Heads and Tails

A Variable-Length Instruction Format
Supporting Parallel Fetch and Decode

Heldi Pan and Krste Asanovié

MIT Laboratory for Computer Science
CASES Conference, Nov. 2001

Motivation

* Tight space constraints

 Cost, power consumption, space constraints
* Program code size
 Variable-length instructions: more compact but less
efficient to fetch and decode
* High performance
» Deep pipelines or superscalar issue

 Fixed-length instructions: easy to fetch and decode
but less compact

 Headsand Talls (HAT) instruction format
» Easy to fetch and decode AND compact

Related Work

16-bit version of existing RISC ISAs
Compressed Instructions in main memory
Dictionary compression

CISC

16-Bit Versions
e Examples
« MIPS16 (MIPS), Thumb (Arm)

o Feature(s)
* Dynamic switching between full-width & half-width

16-Bit Versions, cont’ d.

o Advantages

» Simple decompression of just mapping 16-bit to 32-
bit instructions

o Static code size reduced by ~30-40%
e Disadvantages

« Can only encode limited subset of operations and
operands, more dynamic instructions needed

 Shorter instructions can sometimes compensate for
the increased number of instructions, but
performance of systems with instruction cache
reduced by ~20%

Compression in Memory

e Examples
 CCRP, Kemp, Lekatsas, etc.
o Feature(s)

* Hold compressed instructions in memory
then decompress when refilling cache

Compression in Memory, cont’d.

o Advantages

* Processor unchanged (see regular instructions)

* Avoids latency & energy consumption of
decompression on cache hits

e Disadvantages
» Decrease effective capacity of cache & increase
energy used to fetch cached instructions

o Cache misslatenciesincrease
— Trandate pc ; block decompressed sequentially

Dictionary Compression

e Examples
« Araujo, Benini, Lefurgy, Liao, etc.
e Features

 Fixed-length code words in instruction stream point
to adictionary holding common instruction
sequences

» Branch address modified to point in compressed
Instruction stream

Dictionary Compression, cont’d.
o Advantage(s)

e Decompression isjust fast table lookup
e Disadvantages
» Table fetch adds latency to pipeline, increasing

branch mispredict penalties

 Variable-length codewords interleaved with
uncompressed instructions

* More energy to fetch codeword on top of full-length
Instruction

CISC

e Examples
* X86, VAX
o Feature(s)

e More compact base instruction set

o Advantage(s)

e Don't need to dynamically compress and
decompressing instructions

CISC cont’ d.

e Disadvantages
* Not designed for parallel fetch and decode

e Solutions

o P6: brute-force strategy of speculative decodes at
every byte position; wastes energy

« AMD Athlon: predecodes instruction during cache
refill to mark boundaries between instructions; still
need severa cycles after instruction fetch to scan &
align

* Pentium-4: caches decoded micro-ops in trace
cache; but cache misses longer latency and still full-
Size micro-ops

Heads and Tails Design Goals

e Variable-length instructions that are easily
fetched and decoded

e Compact instructions in memory and cache

* Format applicable for both compressing
existing fixed-length | SA or creating new
variable-length | SA

Heads and Tails Format

e Each instruction split into two portions:
fixed-length head & variable-length tail

« Multiple instructions packed into a
fixed-length bundie

* A cache line can have multiple bundies

Heads and Tails Format

e not all heads must havetails
o tails at fixed granularity
 granularity of tails independent

of size of heads unused
4 |HO|H1| H2| H3 H4£4/T3 T2 | T1 TO
/
6 |HO|H1|H2|H3| H4| H5| H6 T4| T3 |T1| TO

5 |HO|H1| H2| H3| H4 HS‘ T4 | T3| T2 T0

heads <

last instr # tails

Heads and Tails Format

e sequential: pc incremented
 end of bundle: bundle #

PC

Incremented; inst #resetto 0
e branch: inst # checked

bundle # Instruction #

HO|H1|H2| H3 H4- T4 T3 |[T2|T1 T0

\ 4
D

6 |HO|H1| H2|H3| H4| H5| H6| T6 | T4 T3 | T1| TO

5 |HO|H1| H2| H3| H4 H5- T4 | T3| T2 T0

P [
<« »

heads

A

last instr # tails

v

L ength Decoding

Fixed-length heads enable parallel fetch and
decode

Heads contain information to locate
corresponding tail

Even though head must be decoded before
finding tail, still faster than conventional
variable-length schemes

