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Abstract Modernperformance-orientedISAs, such as RISC and VLIW, only expose to
software features that impact the critical path through computation. Pipelined
microprocessor implementations hide most of the microarchitectural work per-
formed in executing instructions. Therefore, there is no incentive to expose these
micro-operations, and their energy consumption is hidden from software.

This work presentsenergy-exposedhardware-software interfaces to give soft-
ware more fine-grain control over energy-consuming microarchitectural opera-
tions. We introducesoftware restart markersto make temporary processor state
visible to software without complicating hardware exception management. This
technique can enable a wide variety of energy optimizations. We implement
exposed bypass latcheswhich allow the compiler to eliminate register file traf-
fic by directly targeting the processor bypass latches. Another technique,tag-
unchecked loads and stores, allows software to access cache data without a hard-
ware tag check when the compiler can guarantee an access will be to the same
line as an earlier access.

Introduction

Power consumption is emerging as a key factor limiting computational per-
formance in both mobile and tethered systems. Although there has been sig-
nificant progress in low-power circuit design and low-power CAD and some
work in low-power microarchitectures, there has been little work to date at the
level of instruction set architecture (ISA) design for low power computing.

Modern ISAs such as RISC or VLIW are based on extensive research
into the effects of instruction set design on performance, and provide a
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purely performance-oriented hardware-software interface. These instruction
sets avoid providing alternate ways to perform the same task unless it will
increase performance significantly. Implementations of these ISAs perform
many energy-consuming microarchitectural operations during execution of
each user level instruction and these dominate total power dissipation. For
example, when executing an integer add instruction on a simple RISC pro-
cessor only around 5% of the total energy consumption is due to the adder
circuitry itself. The rest is dissipated by structures such as cache tag and data
arrays, TLBs, register files, pipeline registers, and pipeline control logic. Mod-
ern machine pipelines have been refined to the point where most of the addi-
tional microarchitectural work is performed in a pipelined or parallel manner
that does not affect the throughput or user-visible latency of a “simple” add
instruction. Because their performance effects can be hidden, there is no in-
centive to expose these constituent micro-operations in a purely performance-
oriented hardware-software interface — their energy consumption is hidden
from software.

In this chapter, we present new energy-exposed hardware-software inter-
faces that give software fine-grain control over energy consumption. The key
idea is to reward compile-time analysis with run-time energy savings. Instruc-
tion set enhancements enable this goal by providing software with alterna-
tive methods of executing an operation; performance is unchanged, but greater
compile-time knowledge can be used to deactivate unnecessary portions of
the machine microarchitecture. Our primary focus is on integer applications
with complex control flow. This type of code will likely become the energy
bottleneck in future embedded systems, as more regular computations can be
mapped to energy-efficient vector instructions or custom hardware accelera-
tors. We modify a RISC microprocessor architecture to support three energy-
exposed techniques and develop compiler algorithms to target the enhanced
instruction set.

The first technique issoftware restart markers, which reduce the energy
expended in exception state management. Current pipelined machines invest
significant energy in preserving precise exception semantics. Instruction re-
sults are buffered before being committed in order, requiring register rename
logic to find the correct value for new instructions. Even a simple five-stage
RISC pipeline has a bypass network that effectively performs these functions.
In addition, other information such as PC and faulting memory addresses must
be preserved in the pipeline until the exception can be serviced. Software
restart markers reduce energy by allowing the compiler to annotate at which
points it requires precise exception behavior. Initial results show that the num-
ber of precise exception points can be reduced by a factor of three. More
importantly, this technique allows additional machine state to be made visi-
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ble between restart points, enabling the introduction of more energy-exposed
features without incurring additional exception management costs.

The second technique isexposing bypass latcheswith a hybrid RISC-
accumulator architecture that uses compile-time register lifetime information
to reduce the number of register file reads and writes performed at run time.
Many register values in a computation are short-lived, being produced by one
instruction, consumed by the next instruction, and then never used again. This
register lifetime information can be encoded by adding accumulator registers
to a general-purpose register (GPR) RISC architecture, which allow software
to pass values directly from one instruction to the next without accessing the
GPRs. The accumulator registers can be mapped to the bypass latches that are
already present in a CPU datapath. To avoid the hardware and energy overhead
which would be necessary to preserve this bypass latch state during exceptions,
the bypass latch accumulator registers are treated as temporary state which is
recreated when a region is re-executed after any trap. This technique can re-
move a third of all register file writes.

