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ABSTRACT
Existing variable-length instruction formats provide higher code
densities than fixed-length formats, but are ill-suited to pipelined
or parallel instruction fetch and decode. This paper presents a
new variable-length instruction format that supports parallel fetch
and decode of multiple instructions per cycle, allowing both high
code density and rapid execution for high-performance embedded
processors. In contrast to earlier schemes that store compressed
variable-length instructions in main memory then expand them into
fixed-length in-cache formats, the new format is suitable for direct
execution from the instruction cache, thereby increasing effective
cache capacity and reducing cache power. The new head-and-tails
(HAT) format splits each instruction into a fixed-length head and
a variable-length tail, and packs heads and tails in separate sec-
tions within a larger fixed-length instruction bundle. The heads can
be easily fetched and decoded in parallel as they are a fixed dis-
tance apart in the instruction stream, while the variable-length tails
provide improved code density. A conventional MIPS RISC in-
struction set is re-encoded in a variable-length HAT scheme, and
achieves an average static code compression ratio of 75% and a
dynamic fetch ratio (new-bits-fetched/old-bits-fetched) of 75%.

1. INTRODUCTION
Many embedded systems have severe cost, power consumption,

and space constraints. Reducing code size is a critical factor in
meeting these constraints. Program code is often the largest con-
sumer of memory in control-intensive applications, affecting both
system cost and size. Also, instruction fetches are responsible for a
significant fraction of system power and memory bandwidth.

Architects of CISC instruction sets had similar motivations for
reducing program size and instruction fetch bandwidth, because
early systems had small, slow magnetic core memories with no
caches. These variable-length CISC instructions tend to give
greater code density than fixed-length instructions. However, fixed-
length RISC-style instruction sets became popular after inexpen-
sive DRAMs reduced the cost of main memory and large semi-
conductor instruction caches became feasible to reduce memory
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bandwidth demands. Fixed-length instructions simplify high per-
formance implementations because the address of the next instruc-
tion can be determined before decoding the current instruction (ig-
noring branches and other changes in control flow). Therefore, they
allow fetch and decode to be easily pipelined or performed in par-
allel for superscalar machines.

Although embedded processors have traditionally had simple
single-issue pipelines, newer designs have deeper pipelines or su-
perscalar issue [5, 16, 19] to meet higher performance require-
ments. Fixed-length ISAs reduce the complexity of pipelined and
superscalar fetch and decode, but incur a significant code size
penalty.

In this paper, we present a newheads-and-tails(HAT) format,
which allows compressed variable-length instructions to be held in
the cache yet remain easily indexable for parallel fetch and decode.
Therefore, we take advantage of the high code density of variable-
length instructions while enabling deeply pipelined or superscalar
machines.

The paper is structured as follows. In Section 2, we review
related work in instruction compression and superscalar variable-
length instruction decoding. Section 3 gives a general overview of
the HAT instruction format and describes a straightforward hard-
ware implementation. In Section 4, we present an example that
packs MIPS RISC [12] instructions into the HAT format using a
simple compression scheme. Using MIPS-HAT as a concrete ex-
ample, we also describe more sophisticated hardware schemes that
remove branch penalties. Section 5 presents results for MIPS-HAT
using programs taken from the Mediabench benchmark suite. Sec-
tion 6 concludes the paper.

2. RELATED WORK
The ARM Thumb [18] and MIPS16 [13] instruction sets provide

alternate 16-bit versions of the base fixed-length RISC ISA (ARM
and MIPS respectively) to improve code density. Decompression is
a straightforward mapping from the short instruction format to the
wider instruction format in the decode stage of the pipeline. Both
ISAs allow dynamic switching between full-width and half-width
instruction formats at subroutine boundaries. The half-width for-
mats reduce static code size by around 30–40%. However, since
they can only encode a limited subset of operations and operand
addressing modes, more dynamic instructions are required to exe-
cute a given task. The reduced fetch bandwidth can compensate for
the increased instruction count when running directly from a 16-bit
memory system, but for systems with an instruction cache, perfor-
mance is reduced by around 20% [18]. Although they are fixed
length, the reduced performance makes these short instruction for-
mats unattractive for a superscalar implementation, as a simpler



approach to boosting performance would be to revert back to the
higher-performing wider format.