Also, tails generally contain less critical
Information needed later in the pipeline

Conventional VL Length-Decoding

Instr 1 Instr 2 Instr 3
] | | L | |
AR
N L

Length L
2 L ength
e 3

Conventional VL Length-Decoding

Instr 1 |nstr 2 Instr 3
I |

 2nd length decoder needs to know Lengthl first

Conventional VL Length-Decoding

Instr 1 | nstr 2 |nstr 3

 3rd length decoder needs to know Lengthl & Length2

Conventional VL Length-Decoding

Instr 1 |nstr 2 Instr 3
l|] |]

L ength
1

* Need to know all 3 lengths to fetch and align more instructions.

HAT Length-Decoding

HeTadl

He|ad2

Head3
|

Tail3

Tail2

Taill

’

 Length decoding done in paralle

|

.

HAT Length-Decoding

HeTadl He|ad2 Head3 Tail3 |Tail2l Taill
| | [

! ! .

L ength
1

 Length decoding done in parallél
* Only tail-length adders dependent on previous length
Information

HAT Length-Decoding

HeTadl He|ad2 Head3 Tail3 |Tail2l Taill
| | [

! ! y
1 2
[ON

 Length decoding done in parallél
* Only tail-length adders dependent on previous length
Information

HAT Length-Decoding

HeTadl He|ad2 Head3 Tail3 |Tail2l Taill
| | [

! ! .

Length \/ Length +
1 2

| +

 Length decoding done in parallél
* Only tail-length adders dependent on previous length
Information

Branchesin HAT

* \When branching into middle of line, only
head |ocated, need to find tall

e Could scan dll earlier heads and sum

corresponding tall lengths, but substantial
delay & energy penalty

Branchesin HAT

o Approach 1: Tail-Sart Bit Vector

Indicates starting locations of tails

Does not increase static code size, but increases
cache area (cache refill time)

Requiresthat every head has atall

H1|H2|H3|H4| H5] 15 |T4 T3 T1| TO

should be T2

Branchesin HAT

e Approach 2: Tail Pointers

» Usesextrafield per head to store pointer to tall
(filled in by linker at link time)

« Removes |latency, increases code size slightly

« Cannot be used for indirect jJumps
(target address not known until run time)

— Expand PCsto include tail pointer
— Restrict indirect jJumps to only be at beginning
of bundle

Branchesin HAT

o Approach 3: BTB for HAT Branches

o Storetarget tail pointer info in branch target buffer

» Resort back to scanning from the beginning of the
bundle if prediction fails

e Does not increase code size, but increases BTB size
and branch mispredict penalty

HAT Advantages

Fetch & decode of multiple variable-length
Instructions can be pipelined or parallelized

PC granularity independent of instruction
length granularity (less bits for branch
offsets)

Variable alignment muxes smaller than in
conventional VL scheme

No Instruction straddles cache line or page
boundary

MIPS-HAT

e Example of HAT format: compressed
variable-length re-encoding of MIPS
e Simple compression techniques
 based on previous scheme by Panich99

« HAT format can be applied to many other
types of instruction encoding

MIPS-HAT Design Decisions

o 5-bit tall fields (register fields not split)

e 15-40 bit Instructions

 10-bit heads (to enable Tail-Start Bit Vector)
e Every head has atall

R-Type

|-Type

J-Type

MIPS-HAT Format

op regl op2

op regl reg2 | (op2)

op regl reg2 | reg3 | (op2)

op regl | [op2/imm| (imm) | (imm) | (imm) | (imm)

op regl reg2 |op2/imm| (imm) | (imm)| (imm)| (imm)

op |op2imm | imm | (imm) | (imm) | (imm) | (imm) | (imm)
Heads Tails

MIPS-HAT Opcodes

e Combine MIPS opcode fields

* Opcode determines length

» 6 possible lengths; could use 3 overhead bits per
Instruction

* Instead include size information in opcode but
number of possible opcodes substantially increased

e But only small subset frequently used

o Use 1-2 opcode fields
e Most popular opcodes in primary opcode field (head)