The final technique istag-unchecked loads and stores. Tag accesses con-
sume over half the energy of a data cache access in a low-power microproces-
sor. In cases where compile-time analysis can guarantee that two accesses will
be to the same cache line, tag-unchecked loads and stores allow the hardware
to avoid performing a tag-check on the second access. Initial results indicate up
to 70% of tag checks in SPECint95 and Mediabench programs can be removed
at compile time.

1. Baseline Processor

For mobile and embedded processors, both energy and performance are of
interest, and a traditional pipelined datapath is preferable to a more complex
superscalar design [8]. An energy-efficient five-stage pipelined MIPS RISC
microprocessor based on that presented in [4] was adopted as a baseline with
which to evaluate the three energy-exposed instruction set techniques. The ba-
sic pipeline structure of this design is shown in Figure 1.1. The design has split
16 KB instruction and data caches that are organized as 64-way set-associative
CAM-tag caches with 32-byte lines. This pipeline and cache configuration is
designed to be similar to the popular StrongARM-1 [6] low-power micropro-
cessor.

2. Software Restart Regions

Machines that support an operating system with preemptive context switch-
ing or demand-paged virtual memory must provide some mechanism to man-
age exceptions. If precise exceptions are supported in a pipelined machine,
hardware must either buffer state updates in some form of future file until all
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Figure 1.1. Baseline pipeline design.

possible exceptions have cleared, or alternatively save old machine state in his-
tory buffers so that it can be recalled when an exception is detected [9]. Even if
precise exceptions are not implemented, hardware must provide access paths to
allow software to save and restore all machine pipeline state across exceptions
to allow restart [11]. Note that these schemes add additional exception state
management energy overhead to the execution of all instructions. An energy-
exposed instruction set requires that internal machine state is made visible to
software. However, if making this additional machine state visible to software
incurs additional exception management overhead, much of the potential en-
ergy savings could be lost.

Most current ISAs have sequential instruction semantics and implementa-
tions are usually required to provide precise exceptions. That is, exceptions
must be taken in program order, and on recognizing an exception the ma-
chine must provide the program counter (PC) of the faulting instruction and
ensure that all earlier instructions have committed state updates and no later
instructions have affected architectural state [9]. This provides a simple model
for user code, which is given the illusion of uninterrupted execution; and for
system software, which only need save and restore programmer-visible state
including the faulting PC to swap contexts. However, supporting these seman-
tics incurs hardware exception management overhead for every instruction ex-
ecuted. In practice, exceptions occur rarely and usually do not require full
precision in exception reporting. For example, timer interrupts and page faults
only require that the process be restartable.

Software restart markers reduce the energy cost of exception management
by requiring software to explicitly divide the instruction stream into restartable
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regions. After handling a trap, the OS resumes execution at the beginning
of the restart region for the associated instruction. A conventional architec-
ture with precise exceptions is equivalent to placing every instruction into its
own restart region. A simple local analysis can remove many of these implicit
restart points by placing multiple instructions into one region.

2.1 Restart Marker Implementation

Restart points are encoded by marking the last instruction in a restart region.
This instruction is called thebarrier instruction because it acts as a trap barrier
that will commit and irrevocably update machine state only if it is guaranteed
that it will not raise an exception and that any preceding instruction will not
raise an exception. Also, the barrier instruction ensures that if an exception
does occur before it commits, the effects of following instructions will not be
visible. When the barrier instruction commits it will update a kernel visible
register, therestart program counter, to point to the next instruction to be ex-
ecuted; this instruction is the beginning of the next restart region. Note that
marking every instruction as a barrier instruction is equivalent to conventional
precise exception semantics.