An alternative technique that reduces the static code size of a
RISC ISA while allowing parallel fetch and decode is to hold in-
struction cache lines compressed in main memory but then expand
them into fixed-length instruction lines when refilling the cache.
This idea was introduced with the CCRP scheme [20], and a va-
riety of similar techniques have subsequently been developed and
commercialized [10, 15]. Earlier techniques developed for VLIW
machines [8] only removed NOP fields within a VLIW instruction,
reducing code size to about that of a RISC ISA. The processor re-
mains unchanged with these techniques, as it sees regular easy-to-
decode fixed-length instructions in the cache. Caching the uncom-
pressed instructions avoids the additional latency and energy con-
sumption of the decompression unit on cache hits, but decreases
the effective capacity of the primary cache and increases the en-
ergy used to fetch cached instructions. Cache miss latencies in-
crease for two reasons. First, because the processor uses regular
program counter (PC) addresses to index the cache, cache miss ad-
dresses must be translated through an additional memory-resident
lookup table (the Line Address Table [20]) to locate the correspond-
ing compressed block in main memory, although a miss address
translation cache can be added to reduce this penalty (the CLB in
[20]). Second, the missing block is often encoded in a form that
must be decompressed sequentially, increasing refill latency partic-
ularly when the requested word is not the first word in the cache
line. For systems with limited memory bandwidth, however, the
compressed format can actually reduce total miss latency by reduc-
ing the amount of data read from memory [20].

Dictionary-based compression schemes have also been used on
instruction streams, where fixed-length code words in the instruc-
tion stream point to a dictionary holding commonly occuring in-
struction sequences [2, 7, 9]. The program code is scanned to de-
termine the commonly occuring strings, which are replaced with
codewords pointing into a dictionary. Branch addresses must also
be modified to point to locations in the compressed instruction
stream. The dictionary is preloaded before program execution
starts and forms an additional component of the process state, al-
though it could potentially be managed as a separate cache. The
main advantage of these techniques is that decompression is just
a fast table lookup. On the other hand, these schemes have sev-
eral disadvantages. Preloading the table before each program is
executed complicates multi-programmed systems, and the table
fetch adds latency into the instruction pipeline increasing branch
mispredict penalties. Many dictionary schemes interleave variable
length code words with uncompressed instructions, severely com-
plicating a highly pipelined or superscalar implementation. Al-
though it might be possible to have parallel fetch and decode from
the sequences stored in the dictionary, the common strings tend
to be short — often only a single instruction [2, 3, 7]. Dictio-
nary schemes fetch full-size instructions from the dictionary RAM,
which is often comparable in size to a primary instruction cache,
adding additional instruction fetch energy overhead on top of the
fetch of codeword bits from the primary instruction stream.

Of course, the complexity of dynamically compressing instruc-
tions can be avoided by adopting a more compact base instruction
set. Legacy CISC ISAs, including VAX and x86, provide denser
encoding but were intended for microcoded implementations that
interpret the instruction format sequentially. Parallel fetch and de-
code is complicated by the need to examine multiple bytes of an in-
struction before the start address of the next sequential instruction is
known. Nevertheless, the economic importance of legacy CISC in-
struction sets, such as x86, has resulted in several high-performance

superscalar variable-length CISC designs [1, 4, 6, 11]. These
all convert complex variable-length instructions into fixed-length
RISC-like internal “micro-ops”. The Intel P6 microarchitecture
can decode three variable-length x86 instructions in parallel, but
the second and third instructions must be simple [6]. The P6 takes
a brute-force strategy by performing speculative decodes at each
byte position, then muxing out the correctly decoded instructions
once the lengths of the first and second instructions are determined
(further described below). The AMD Athlon design predecodes
instructions during cache refill to mark the boundaries between in-
structions and the locations of opcodes, but still requires several
cycles after instruction fetch to scan and align multiple variable-
length instructions [1]. The Pentium-4 design [4] improves on the
P6 family by caching decoded fixed-length micro-ops in a trace
cache, but similar to the CCRP scheme, cache hits require full-size
fixed-length micro-op fetches and cache misses have longer latency
due to the decoding process.

