
Heads and Tails
A Variable-Length Instruction Format
Supporting Parallel Fetch and Decode

Heidi Pan and Krste Asanovi�
MIT Laboratory for Computer Science

CASES Conference, Nov. 2001

Motivation
• Tight space constraints

• Cost, power consumption, space constraints

• Program code size

• Variable-length instructions: more compact but less
efficient to fetch and decode

• High performance
• Deep pipelines or superscalar issue

• Fixed-length instructions: easy to fetch and decode
but less compact

• Headsand Tails (HAT) instruction format
• Easy to fetch and decode AND compact

Related Work

• 16-bit version of existing RISC ISAs

• Compressed instructions in main memory

• Dictionary compression

• CISC

16-Bit Versions
• Examples

• MIPS16 (MIPS), Thumb (Arm)

• Feature(s)
• Dynamic switching between full-width & half-width

16-Bit Versions, cont’d.

• Advantages
• Simple decompression of just mapping 16-bit to 32-

bit instructions

• Static code size reduced by ~30-40%

• Disadvantages
• Can only encode limited subset of operations and

operands; more dynamic instructions needed

• Shorter instructions can sometimes compensate for
the increased number of instructions, but
performance of systems with instruction cache
reduced by ~20%

Compression in Memory

• Examples
• CCRP, Kemp, Lekatsas, etc.

• Feature(s)
• Hold compressed instructions in memory

then decompress when refilling cache

Compression in Memory, cont’d.

• Advantages
• Processor unchanged (see regular instructions)

• Avoids latency & energy consumption of
decompression on cache hits

• Disadvantages
• Decrease effective capacity of cache & increase

energy used to fetch cached instructions

• Cache miss latencies increase
– Translate pc ; block decompressed sequentially

Dictionary Compression

• Examples
• Araujo, Benini, Lefurgy, Liao, etc.

• Features
• Fixed-length code words in instruction stream point

to a dictionary holding common instruction
sequences

• Branch address modified to point in compressed
instruction stream

Dictionary Compression, cont’d.

• Advantage(s)
• Decompression is just fast table lookup

• Disadvantages
• Table fetch adds latency to pipeline, increasing

branch mispredict penalties

• Variable-length codewords interleaved with
uncompressed instructions

• More energy to fetch codeword on top of full-length
instruction

CISC

• Examples
• x86, VAX

• Feature(s)
• More compact base instruction set

• Advantage(s)
• Don’ t need to dynamically compress and

decompressing instructions

CISC cont’d.

• Disadvantages
• Not designed for parallel fetch and decode

• Solutions
• P6: brute-force strategy of speculative decodes at

every byte position; wastes energy

• AMD Athlon: predecodes instruction during cache
refill to mark boundaries between instructions; still
need several cycles after instruction fetch to scan &
align

• Pentium-4: caches decoded micro-ops in trace
cache; but cache misses longer latency and still full-
size micro-ops

Heads and Tails Design Goals

• Variable-length instructions that are easily
fetched and decoded

• Compact instructions in memory and cache

• Format applicable for both compressing
existing fixed-length ISA or creating new
variable-length ISA

Heads and Tails Format

• Each instruction split into two portions:
fixed-length head & variable-length tail

• Multiple instructions packed into a
fixed-length bundle

• A cache line can have multiple bundles

Heads and Tails Format

5 H0 H1 H2 H3 H4 H5 T4 T3 T2 T0

4 H0 H1 H2 H3 H4 T4 T3 T2 T1 T0

6 H0 H1 H2 H3 H4 H5 H6 T6 T4 T3 T1 T0

unused

last instr #
heads

tails

• not all heads must have tails
• tails at fixed granularity
• granularity of tails independent

of size of heads

Heads and Tails Format

bundle # instruction #

5 H0 H1 H2 H3 H4 H5 T4 T3 T2 T0

4 H0 H1 H2 H3 H4 T4 T3 T2 T1 T0

6 H0 H1 H2 H3 H4 H5 H6 T6 T4 T3 T1 T0

last instr #
heads

tails

PC

• sequential: pc incremented
• end of bundle: bundle #
incremented; inst # reset to 0
• branch: inst # checked

Length Decoding

• Fixed-length heads enable parallel fetch and
decode

• Heads contain information to locate
corresponding tail

• Even though head must be decoded before
finding tail, still faster than conventional
variable-length schemes

• Also, tails generally contain less critical
information needed later in the pipeline

Conventional VL Length-Decoding

Length
1

Length
2

Length
3

Instr 1 Instr 2 Instr 3

+

+

Length
2

Conventional VL Length-Decoding

Length
1

Instr 1 Instr 2 Instr 3

• 2nd length decoder needs to know Length1 first

Length
2

Conventional VL Length-Decoding

Length
1

Length
3

Instr 1 Instr 2 Instr 3

+

• 3rd length decoder needs to know Length1 & Length2

+

Length
2

Conventional VL Length-Decoding

Length
1

Length
3

Instr 1 Instr 2 Instr 3

+

• Need to know all 3 lengths to fetch and align more instructions.