The compiler must ensure that the code in a region is such that the operating
system kernel can restart the process after an exception by simply jumping
to the restart PC. This requires that software ensure the code in each restart
region (except for the final barrier instruction) is idempotent, i.e., that it can
be re-executed multiple times without changing the result. This restriction
still allows for the creation of large restart regions. For example, many of the
functions in the standard C library can each be entirely contained within one
restart region. To illustrate this point, consider thesprintf function, for
which the prototype is given below.

int sprintf(char *s, const char *format, ...);

This function uses theformat string as an input argument to write to the
string pointed to bys . As long as the input argument to the function is passed
in stack memory and not altered by the routine (meaning that the input argu-
ments and output arguments cannot overlap in memory), the function can be
restarted multiple times and still produce the same result. For thesprintf
function, theformat argument is declared to beconst , so it is not modified.
Thus, the function satisfies the criteria for idempotency. In general, any func-
tion that does not modify its arguments can use an arbitrary amount of local
read/write workspace and still be idempotent.
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2.2 Categories of Machine State

The use of software restart markers introduces three different types of ma-
chine state: checkpointed, stable, and temporary. Checkpointed state is copied
into checkpoint registers each time a barrier instruction commits, and is re-
coverable if an exception occurs. In the simple scheme used in this chapter,
the only checkpointed state is the restart PC. Stable state is preserved across
an exception by the kernel: conventional registers and memory fall into this
category. Finally, temporary state is only valid within a restart region, and is
not preserved across an exception. The bypass latches discussed in the next
section are an example of temporary state.

The power of software restart markers is that a great deal of internal ma-
chine pipeline state can be exposed by mapping it to temporary state without
needing hardware support to preserve this state across exceptions. In fact, the
temporary state can be ignored by the operating system. As long as the ker-
nel saves the visible stable user state and the restart PC, the process can be
restarted after each exception.

It is interesting to note that the MIPS instruction set [3] already incorporates
a limited form of restart regions to support delayed branches, i.e., the next PC
is user-visible temporary state that is updated by branch instructions but which
is never saved and restored by the kernel. Branches are always idempotent and
never trap barriers so that any trap on a delay slot instruction restarts at the
branch itself to recreate the next PC.

2.3 Example Use

Figure 1.2 presents some example code showing how the restart barriers are
used. The code is similar to conventional MIPS code, except that barrier in-
structions are marked with a.bar suffix. The barrier instructions split the
code into four regions labeled A, B, C, D. If an exception occurs within a re-
gion, the code can be restarted from the beginning of the region. For example,
if the store in region A encounters a write fault (perhaps because the page was
write protected as part of a copy-on-write protocol), the OS can replay the
code starting at the initial load and obtain the same result. The store in region
A must be marked as a barrier because its update of memory would otherwise
cause the region to be non-idempotent.

Region B contains a store that is not marked as a barrier. If the final load
in region B takes a page fault, this store will have likely changed memory
irrevocably. Nevertheless, the OS can restart region B from the initial load
instruction because the region is idempotent. The final load is marked as the
barrier because it overwrites the original value of the pointerr4 which would
be needed to restart the region.



Energy-Exposed Instruction Sets 7

lw r1, (r2)
addiu r1, r1, 1
sw.bar r1, (r2)
lw r2, 0(r4)
lw r3, 4(r4)
addu r2, r2, r3
sw r2, 16(r4)
lw.bar r4, 12(r4)
addu.bar r5, r5, 4
lw r1, (r4)
andi r1, r1, 3
sw r1, (r4)
lw r3, (r5)
bnez r3, loop
addu.bar r5, r5, 4

C

A

B

D

Figure 1.2. Code example showing restart regions. Instructions with a.bar suffix are the
barrier instructions at the end of each region.

Region C contains a single instruction, and shows how a simple compiler
can fall back to marking all instructions as barrier instructions to replicate con-
ventional precise exception semantics.

One sufficient, but not necessary, condition for idempotency is that the set
of all external sources (registers and memory) read by the region is disjoint
from the set of destinations written by the region (note that it is acceptable to
overwrite a value produced within the region). This is not a necessary condi-
tion as shown by the example in region D. Here, the store to memory changes
input source data, but with an idempotent operation (masking out the bottom
two bits). The barrier for this region is placed on the delay slot of the branch
instruction which will record the branch target in the restart PC when it com-
mits.

