almost eliminated and data word read energy is
reduced, there is considerable overhead from accessing the
additional branch link state which limits the energy sav-
ings. Overall, these optimizations result in an energy sav-
ing of around 23% over a low-power cache design that only
eliminates intra-line tag lookups.

In the second group, the first bar (p-norm) shows the re-
duction of a phased cache implementation with only intra-
line optimization. The next bar (way) shows the reduction
for a way-predicting cache. The next two bars (p-seqand
p-br) show the additional reduction once sequential and
branch links are used.

We make two observations from this group of data.
First, the way-predicting cache performs similarly to the
phased way-memoizing caches because of its high predic-
tion rate. Intuitively, a way-predicting cache always has
a higher prediction rate than that of an equivalent way-
memoizing cache, which is already high at 97%. Any valid
link in a way-memoizing cache is guaranteed to be a cor-
rect prediction in a way-predicting cache. However, even
when there is no way information possibly available, the
way-predicting cache has a random1=n chance of being
correct in its prediction. Thus the worst case of the way-
predicting cache is rare. Even though there are a greater
number of tag accesses, these do not require a great amount
of energy in a conventional 4-way set-associative cache as
is evident in the leftmost bar (norm).

The second observation is that, because the phased
cache already eliminates excess data word access energy,
the relative savings are much lower. In fact, adding the
non-sequential branch links increases overhead energy per
access as shown in columnp-br. However, as mentioned
previously, the branch links improve performance for the

phased cache by removing most of the branch taken stalls.
We can achieve a total of 7% energy savings over the initial
low-power phased cache which only eliminated intra-line
tag lookups, while simultaneously improving performance
as shown earlier in Figure 7.

The four bars in the last group show the same progres-
sion for the 64-way set-associative CAM-tagged cache as
in the second group of data. As with the phased cache, the
CAM-tagged cache already eliminates excess data word
read energy, but the CAM tag search adds considerable en-
ergy overhead. Adding the inter-line sequential and non-
sequential links gives a large savings in tag energy and
results in a total energy savings of 21% over the low-
power CAM-tagged cache with only intra-line sequential
tag checks eliminated. Since the way links now require six
bits (and a valid bit) each, we further reduced the energy
overhead by gating the readout of the way links using the
valid bit. Thus invalid links do not require as much energy
to read. This final CAM-tagged configuration has both the
lowest energy and the highest performance of all the con-
figurations considered here.

Finally, we compare the way-memoizing cache (c-br)
to the way-prediction implemented on the CAM-tagged
cache (c-way). The tag read energy is higher for the way-
predicting cache than for the way-memoizing cache be-
cause way-prediction requires that a tag always be read
out along with the data in order to verify the correctness
of the prediction. This reduces the benefit of reducing the
CAM tag searches. In addition, since there are no valid bits
to gate the readout of the way links, there is greater en-
ergy overhead. Way-prediction only reduces energy con-
sumption by 8%. Thus, way-memoization is able to re-
duce energy consumption by an addition 13% beyond way-
prediction.

6 Future work

There are several modifications that can be performed
to reduce the overhead of way-memoization and to further
reduce energy consumption in the instruction fetch unit.

When the associativity is high, there is a non-trivial area
overhead in keeping the branch links. We can reduce this
overhead by storing some of the link bits in the free space
in each instruction word. In particular, many branches in
the MIPS ISA do not require both register fields. Further,
many branch instructions compare one register to the zero
register and we could recode these instructions before they
are written into the instruction cache [15]. If we do not use
branch links for the remaining branch instructions, we can
save 5 bits per branch link, reducing the area overhead for
a 64-way memoizing cache by 6%. This optimization also
reduces the energy overhead that arises from reading out

7

extra state in the cache, which was shown to have a large
effect on the energy performance of the way-memoizing
cache.

As has been proposed in [7], it is possible to precompute
the low-order bits of branch destinations and store them in
the instruction cache, instead of the original PC relative
offset. As a result, low-order bits do not have to be re-
calculated every time the branch is executed, thus saving
power. Combined with way-memoization, this technique
allows us to directly locate the branch target without any
calculation and without even knowing the upper bits of the
current program counter value. Execution can be contin-
ued until an invalid link is encountered, at which time we
can regenerate the program counter value from the cache
tag. In this way, we can reduce the power required for
program counter generation. We expect this optimization
to fully explore the energy performance potential of way-
memoizing caches.

