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Motivation
• Tight space constraints

• Cost, power consumption, space constraints

• Program code size

• Variable-length instructions: more compact but less 
efficient to fetch and decode

• High performance
• Deep pipelines or superscalar issue

• Fixed-length instructions: easy to fetch and decode 
but less compact

• Headsand Tails (HAT) instruction format
• Easy to fetch and decode AND compact



Related Work

• 16-bit version of existing RISC ISAs

• Compressed instructions in main memory

• Dictionary compression

• CISC



16-Bit Versions
• Examples

• MIPS16 (MIPS), Thumb (Arm)

• Feature(s)
• Dynamic switching between full-width & half-width



16-Bit Versions, cont’d.

• Advantages
• Simple decompression of just mapping 16-bit to 32-

bit instructions

• Static code size reduced by ~30-40%

• Disadvantages
• Can only encode limited subset of operations and 

operands; more dynamic instructions needed

• Shorter instructions can sometimes compensate for 
the increased number of instructions, but 
performance of systems with instruction cache 
reduced by ~20%



Compression in Memory

• Examples
• CCRP, Kemp, Lekatsas, etc.

• Feature(s)
• Hold compressed instructions in memory 

then decompress when refilling cache



Compression in Memory, cont’d.

• Advantages
• Processor unchanged (see regular instructions)

• Avoids latency & energy consumption of 
decompression on cache hits

• Disadvantages
• Decrease effective capacity of cache & increase 

energy used to fetch cached instructions

• Cache miss latencies increase
– Translate pc ; block decompressed sequentially



Dictionary Compression

• Examples
• Araujo, Benini, Lefurgy, Liao, etc.

• Features
• Fixed-length code words in instruction stream point 

to a dictionary holding common instruction 
sequences

• Branch address modified to point in compressed 
instruction stream



Dictionary Compression, cont’d.

• Advantage(s)
• Decompression is just fast table lookup

• Disadvantages
• Table fetch adds latency to pipeline, increasing 

branch mispredict penalties

• Variable-length codewords interleaved with 
uncompressed instructions

• More energy to fetch codeword on top of full-length 
instruction



CISC

• Examples
• x86, VAX

• Feature(s)
• More compact base instruction set

• Advantage(s)
• Don’ t need to dynamically compress and 

decompressing instructions



CISC cont’d.

• Disadvantages
• Not designed for parallel fetch and decode

• Solutions
• P6: brute-force strategy of speculative decodes at 

every byte position; wastes energy

• AMD Athlon: predecodes instruction during cache 
refill to mark boundaries between instructions; still 
need several cycles after instruction fetch to scan & 
align

• Pentium-4: caches decoded micro-ops in trace 
cache; but cache misses longer latency and still full-
size micro-ops



Heads and Tails Design Goals

• Variable-length instructions that are easily 
fetched and decoded

• Compact instructions in memory and cache

• Format applicable for both compressing 
existing fixed-length ISA or creating new 
variable-length ISA



Heads and Tails Format

• Each instruction split into two portions:
fixed-length head & variable-length tail

• Multiple instructions packed into a 
fixed-length bundle

• A cache line can have multiple bundles



Heads and Tails Format

5    H0   H1   H2   H3   H4  H5                        T4     T3       T2            T0

4    H0   H1   H2   H3   H4                   T4       T3     T2    T1           T0

6    H0   H1   H2   H3   H4   H5   H6       T6       T4       T3       T1       T0

unused

last instr #
heads

tails

• not all heads must have tails
• tails at fixed granularity
• granularity of tails independent

of size of heads



Heads and Tails Format

bundle  #                  instruction #

5    H0   H1   H2   H3   H4  H5                        T4     T3       T2            T0

4    H0   H1   H2   H3   H4                   T4       T3     T2    T1           T0

6    H0   H1   H2   H3   H4   H5   H6       T6       T4       T3       T1       T0

last instr #
heads

tails

PC

• sequential: pc incremented
• end of bundle: bundle # 
incremented; inst # reset to 0
• branch: inst # checked



Length Decoding

• Fixed-length heads enable parallel fetch and 
decode

• Heads contain information to locate 
corresponding tail

• Even though head must be decoded before 
finding tail, still faster than conventional 
variable-length schemes

• Also, tails generally contain less critical 
information needed later in the pipeline



Conventional VL Length-Decoding

Length
1

Length
2

Length
3

Instr 1                 Instr 2               Instr 3

+

+



Length
2

Conventional VL Length-Decoding

Length
1

Instr 1                 Instr 2               Instr 3

• 2nd length decoder needs to know Length1 first



Length
2

Conventional VL Length-Decoding

Length
1

Length
3

Instr 1                 Instr 2               Instr 3

+

• 3rd length decoder needs to know Length1 & Length2



+

Length
2

Conventional VL Length-Decoding

Length
1

Length
3

Instr 1                 Instr 2               Instr 3

+

• Need to know all 3 lengths to fetch and align more instructions.