2.4 Compiler Analysis

Restart analysis was implemented as a pass within the assembler that per-
forms a purely local optimization at the basic block level after instruction
scheduling and register allocation. The analysis begins a new restart region at
the start of a basic block, then scans the sequence of instructions, updating the
set of external values read and the internal set of values written. When a con-
flict is detected, the conflicting instruction is marked as a barrier instruction,
then the read and write sets are cleared and a new region is started. Barriers are
also placed in front of system calls and any other instructions that will likely
cause a trap. Although we use a single bit in each set to represent memory, we
also incorporate a limited form of memory analysis by separately tracking the
base register and offset for each memory instruction. When the first memory
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instruction in a restart region is encountered, we store the base register, and we
create a linked list to hold the offset. For each subsequent memory instruction,
if the same base register is used, we can look at the offset to determine whether
the access is to a distinct memory location from all previous memory opera-
tions. If the base register is modified, or a different base register is used, we
revert to treating all of memory as a single location.

One concern with the restart scheme is ensuring forward progress in the face
of finite resources. If TLB misses are handled by software exception handlers,
then the number of memory operations in a region must be restricted to be less
than the number of available TLB entries to ensure that the region can run from
start to finish without incurring a TLB fault. Similarly for demand-paging, the
number of physical pages must be greater than the number of memory opera-
tions allowed in a region. These restrictions can be enforced by the compiler
and checked by the operating system, which can abort a process if it fails to
progress through a region.

2.5 Evaluation

The results of this restart analysis are shown in Figure 1.3 for SPECint95
and Mediabench benchmarks. The Figure shows the number of dynamic in-
structions that are restart points for both baseline MIPS code and for code after
the restart analysis. For baseline MIPS code, only branches and jumps do not
have barriers and so around 79–95% of all instructions have barriers. After the
simple local restart analysis, only 25–40% of instructions are barriers with an
average of around 3 instructions in each restart region. More aggressive com-
piler analysis should generate even larger regions, and allow entire functions
to be placed into a single restart region.

For the simple five-stage pipeline, restart analysis by itself only results in
a minor energy saving in the exception PC pipeline. The instruction pipeline
tags each instruction with its PC as it moves down the pipeline to identify the
faulting instruction on an exception. The PC is latched into the EPC register
in the system coprocessor if an exception occurs (Figure 1.1). With the restart
analysis only the barrier instructions cause an exception PC to shift down the
pipeline, allowing the PC pipeline to be gated off in other cases.

The primary advantage of software restart markers is that they make it pos-
sible to expose the internal details of a processor to the compiler as temporary
state in between restart points. The next section illustrates one use of tempo-
rary state to save energy for register file traffic.
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3. Exposing Bypass Latches with a Hybrid
RISC-Accumulator Architecture

Simulations of the MediaBench and SPECint95 benchmarks reveal that
around half of the values written to the register file are used exactly once,
usually by the instruction executed immediately after the one producing the
value. For example, in the code sequence to increment a memory variable,

lw r1, (r3) # Load value.
add r1, r1, 1 # Increment.
sw r1, (r3) # Update memory.

the result of the load and add are only used once by the subsequent instruction
and are normally read from the bypass network rather than the register file.
A conventional processor must assume that the register could be read at any
arbitrary point in the future or that there could be an exception right after the
instruction and hence must always write the value into the register file. The
compiler must already have calculated register lifetime information to perform
register allocation but has no convenient mechanism to communicate this in-
formation to hardware through a standard instruction set.

3.1 ISA Enhancements

By giving software explicit control of the bypass latches, it is possible to
reduce the register file traffic considerably. For example, the above code can
be rewritten as:

lw RS, (r3) # Load RS latch.
add SD, RS, 1 # Increment, put result in SD.
sw.bar SD, (r3) # Update with barrier.

where theRS operand specifies the use of the bypass latch in front of one
input to the ALU and theSDoperand specifies the use of the bypass latch that
holds data being stored to memory (Figure 1.1). Note that this sequence has
the same performance as the previous sequence but now two writes and two
reads of the register file have been avoided and replaced with accesses to the
bypass latches. In effect, when using the bypass latches, software turns off
the register fetch and write back stages of the machine pipeline, and thereby
removes microarchitectural energy overhead.