These legacy CISC ISAs were not designed with parallel fetch
and decode in mind. In this paper, we introduce a new heads-and-
tails (HAT) format designed to support parallel fetch and decode of
compact variable-length instruction sets directly from cache. The
HAT format helps an implementation deliver multiple, variable-
sized, randomly-accessible instruction units to the CPU in a sin-
gle cycle or alternatively enables a deeply-pipelined fetch of such
units. This capability can be used in several ways. The HAT format
can be used to hold variable-length instructions generated by other
compression schemes, or alternatively hold a new ISA developed to
take advantage of the format. The example evaluated in this paper
uses HAT to hold a quickly-decodable variable-length re-encoding
of the MIPS instruction set.

3. HEADS AND TAILS FORMAT
The HAT format packs multiple variable-length instructions into

fixed-length bundles as shown in Figure 1. The HAT format is used
both in main memory and cache, although additional information
might be added to the cached version to improve performance as
described below. A cache line could contain one or more bundles.
Bundles contain varying numbers of instructions, so each bundle
begins with a small fixed-length field holding the number of the
last instruction in the bundle, i.e. a bundle holdingN instructions
hasN � 1 in this field. The remainder of the bundle is used to hold
instructions.

Each instruction is split into a fixed-length head portion and a
variable-length tail portion. The fixed-length heads are packed
together in program order at the start of the bundle, while the
variable-length tails are packed together in reverse program order at
the end (i.e., the first tail is at the end of the bundle). Not all heads
necessarily have a tail, though this can simplify some hardware im-
plementations. The granularity of the tails is independent of the
size of the heads, i.e., the heads could be 11-bits long while the
tails are multiples of 5 bits, though there can be hardware advan-
tages to making the head length a multiple of the tail granularity
as discussed below. When packing compressed instructions into
bundles, there can be internal fragmentation if the next instruction
doesn’t fit into the remaining space in a bundle, in which case the
space is left empty and a new bundle is started.

The program counter (PC) in a HAT scheme is split into a bundle
number held in the high bits and an instruction offset held in the
low bits. During sequential execution, the PC is incremented as
usual, but after fetching the last instruction in a bundle (as given
by the instruction count stored in the bundle), it will skip to the
next bundle by incrementing the bundle number and reseting the
instruction offset to zero. All branches into a bundle have their



                                bundle #                      instr #

H0   H1    H2    H3    H4    H5    H6         T6         T4         T3          T1         T0

H0   H1    H2    H3    H4                       T4          T3         T2    T1            T0

H0   H1    H2    H3    H4    H5                            T4        T3         T2              T0

unused

             heads

       tails

last instr #

 4

 6

 5

Figure 1: Overview of heads-and-tails format.

target instruction offset field checked against the instruction count,
and a PC error is generated if the offset is larger than the instruction
count.

A PC value points directly to the head portion of an instruction
and, because they are fixed-length, multiple sequential instruction
heads can be fetched and decoded in parallel. The tails are still
variable-length, however, and so the heads must contain enough
information to locate the correct tail. One approach would be for
each head to have a pointer to its tail, but this would usually re-
quire a large number of bits. Fewer bits are needed if the head just
encodes the presence and length of a tail. This length information
can often be folded into the opcode information to further reduce
code size, as described below in the MIPS-HAT scheme. Similar
to a conventional variable-length scheme, the tail size information
in the head of one instruction must be decoded to ascertain the lo-
cation of the start of the tail of the next instruction. But in the HAT
format the length information for each instruction is held at a fixed
spacing in the head instruction stream, independent of the length
of the whole instruction. This makes the critical path to determine
tail alignment for multiple parallel instructions much shorter than
in a conventional variable-length scheme, where thelocationof the
length information in the next instruction depends on the length of
the current instruction.