HAT Length-Decoding 

Length
1

Length
2

Length
3

Head1   Head2   Head3                      Tail3   Tail2 Tail1

• Length decoding done in parallel



HAT Length-Decoding 

Length
1

Length
2

Length
3

Head1   Head2   Head3                      Tail3   Tail2 Tail1

• Length decoding done in parallel
• Only tail-length adders dependent on previous length 
information



HAT Length-Decoding 

Length
1

Length
2

Length
3

+

Head1   Head2   Head3                      Tail3   Tail2 Tail1

• Length decoding done in parallel
• Only tail-length adders dependent on previous length 
information



HAT Length-Decoding 

Length
1

Length
2

Length
3

+

+

Head1   Head2   Head3                      Tail3   Tail2 Tail1

• Length decoding done in parallel
• Only tail-length adders dependent on previous length 
information



Branches in HAT

• When branching into middle of line, only 
head located, need to find tail

• Could scan all earlier heads and sum 
corresponding tail lengths, but substantial 
delay & energy penalty



• Approach 1: Tail-Start Bit Vector
• Indicates starting locations of tails

• Does not increase static code size, but increases 
cache area (cache refill time)

• Requires that every head has a tail

Branches in HAT

5 H0   H1   H2   H3   H4   H5      T5 T4        T3       T1       T0

0 1 1    0 1 1    0 1

should be T2



Branches in HAT

• Approach 2: Tail Pointers
• Uses extra field per head to store pointer to tail

(filled in by linker at link time)

• Removes latency, increases code size slightly

• Cannot be used for indirect jumps 
(target address not known until run time)

– Expand PCs to include tail pointer

– Restrict indirect jumps to only be at beginning
of bundle



Branches in HAT

• Approach 3: BTB for HAT Branches
• Store target tail pointer info in branch target buffer

• Resort back to scanning from the beginning of the 
bundle if prediction fails

• Does not increase code size, but increases BTB size 
and branch mispredict penalty



HAT Advantages

• Fetch & decode of multiple variable-length 
instructions can be pipelined or parallelized

• PC granularity independent of instruction 
length granularity (less bits for branch 
offsets)

• Variable alignment muxes smaller than in 
conventional VL scheme

• No instruction straddles cache line or page 
boundary



MIPS-HAT

• Example of HAT format: compressed 
variable-length re-encoding of MIPS

• Simple compression techniques
• based on previous scheme by Panich99

• HAT format can be applied to many other 
types of instruction encoding



• 5-bit tail fields (register fields not split)

• 15-40 bit instructions
• 10-bit heads (to enable Tail-Start Bit Vector)

• Every head has a tail

MIPS-HAT Design Decisions



MIPS-HAT Format

op         reg1          reg2    op2/imm (imm)     (imm)    (imm)    (imm)

op        reg1          reg2      (op2)

op        reg1          reg2       reg3      (op2)

I-Type           op         reg1       op2/imm (imm)    (imm)     (imm)    (imm)

R-Type          op        reg1           op2

J-Type          op      op2/imm imm     (imm)    (imm)    (imm)    (imm)    (imm)

Heads                                                 Tails



• Combine MIPS opcode fields

• Opcode determines length
• 6 possible lengths; could use 3 overhead bits per 

instruction

• Instead include size information in opcode but
number of possible opcodes substantially increased

• But only small subset frequently used

• Use 1-2 opcode fields
• Most popular opcodes in primary opcode field  (head)

• All other opcodes use escape opcode and secondary 
opcode field (tail)

MIPS-HAT Opcodes



MIPS-HAT Compression

• Use the minimum number of 5-bit fields to 
encode immediates

• Eliminate unused operand fields

• New opcodes for frequently used operands

• Two address versions of instructions with 
same source & destination registers

• Common instruction sequences re-encoded 
as a single instruction



MIPS-HAT Format

op         reg1          reg2    op2/imm (imm)     (imm)    (imm)    (imm)

op        reg1          reg2      (op2)

op        reg1          reg2       reg3      (op2)

I-Type           op         reg1       op2/imm (imm)    (imm)     (imm)    (imm)

R-Type          op        reg1           op2

J-Type          op      op2/imm imm     (imm)    (imm)    (imm)    (imm)    (imm)

Heads                                                 Tails



MIPS-HAT Bundle Format

128-bit bundle

256-bit bundle

# instr (3b)

# instr (4b)

50x5b units

25x5b units

8x10b heads

16x5b tail units

16x10b heads

32x5b tail units



Instruction Size Distribution

22.1%

13.0%

47.5%

3.8%

3.3%

10.4%
15b
20b
25b
30b
35b
40b

• Most instructions fit in 25 bits or less.



Compression Ratios
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Static  Compression Ratio = 
compressed code size

original code size

relatively more overhead &
internal fragmentation



Compression Ratios
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Impact of Branch Schemes 
on Compression
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75.0%
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Tail-Start Bit Vector: Large increase in dynamic fetch ratio.
Only have to fetch 16b 
BrBV rather than 32b 
BrBV each time

Tail-Start Bit Vector Effects
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Tail Pointer: Much lower cost than tail-start bit vector...

Tail Pointer Effects
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Tail Pointer: But increases static code size.

Tail Pointer Effects



Comparison to Related Schemes
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Conclusion

• New heads-and-tails instruction format
• High code density in both memory & cache

• Allows parallel fetch & decode

• MIPS-HAT
• Simple compression scheme to illustrate HAT

• Static compression ratio = 75.5%

• Dynamic fetch ratio = 75.0%

• Several branching schemes introduced



Future Work

• HAT format can be applied to many other 
types of instruction encoding

• Aggressive instruction compression techniques

• New instruction sets that take advantage of HAT to 
increase performance w/o sacrificing code density