The final store is marked as a barrier instruction, because it performs a non-
idempotent memory update. If an exception is taken on any instruction in the
sequence, the code can be restarted from the load instruction. The bypass latch
does not have to be saved and restored by the operating system because the
bypass latch state will be recreated when this region is restarted.

This modification creates a hybrid RISC-accumulator architecture, but with-
out the need to preserve accumulator contents around exceptions. This allows
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the accumulator registers to map directly to the bypass latches that were present
in the original pipeline design, with no area, delay, or energy penalty for addi-
tional backup state or access paths to support exceptions.

Exposing bypass latches can eliminate register file reads when a temporary
value is obtained from a bypass latch instead of the register file. Additionally,
register file reads can be eliminated by another method which is referred to as
read caching[10]. For example, when a procedure is called, it may save regis-
ters on the stack before using them, as shown in the following code segment:

sw r3, 8(sp)
sw r2, 4(sp)
sw r1, 0(sp)

The value in the stack pointer register does not change in the above sequence,
yet it is read from the register file and clocked into theRS bypass latch for
each instruction. Software can eliminate these extraneous reads as well as the
unnecessary clocking of theRS latch by the use of explicit bypass latches, as
shown in the following rewritten code segment:

sw r3, 8(sp)
sw r2, 4(RS)
sw r1, 0(RS)

3.2 Compiler Analysis

Our implementation of the exposed bypass latch code takes advantage of the
static liveness information that is already maintained by the compiler. When
the compiler determines that a value read by an instruction is being referenced
for the last time—i.e. the value will be dead after the instruction executes—it
appends a “.l ” suffix to the assembly opcode with a corresponding operand
number to indicate the last use of the value.

The liveness information generated for each instruction is then used by the
scheduler that we added to the assembler. The scheduler reorders instructions
within a basic block. It performs several passes on the code. First, it attempts
to maximize performance by reordering instructions to mask latencies that can
cause pipeline stalls–in particular, it tries to fill load-use delay slots with inde-
pendent instructions. It also attempts to fill the architected branch delay slot.
Next, the scheduler uses the lifetime information generated by the compiler to
determine if bypass latches can be used in place of general-purpose registers
to statically bypass a value. In the subsequent pass, the scheduler creates the
restart regions discussed in the previous section. It then looks for read caching
opportunities, and finally tries to perform additional static bypassing from the
memory stage of the pipeline.
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Note that static bypassing from the memory stage raises additional con-
straints not required for bypassing from one instruction to a subsequent in-
struction. Consider the following example:

add r1, r2, r3
sub r4, r5, r6
and r7, r1, r4

In the above code segment,r1 is read for the last time by theand instruc-
tion. This would appear to provide an opportunity for static bypassing from
the memory stage by having the firstadd instruction target the X latch (Fig-
ure 1.1). However, in this scenario, if there is an instruction cache miss for the
and instruction, thesub instruction will overwrite the value in the X latch as
it proceeds through the pipeline. To avoid this problem, we must either require
strict pipeline sequencing, so that instructions go down the pipeline together
with no bubbles between them, or we must not permit an instruction which
overwrites the X latch (e.g., thesub instruction in the above example) to be
the intermediate instruction in a memory stage bypassing sequence. We chose
the latter option, as this placed no additional constraints on the hardware im-
plementation. Since they do not write back to the register file, instructions
which target the bypass latches are candidates for the intermediate instruction
in a memory stage bypassing sequence, for example:

add X, r2, r3
sub RS, r5, r6
and r7, X, RS

3.3 Evaluation

For our simulations, we modeled the RS, RT, SD, and X bypass latches by
reserving four general-purpose registers in the compiler and using their spec-
ifiers in the scheduler when modifying an instruction to target a bypass latch.
We observed that the loss of these registers in the compiler’s register alloca-
tor did not have an adverse effect on performance. Ideally, the instruction set
encoding would be designed to support bypass latches directly.

The reduction in register file writes is shown in Figure 1.4. On average,
34% of all writes are eliminated. The reduction in register file reads is shown
in Figure 1.5. On average, 28% of all reads are eliminated.