This difference between a regular variable-length scheme and a
HAT scheme is illustrated in Figure 2. The Figure shows a three-
issue superscalar length decoder for a conventional variable-length
ISA and a HAT ISA scheme. In both cases, instructions vary from
2–8 bytes and length information is encoded in the first byte. In the
conventional scheme, the length decoder for the second instruc-
tion cannot produce a value until the first length decoder drives
the mux to steer the correct byte into the second length decoder.
Similarly, the third length decoder has to wait for the first two to
complete before its input settles. The output of the third decoder is
needed to determine the correct amount to shift the instruction in-
put buffer for the next cycle. This scheme scales poorly, asO(W 2)
area and delay for issue width W, because the number of inputs
to the length byte muxes grows linearly with the number of paral-
lel instructions. The Intel P6 family reduces this critical path by
replicating simple decoders at every byte position, then muxing out
the correct instructions. This requires considerable die area and
additional power, and still scales asO(W 2) albeit with a smaller
constant for delay. In contrast, the HAT scheme operates all the
length decoders in parallel, and then sums their outputs to deter-
mine tail alignments. This addition can be organized as a parallel
prefix sum using a carry-save adder tree, and so delay scales log-
arithmically with issue widthO(logW ), and hardware costs grow

Length
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Length
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Figure 2: Comparison of variable-length decoding in a conven-
tional variable-length scheme and a HAT scheme.

asO(W logW ).
The tails in a HAT scheme are delayed relative to the heads, but

the head and tail fetches can be pipelined independently. The per-
formance impact of the additional latency for the tails can be partly
hidden if more latency-critical instruction information is located in
the head portions.

3.1 Handling Branches in HAT
While fetching sequentially within a bundle, the HAT instruction

decoder is consuming head bits from one end of the bundle and tail
bits from the other end. To avoid having to fetch and decode a new
bundle before locating its first instruction’s tail bits, we place tails
in reverse order starting at the end of the bundle. When execution
moves sequentially on to a new bundle, the initial head and tail data
can be simply found at either end of the new bundle.

Branches create the biggest potential problems for the HAT
scheme. Whereas a branch target address points at the entire target
instruction in a conventional scheme, it only locates the head within
a bundle in a HAT scheme. One simplistic approach to locate the
tail of a branch target is to scan all earlier heads from the beginning
of the target bundle, summing their tail lengths to get a pointer to



the start of the branch target’s tail. Although correct, this scheme
would add a substantial delay and energy penalty to taken branch
instructions. Next, we describe three different approaches to find-
ing branch target tails in a HAT scheme: tail-start bit vectors, tail
pointers, and an enhanced branch target buffer.

Tail-Start Bit Vector
We can reduce branch penalties for locating the target tail by stor-
ing auxiliary data structures in the cache alongside each bundle.
These data structures do not impact static code size as they are only
present in the cache, but they increase cache area and the number of
dynamic bits fetched from the cache, potentially increasing cache
hit energy. The simplest scheme would be to hold a separate tail
pointer for each possible instruction in a bundle, but this incurs a
large overhead ofH log(T ) bits per bundle, whereH is the max-
imum number of heads andT is the number of possible tail po-
sitions. A more compact approach is to store a single bit per tail
position (T bits total per bundle), each bit indicating the possible
start of a tail. A branch into a bundle would then read the bit vector
to find the start of theN th tail. This bit vector approach handles
both fixed and indirect jumps, but adds some additional latency to
taken branches to process the bit vector. This scheme also requires
that every instruction has a tail, otherwise a second bit vector would
be required to determine which instructions had tails.

Tail Pointers
A different approach to finding branch target tails is to change
branch and jump instruction encodings to include an additional tail
pointer field pointing to the tail portion of the branch target. This
is filled in by the linker at link time. The tail pointer removes all
latency penalties for fixed-target branch instructions, but increases
code size slightly. This approach, however, cannot be used for in-
direct jumps where the target address is not known until run time.

There are two schemes that can be used to handle indirect jumps
with tail pointers. The first scheme is to expand all PC values
to contain a tail pointer in addition to the bundle and instruction
offset numbers. Jump-to-subroutine instructions would then write
these expanded PCs into the link register as return PC values, and
jump indirect instructions would expect tail pointers in the PC val-
ues held in registers as jump targets. A minor disadvantage of this
scheme is that it reduces the virtual address space available for user
code by the number of bits taken for the target tail pointer (log(T )
bits). Another disadvantage is that it becomes possible to branch
to the middle of a tail if the user manipulates the target tail pointer
directly.