Way-memoizing caches can be adapted to work for su-
perscalar processors. In particular, if instruction fetch is al-
ready using way-prediction as in [18], the modifications for
way-memoization should add comparatively little incre-
mental area and energy overhead, while decreasing cache
read energy.

7 Summary

In this paper, theway-memoizationtechnique is pro-
posed to reduce instruction fetch energy. This technique
stores precomputed in-cache links to next fetch locations.
By following valid links, the instruction fetch unit can by-
pass the tag lookup, thus reduce tag lookup energy. Though
our scheme requires that we invalidate all links to a line
when it is evicted on a cache miss, we have shown that for
the SPECint95 and MediaBench benchmarks, simple con-
servative global invalidation schemes perform similarly to
exact invalidation schemes, but with much lower imple-
mentation cost. There is no performance degradation as-
sociated with the implementation. We compare the way-
memoizing cache against other schemes, specifically way-
prediction, to reduce instruction cache power. Based on
HSPICE cache simulations and processor simulations, we
show that way memoization reduces the energy of a highly-
optimized 16 KB 64-way CAM-tag low-power instruction
cache by 21%, an additional 13% savings compared to a
way-predicting cache.

References

[1] N. Bellas, I. Hajj, G. Stamoulis, and C. Polychronopoulos.
Architectural and compiler support for energy reduction in
the memory hierarchy of high performance microproces-
sors. InISLPED, pages 70–75, August 1998.

[2] B. J. Benschneider et al. A 300-MHz 64-b quad-issue
CMOS RISC microprocessor.JSSC, 30(11):1203–1214,
November 1995.

[3] T. Burd. Energy-Efficient Processor System Design. PhD
thesis, University of California at Berkeley, May 2001.

[4] B. Calder and D. Grunwald. Next cache line and set predic-
tion. In ISCA-22, Italy, June 1995.

[5] Intel Corporation. Intel XScale microarchitecture.
http://developer.intel.com/design/intelxscale, 2001.

[6] K. Ghose and M. Kamble. Energy efficient cache organiza-
tions for superscalar processors. InPower-Driven Microar-
chitecture Workshop, ISCA-98, June 1998.

[7] L. Gwennap. MAJC gives VLIW a new twist.Micropro-
cessor Report, 13(12):12–15,22, September 1999.

[8] A. Hasegawa et al. Sh3: high code density, low power.IEEE
Micro, 1995.

[9] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting
set-associative cache for high performance and low energy
consumption. InISLPED, pages 273–275, August 1999.

[10] R. E. Kessler. The Alpha 21264 microprocessor.IEEE Mi-
cro, 19(2):24–36, March/April 1999.

[11] J. Kin, M. Gupta, and W. Mangione-Smith. The Filter
Cache: An energy efficient memory structure. InMicro-30,
December 1997.

[12] U. Ko, P. Balsara, and A. Nanda. Energy optimization of
multi-level processor cache architecture. InISLPED, April
1995.

[13] J. Montanaro et al. A 160-MHz, 32b, 0.5-W CMOS RISC
microprocessor.JSSC, 31(11):1703–1712, November 1996.

[14] M. Muller. Power efficiency & low cost: The ARM6 family.
In Hot Chips IV, August 1992.

[15] M. Panich. Reducing instruction cache energy using gated
wordlines. Master’s thesis, Massachusetts Institute of Tech-
nology, August 1999.

[16] R. Panwar and D. Rennels. Reducing the frequency of tag
compares for low power I-cache design. InSLPE, pages
57–62, October 1995.

[17] G. Reinman and N. Jouppi. An in-
tegrated cache and timing model.
http://research.compaq.com/wrl/people/jouppi/cacti2.pdf,
1999.

[18] M. Tremblay and J. M. O’Connor. UltraSPARC-I: A
four-issue processor supporting multimedia.IEEE Micro,
16(2):42–50, April 1996.

[19] K. C. Yeager. The MIPS R10000 superscalar microproces-
sor. IEEE Micro, 16(2):28–40, April 1996.

[20] M. Zhang and K. Asanovi´c. Highly-associative caches for
low-power processors. InKoolchip Workshop, MICRO-33,
December 2000.

8