4. Tag-Unchecked Loads and Stores with Direct
Addressing

The memory system, including caches, consumes a significant fraction of
total system power. One significant source of energy consumption is the tag
check in the primary data cache.Direct addressingallows software to access
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cache data without the hardware performing a cache tag check. Thesetag-
unchecked loads and storessave the energy of performing a tag check when the
compiler can guarantee an access will be to the same line as an earlier access.
If the compiler cannot determine this information, or if cache lines are evicted
due to interrupts or cache invalidations, direct addressing gracefully degrades
back to conventional tag-checked accesses. Direct addressing is only used
for data accesses since instruction caches, while they dissipate considerable
energy, have very regular access patterns and are only accessed via the program
counter. Hence they are amenable to software-invisible micro-architectural
techniques for power reduction.

Commercial low-power processors usually employ highly associative
CAM-tag caches [1, 7, 6, 2]. Direct-mapped caches, although simpler, are
inefficient in terms of energy usage because they experience more misses due
to conflicts. Figure 1.6 shows the organization of a CAM-tag cache. Although
CAM-tag caches reduce miss rates and hence total access energy, they expend
relatively greater energy in tag checks [13]. The tag check for CAM-tag caches
is expensive because the tag is broadcast to the CAM in order to find the proper
line for the data. If we could shortcut that process—if the software could tell
the hardware what line to read, rather than providing a virtual address as a key
to the content-addressable memory—then we would save significant amounts
of energy. The problem is how to let software directly access cache lines with-
out compromising inter-process protection and while preserving correct oper-
ation in the face of cache replacements or other cache coherence actions.

4.1 ISA Enhancements

To eliminate tag checks, the processor-cache interface is enhanced with a
direct access mode that tells the hardware exactly where the data is located.
The processor state is augmented with some number ofdirect address(DA)
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Instruction Explanation

(l|s)wlda rt, off(rs),
da

Load or store word, load direct address. These in-
structions act like regular loads and stores, but they
also set the direct address registerda with the lo-
cation of the referenced line. We use MIPS as the
basis of our instruction encoding, so the offset for
this instruction is 13 bits signed instead of the reg-
ular 16-bit offset since there are 3 bits used as ada
specifier.

(l|s)wda rt, off(rs),
da

Load or store word, using direct address. Cache
data from the line pointed to byda , using the line
offset bits ofrs + off is transferred to register
rt (or the contents ofrt is stored into the line
specified byda). If da is invalid, the instruction
acts like(l|s)wlda , accessing memory and set-
ting theda register.

jr.dainv rs, mask

Jump register and invalidate direct address regis-
ters. This acts like a jump register instruction, but
it also clears the valid bit on the direct address reg-
isters specified in the (little endian) bitmask. This
instruction is used at the end of function calls and
by the operating system when the DA register life-
time has ended.

Table 1.1. A table of instructions for manipulating and using direct address registers

registers. These registers contain enough information to specify the exact lo-
cation of a cache line in the cache data RAM, and also have a valid bit. The
exact width and data layout of the DA register is invisible to software to avoid
exposing the implementation-dependent structure of the cache. In particular,
software is only made aware of the length of a cache line, but not the total
cache capacity or associativity.

Table 1.1 shows the instructions needed by the CPU to use the DA registers
for direct addressing of the cache (we show only word accesses, but half-word
and byte accesses are handled analogously). Software places values in the DA
registers as an optional side-effect of performing a regular load or store. A
tag-unchecked load or store specifies a full effective virtual address in addition
to a DA register number. If the DA register is valid, its contents are used to
avoid a tag search; if it is invalid, hardware falls back to a full tag search using
the entire virtual address. The valid bit can be checked early in the processor
pipeline, so this check does not introduce any additional latency into the cache
access path.
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Old Code New Code

sub $sp, 64 sub $sp, 64

sw $ra, 60($sp) swlda $ra, 60($sp), $da0

sw $fp, 56($sp) swda $fp, 56($sp), $da0

sw $s0, 52($sp) swda $s0, 52($sp), $da0

Figure 1.7. Code common at C function entry, and the same code transformed to use direct
address registers. Theswlda instruction writes$da0 with the cache location of the data at
virtual address$sp + 60 . Theswda instructions operate on that cache line without powering
up the cache tags.

4.2 Example Use

As a concrete example, consider the code in Figure 1.7, common at C func-
tion entry, and a transformation of that code which uses direct addressing.