The second scheme treats each type of indirect jump separately.
There are three main uses of indirect jumps: indirect function calls
(e.g., virtual functions in C++), switch statement tables, and sub-
routine returns. We can eliminate penalties on function calls and
switch tables by noting that a branch to the start of a bundle can al-
ways find the tail bits of the first instruction at the end of the bundle.
Therefore by simply placing function entry points and case state-
ment entry points at the start of a bundle (which might be desirable
for cache performance in any case), we eliminate branch penalties
for these indirect jumps. Subroutine returns cannot be handled as
easily because the subroutine call could be anywhere within a bun-
dle. One simple approach is to only allow instructions without tails
between the subroutine call and the end of the current bundle, as
a tail-less instruction does not need the tail pointer to be restored
correctly after the subroutine returns. This is likely to reduce per-
formance and waste code space, as NOPS will have to be inserted if
an instruction with tail is required. Another approach is to store the
return PC tail pointer on the subroutine return address stack, if the

microrachitecture has one to predict subroutine returns. If the re-
turn address stack prediction fails, execution falls back to the naive
algorithm that scans heads from the beginning of the target bundle.

BTB for HAT Branches
The third general approach to handling branches in a HAT scheme
stores target tail pointer information in the branch target buffer
(BTB). This can handle both fixed and indirect jumps. Again, if the
prediction fails, the target bundle can be scanned from the begin-
ning to locate a tail in the middle of the bundle. This approach does
not increase static code size, but increases BTB size and branch
mispredict penalty.

3.2 HAT Advantages
To summarize, the HAT scheme has a number of advantages over

conventional variable-length schemes.

� Fetch and decode of multiple variable-length instructions can
be pipelined or parallelized.

� Unlike conventional variable-length formats, it is impossible
to jump into the middle of an instruction (except if PCs are
expanded to include a tail pointer field as described above).

� The PC granularity is always in units of a single instruction,
and is independent of the granularity at which the instruc-
tion length can be varied. This allows branch offsets to be
encoded with fewer bits than a conventional variable-length
ISA, where PC granularity and instruction length granular-
ity are identical (e.g., in bytes). This helps counteract the
code size increase if tail pointers are added to branch target
specifiers.

� The variable alignment muxes needed are smaller than in a
conventional variable-length scheme, because they only have
to align bits from the tail and not from the entire instruction
length. The fixed-length heads are handled using a much
simpler and faster mux.

� The HAT format guarantees that no variable-length instruc-
tion straddles a cache line or page boundary, simplifying in-
struction fetch and handling of page faults.

4. MIPS-HAT
In this section, we demonstrate the HAT format using a com-

pressed variable-length re-encoding of the MIPS RISC ISA [12] as
an example.

4.1 MIPS-HAT Compression Techniques
The MIPS compression scheme we use is based partly on a pre-

vious scheme by Panich [17]. To keep instruction decoding simple,
we choose to never split MIPS register specifier fields, and so use a
5-bit granularity for our tail encoding. Our minimum size instruc-
tion is 15 bits and the maximum size is 40 bits. As discussed later
in the hardware section, tail lookup can be simplified if every in-
struction has a tail and so we chose heads that are 10 bits long but
always with a tail, giving a minimum instruction size of 15 bits.
The following techniques were used to compress the MIPS instruc-
tions.

1. Use the minimum number of 5-bit fields to encode immedi-
ates.

2. Eliminate unused register and operand fields.



3. Certain instructions often use a specific value for a register or
immediate, for example, the BEQ instruction often (�90%)
has zero as one operand. We provide new opcodes for these
cases.

4. We provide two-address versions of instructions that fre-
quently have a source register the same as the destination
register.

5. We re-encode some common instruction sequences as a sin-
gle instruction. We re-encode only the simplest but most
common two types of instruction sequence: branch instruc-
tions with a NOP in the delay slot and multiple sequential
loads. New opcodes for branches and jumps indicate that
they are followed by a NOP. The multiple load instructions
are used by subroutines to restore saved registers from con-
secutive offsets from the stack pointer and can be combined
into a single instruction by specifying the initial register, ini-
tial offset, and the number of load instructions in the se-
quence. We considered a multiple store instruction but this
did not provide sufficient savings to be justified (we believe
this asymmetry was because the compiler often interleaves
code from the start of a function with the register save code
in the prologue whereas the register restore in the function
epilogue is not polluted in the same way).

Each instruction can be one of six sizes, ranging from 15–40 bits.
One way to specify the size would be to attach three overhead bits
per instruction. However, each instruction type, e.g., ADDI (add-
immediate), typically only uses a few sizes, so we fold instruction
sizes into new opcodes, e.g. ADDI10b for a 10-bit add-immediate.