 All other opcodes use escape opcode and secondary
opcode field (tail)

MIPS-HAT Compression

Use the minimum number of 5-bit fieldsto
encode Immediates

Eliminate unused operand fields
New opcodes for frequently used operands

Two address versions of instructions with
same source & destination registers

Common instruction sequences re-encoded
as a single instruction

R-Type

|-Type

J-Type

MIPS-HAT Format

op regl op2

op regl reg2 | (op2)

op regl reg2 | reg3 | (op2)

op regl | [op2/imm| (imm) | (imm) | (imm) | (imm)

op regl reg2 |op2/imm| (imm) | (imm)| (imm)| (imm)

op |op2imm | imm | (imm) | (imm) | (imm) | (imm) | (imm)
Heads Tails

MIPS-HAT Bundle Format

#instr (30) 25X5b units

128-bit bundle

8x10b heads
256-bit bund| “16x5b tail units
-oit bundie 50x5b units

R 16x10b heads
1nstr (4b))

32x5b tall units

|nstruction Size Distribution

e Most instructionsfit in 25 bhits or less.

10.4%
3.3% 22.1% m 15b
3.8% 200
@ 25b
30b
13.0% = 35h
H 40b

47.5%

Compression Ratios

Satic Compression Ratio =

100%
90%

compressed code size

original co

desize

relatively more overhead &

internal fragmentation

75.5%

78.5%

256b
Bundle Size

/

128b

Compression Ratios

compressed code size

Satic Compression Ratio = ™ original code size

new bits fetched
original bits fetched

Dynamic Fetch Ratio =

100% -
N% 17| 75.5% 75.0% 78.5% 75.5%
80% -
70% 1
60% -
50% -
40% A
30% -
20% 1
10%

0% -

m Static
B Dynamic

256b 128b
Bundle Size

lmpact of Branch Schemes
on Compression

Dynamic Fetch Ratios

100% -
90% 75.0% 75.5%
80%
70%
60% -
50% 1
40% -
30% 1
20% 1
10%

0% -

B Nor mal

256b 128b
Bundle Size

Tall-Start Bit Vector Effects

Tail-Start Bit Vector: Large increase in dynamic fetch ratio.

100%
90% -
80% -
70%
60%
50% -
40% -
30% -
20%
10%

NN NN NN NN

0% -

Only have to fetch 16b
86.5% 81.1% BrBV rather than 32b
75.0% 75.5% BrBV each time
-
B Normal
O BrBV

256b
Bundle Size

128b

Tail Pointer Effects

Tail Pointer: Much lower cost than tall-start bit vector...

100% - 86.5% 81.1%
90% 1'75.0% 77.1% 755% 77.6%
80%
70%]
60% 17
50% ; ® Normal
40% A O BrBvV
gng ; ® BrTail
.

10% 1’|

0% -

256h 128b

Bundle Size

Tail Pointer Effects

Tail Pointer: But increases static code size.

Static Compression Ratios

i 0 0
100% 5 0% 86.5% 75 50/ 81.1%

80% -
60% -

B Nor mal
® BrTalil

40% 1

NN NN

20% 1
0% -

256b 128b
Bundle Size

Comparison to Related Schemes

Compression Ratios

100% 1

80% 1

60% -

40% 1

20%

0% -
HAT-MIPS CCRP MIPS16 SAMC/SADC

Conclusion

e New heads-and-tails instruction format

« High code density in both memory & cache
o Allows parallel fetch & decode

e MIPS-HAT

o Simple compression schemeto illustrate HAT
o Static compression ratio = 75.5%

e Dynamic fetch ratio = 75.0%

» Several branching schemes introduced

Future Work

« HAT format can be applied to many other

types of instruction encoding

» Aggressive instruction compression techniques

* New instruction sets that take advantage of HAT to
Increase performance w/o sacrificing code density