The direct addressed operations useda0 which is set up by theswlda
instruction. This allows the compiler to use theswda instructions to eliminate
cache tag checks on up to 7 stores (the remainder of the cache line started by
the store) without adding additional instructions. The compiler keeps the stack
32-byte aligned to support this transformation.

4.3 DA Register Implementation

At minimum, a DA register needs only to record the matching way within
the cache set. In this case, the effective address is used to obtain the subbank
number, the set index, and the offset within the cache line. In some implemen-
tations, however, it will be advantageous to also record subbank and set index
information in the DA registers and to physically distribute the DA registers
among the cache subbanks. This avoids recalculating and retransmitting these
portions of the virtual address for tag-unchecked accesses. Further implemen-
tation details are given in [12].

4.3.1 Keeping DA Registers Coherent. The DA registers
must be kept coherent with the state of the cache. If a line pointed to by a
DA register is evicted, the DA register contents are no longer valid and cannot
be used in a tag-unchecked access; i.e., the inclusion property between the
DA registers and the primary cache must be preserved. Lines may be evicted
either as a result of cache line replacement or by external invalidate requests to
maintain cache coherence with DMA I/O traffic or other processors.

The primary cache can be used as a filter for snooping invalidations to the
DA register, and the DA registers are only searched when a cache eviction
occurs. Searching the DA tags consumes some additional energy on each evict,
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but it is only a small addition to the total cost of the cache line replacement
which might involve fetching a line from DRAM.

4.4 Compiler Analysis

The general compiler algorithm that is used to eliminate tag checks is
straightforward. Find two references, one of which dominates the other (so
all paths that cause the subordinate access to be executed cause the dominant
reference to be executed first). If we can prove that the two references always
point to the same cache line, the second reference can skip the tag check. It is
made tag-unchecked by having the dominant reference write a direct address
register that the subordinate register reads.

Code between the two references, including assignments, control flow or
even function calls, does not affect correctness because hardware will invali-
date the DA register if the line gets evicted between the definition and the use
of that DA register (as discussed in section 4.3.1). However, the compiler must
analyze pointer assignments to prove that two references always point to the
same location.

The compiler controls the stack pointer and so can ensure it is always
aligned to a cache boundary. This allows easy transformation of function en-
try/exit code (like in Figure 1.7), spill code, and parameter passing code. Small
automatic variables are never allocated across stack cache line boundaries, so
references to local variables and spill code profit from use of the DA registers.
Heap and static data require special compiler passes to restructure and analyze
loops. Further details of compiler techniques are given in [12].

After all potential pairs are identified, each dominant reference that has a
successful subordinate reference is a DA register candidate. The next task is
to map these candidates onto the limited set of DA registers. This is a stan-
dard register allocation problem—DA register candidates that are live at the
the same program point interfere and need to be allocated to different registers.
The DA register allocation problem is simpler than processor register alloca-
tion because a DA register can not be spilled. Instead of spilling, a DA register
is simply not allocated to a problematic DA variable.

4.5 Evaluation

The tag-unchecked compiler analysis was implemented for the SUIF com-
piler [5], which was configured to output instrumented C code. The instru-
mented code has loops unrolled and is augmented with statistics gathering ca-
pability. Figure 1.8 shows how many tag checks were eliminated and whether
the elimination was for a load or store. It is important to break these cases out
since the tag check is less of the total energy of a store since the value update
takes energy.
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Figure 1.8. Tag check elimination for Mediabench programs compiled by SUIF. Eight direct
address registers are used. The lowest part of the bar is tag unchecked loads, then unchecked
stores. Over that are tag checked loads and stores. The number on top of each bar (unchk) is
the percentage of tag checks eliminated.

5. Discussion and Future Work

One concern with exposing detailed internal machine state is that it can seri-
ously constrain the design of future ISA-compatible implementations. In some
embedded application areas, it is already accepted practice to change under-
lying ISA design frequently where there is a significant cost, performance, or
power advantage. In other cases, dynamic translation of a virtual machine ISA
alleviates the need for native machine compatibility (for example, Transmeta
ships two incompatible VLIW ISAs to which x86 code is dynamically trans-
lated). Further development should make possible new energy-exposed ISAs
that are portable across a range of implementations, and several of these fea-
tures could be added as extensions to existing ISAs.