HAT Length-Decoding

Length
1

Length
2

Length
3

Head1 Head2 Head3 Tail3 Tail2 Tail1

• Length decoding done in parallel

HAT Length-Decoding

Length
1

Length
2

Length
3

Head1 Head2 Head3 Tail3 Tail2 Tail1

• Length decoding done in parallel
• Only tail-length adders dependent on previous length
information

HAT Length-Decoding

Length
1

Length
2

Length
3

+

Head1 Head2 Head3 Tail3 Tail2 Tail1

• Length decoding done in parallel
• Only tail-length adders dependent on previous length
information

HAT Length-Decoding

Length
1

Length
2

Length
3

+

+

Head1 Head2 Head3 Tail3 Tail2 Tail1

• Length decoding done in parallel
• Only tail-length adders dependent on previous length
information

Branches in HAT

• When branching into middle of line, only
head located, need to find tail

• Could scan all earlier heads and sum
corresponding tail lengths, but substantial
delay & energy penalty

• Approach 1: Tail-Start Bit Vector
• Indicates starting locations of tails

• Does not increase static code size, but increases
cache area (cache refill time)

• Requires that every head has a tail

Branches in HAT

5 H0 H1 H2 H3 H4 H5 T5 T4 T3 T1 T0

0 1 1 0 1 1 0 1

should be T2

Branches in HAT

• Approach 2: Tail Pointers
• Uses extra field per head to store pointer to tail

(filled in by linker at link time)

• Removes latency, increases code size slightly

• Cannot be used for indirect jumps
(target address not known until run time)

– Expand PCs to include tail pointer

– Restrict indirect jumps to only be at beginning
of bundle

Branches in HAT

• Approach 3: BTB for HAT Branches
• Store target tail pointer info in branch target buffer

• Resort back to scanning from the beginning of the
bundle if prediction fails

• Does not increase code size, but increases BTB size
and branch mispredict penalty

HAT Advantages

• Fetch & decode of multiple variable-length
instructions can be pipelined or parallelized

• PC granularity independent of instruction
length granularity (less bits for branch
offsets)

• Variable alignment muxes smaller than in
conventional VL scheme

• No instruction straddles cache line or page
boundary

MIPS-HAT

• Example of HAT format: compressed
variable-length re-encoding of MIPS

• Simple compression techniques
• based on previous scheme by Panich99

• HAT format can be applied to many other
types of instruction encoding

• 5-bit tail fields (register fields not split)

• 15-40 bit instructions
• 10-bit heads (to enable Tail-Start Bit Vector)

• Every head has a tail

MIPS-HAT Design Decisions

MIPS-HAT Format

op reg1 reg2 op2/imm (imm) (imm) (imm) (imm)

op reg1 reg2 (op2)

op reg1 reg2 reg3 (op2)

I-Type op reg1 op2/imm (imm) (imm) (imm) (imm)

R-Type op reg1 op2

J-Type op op2/imm imm (imm) (imm) (imm) (imm) (imm)

Heads Tails

• Combine MIPS opcode fields

• Opcode determines length
• 6 possible lengths; could use 3 overhead bits per

instruction

• Instead include size information in opcode but
number of possible opcodes substantially increased

• But only small subset frequently used

• Use 1-2 opcode fields
• Most popular opcodes in primary opcode field (head)

• All other opcodes use escape opcode and secondary
opcode field (tail)

MIPS-HAT Opcodes

MIPS-HAT Compression

• Use the minimum number of 5-bit fields to
encode immediates

• Eliminate unused operand fields

• New opcodes for frequently used operands

• Two address versions of instructions with
same source & destination registers

• Common instruction sequences re-encoded
as a single instruction

MIPS-HAT Format

op reg1 reg2 op2/imm (imm) (imm) (imm) (imm)

op reg1 reg2 (op2)

op reg1 reg2 reg3 (op2)

I-Type op reg1 op2/imm (imm) (imm) (imm) (imm)

R-Type op reg1 op2

J-Type op op2/imm imm (imm) (imm) (imm) (imm) (imm)

Heads Tails

MIPS-HAT Bundle Format

128-bit bundle

256-bit bundle

instr (3b)

instr (4b)

50x5b units

25x5b units

8x10b heads

16x5b tail units

16x10b heads

32x5b tail units

Instruction Size Distribution

22.1%

13.0%

47.5%

3.8%

3.3%

10.4%
15b
20b
25b
30b
35b
40b

• Most instructions fit in 25 bits or less.

Compression Ratios

75.5% 78.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256b 128b

Bundle Size

Static

Static Compression Ratio =
compressed code size

original code size

relatively more overhead &
internal fragmentation

Compression Ratios

75.5% 75.0% 78.5% 75.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256b 128b

Bundle Size

Static
Dynamic

Static Compression Ratio =
compressed code size

original code size

Dynamic Fetch Ratio = new bits fetched
original bits fetched

Impact of Branch Schemes
on Compression

75.0% 75.5%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

256b 128b

Bundle Size

Normal

Dynamic Fetch Ratios

75.0%
86.5%

75.5%
81.1%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

256b 128b

Bundle Size

Normal
BrBV

Tail-Start Bit Vector: Large increase in dynamic fetch ratio.
Only have to fetch 16b
BrBV rather than 32b
BrBV each time

Tail-Start Bit Vector Effects

75.0%
86.5%

77.1% 75.5%
81.1%

77.6%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

256b 128b

Bundle Size

Normal
BrBV
BrTail

Tail Pointer: Much lower cost than tail-start bit vector...

Tail Pointer Effects

75.0%
86.5%

75.5%
81.1%

0%

20%

40%

60%

80%

100%

256b 128b

Bundle Size

Static Compression Ratios

Normal
BrTail

Tail Pointer: But increases static code size.

Tail Pointer Effects

Comparison to Related Schemes

0%

20%

40%

60%

80%

100%

HAT-MIPS CCRP MIPS16 SAMC/SADC

Compression Ratios

Conclusion

• New heads-and-tails instruction format
• High code density in both memory & cache

• Allows parallel fetch & decode

• MIPS-HAT
• Simple compression scheme to illustrate HAT

• Static compression ratio = 75.5%

• Dynamic fetch ratio = 75.0%

• Several branching schemes introduced

Future Work

• HAT format can be applied to many other
types of instruction encoding

• Aggressive instruction compression techniques

• New instruction sets that take advantage of HAT to
increase performance w/o sacrificing code density