5.1 Instruction Chains

Explicitly targeting bypass latches would not work in a processor that re-
orders instructions, as the latches are typically overwritten every cycle. For
example, in the following sequence:

add RS, r1, r2
sub r3, RS, r4
slt r5, r6, r7

if the slt instruction is issued after theadd instruction but before thesub
instruction, it will clobber the value in theRSbypass latch as it proceeds down
the pipeline. One way to make use of exposed temporary state in an out-of-
order processor is through the use ofinstruction chains. An instruction chain
is a string of instructions where each instruction uses the result of a previous
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gcc gsm(encode) jpeg(decode) pegwit(decode)

sltiu,beq (9.7) addiu,subu,sll, sll,addu (16.4) sll,addu (18.8)
addu (30.6)

lui,lw (9.2) sll,sra (15.6) addu,addiu,sra (9.0) srl,andi (9.0)
addiu,bne (8.2) addu,sltu,beq (7.2) addu,addu (8.9) lui,addu,lw (9.0)
addu,lw (7.3) mflo,addiu,sll,sra, sltu,bne (4.6) addu,lw (6.8)

addu (6.7)
sll,addu (4.3) sll,sra,mult (6.5) lw,or (4.6) xor,xor (6.1)
addiu,beq (4.3) slti,bne (4.2) lw,addu,addu (4.5) andi,sltiu,bne (6.0)
slt,bne (3.2) mflo,addu,sw (3.4) addu,sra,addu, andi,bne (5.5)

addu (4.5)
lui,addiu (2.9) addu,addu,addu (2.4) sll,addu,sll,subu (3.3) andi,sll (5.4)
slti,bne (2.9) sll,addu (1.8) addu,addu,sra,andi, andi,addiu (4.9)

addu (3.2)
slti,beq (2.4) addu,addu (1.6) subu,addu,sra,andi, andi,sltiu (4.7)

addu (3.2)

Table 1.2. Most frequent instruction chains for selected benchmarks. The numbers in paren-
theses are the percentages of all chains in the dynamic program execution represented by the
corresponding instruction sequences.

instruction. Data dependencies require that instructions in a chain must be pro-
cessed in order, but separate chains can be processed out of order. Essentially,
the chain is viewed as a single large instruction by the reordering mechanism.

Our simulations show that on average about 41% of all dynamically exe-
cuted instructions were in chains of at least two instructions; this indicates that
the concept of instruction chains warrants further investigation. For example,
when designing a new instruction set, chains could be incorporated into the
architecture. CISC architectures effectively encode a few types of instruction
chains as addressing modes for operands. Table 1.2 lists the frequently occur-
ring chains in programs, and shows the considerable variety in the instruction
chains generated for each program. These results indicate that a small number
of instruction patterns will not suffice when creating a new instruction set —
more generality is needed. Exploiting instruction chains should also allow a
more compact instruction set encoding by using implicit chain operands, sav-
ing further energy in instruction fetch.

6. Conclusion

Instructions perform many hidden microarchitectural operations as they ex-
ecute. Compile-time analysis can statically determine that much of this work
is unnecessary. By providing an energy-exposed instruction set, this informa-
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tion can be communicated to the hardware to save energy without impacting
performance.

One potential difficulty with exposing more machine state to the compiler
is that it can potentially increase energy consumption due to exception man-
agement overhead. Software restart markers reduce this overhead by enabling
the introduction of temporary state that does not have to be saved and restored
across exceptions. Exposed bypass latches are an example of allowing soft-
ware to make use of temporary state to avoid microarchitectural operations at
run time; in this case register file reads and writes are statically eliminated.
An instruction interface with alternative mechanisms to perform the same task
allows a compiler to deactivate unnecessary portions of the machine microar-
chitecture. Tag-unchecked loads and stores are an example which use compile-
time analysis to access the cache with direct address registers instead of costly
tag checks.

The three energy-exposed instruction set features presented here will yield
greater savings with more sophisticated global compiler analyses, and further
energy-exposed instruction set features are under development. These tech-
niques are just a first step towards future energy-efficient instruction set archi-
tectures.
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