This substantially increases the number of possible opcodes, but
only a small subset of these new opcodes is frequently used. We se-
lect the most popular opcodes, together with several different “es-
cape” opcodes, and encode these in a 5-bit primary opcode field in
the head. The escape opcodes indicate that a secondary opcode is
placed in the tail, but also includes critical information required for
decode, such as the size of the instruction and its general category
(e.g., arithmetic versus branch). Table 1 and Table 2 show the most
popular primary opcodes and escape opcodes together with the fre-
quency that they occur across the Mediabench benchmarks. The

R-Type       opcode      reg1               op2

 I-Type        opcode      reg1 op2/imm    (imm)     (imm)     (imm)     (imm)

 opcode      reg1               reg2       (op2)

  opcode     reg1               reg2        reg3       (op2)

  opcode      reg1              reg2 op2/imm   (imm)     (imm)      (imm)     (imm)

  J-Type       opcode op2/imm            imm       (imm)    (imm)     (imm)     (imm)      (imm)

     Heads                                                         Tails

Figure 3: Compressed MIPS instruction formats.

Table 1: The 32 MIPS-HAT primary opcodes.
Instruction Size Freq Instruction Size Freq

Specific Primary Opcodes
addu(rt=0) 15 8.7% lw(imm=0) 15 2.2%

sw 25 5.2% sw 20 1.9%
lw 25 4.7% addu 20 1.8%

addiu 25 4.5% lw 20 1.7%
noop 15 4.3% addiu(-1) 15 1.6%
lui 30 3.6% jr 15 1.5%

addiu(+1) 15 3.2% bne(rt=0) 15 1.4%
jal 25 3.2% beq(rt=0) 15 1.3%

addu(rs=rd) 15 2.6% addiu(rs=rd) 15 1.2%
sw(rw=r2) 20 2.6% addiu(rs=rd) 20 1.2%

addiu 20 2.4% addiu 30 1.1%
j 25 2.2%

Escape Opcodes
I-Load/Store 30 10.0% I-Arithmetic 40 1.5%

R 25 7.2% I-Load/store 40 0.4%
I-Branch 30 6.7% I-Branch 40 0.0%

I-Arithmetic 30 5.4% J 40 0.0%
Break 35 3.3%

Table 2: MIPS-HAT primary opcodes by category.
Instruction Size Freq Instruction Size Freq

R
addu(rt=0) 15 8.7% addu(rs=rd) 15 2.6%

ESC 25 7.2% addu 20 1.8%
noop 15 4.3% jr 15 1.5%

I-Arithmetic
ESC 30 5.4% addiu(-1) 15 1.6%
addiu 25 4.5% ESC 40 1.5%

lui 30 3.6% addiu(rs=rd) 15 1.2%
addiu(+1) 15 3.2% addiu(rs=rd) 20 1.2%

addiu 20 2.4% addiu 30 1.1%

I-Branch
ESC 30 6.7% beq(rt=0) 15 1.3%

bne(rt=0) 15 1.4% ESC 40 0.0%

I-Load/Store
ESC 30 10.0% lw(imm=0) 15 2.2%
sw 25 5.2% sw 20 1.9%
lw 25 4.7% lw 20 1.7%

sw(rw=r2) 20 2.6% ESC 40 0.4%

J
jal 25 3.2% ESC 40 0.0%
j 25 2.2%

Break
ESC 35 3.3%

“Break” escape opcode is used for all instructions that will cause
opcode traps, including SYSCALL and BREAK.

Figure 3 shows the formats of the three types of MIPS-HAT in-
structions — register (R), immediate (I), and jump (J). All fields
are five bits wide. The fields in parenthesis are optional, depending
on the instruction length.

4.2 Bundle Format
We evaluated use of both 128-bit and 256-bit bundles for MIPS-

HAT. The 128b bundle is split into a three-bit instruction count field



Table 3: Static Compression Ratios
Input 128b 256b 128b 256b

BrTail BrTail
adpcm-dec 78.5% 75.5% 82.6% 82.1%
adpcm-enc 78.6% 75.6% 82.6% 82.0%
epic-dec 77.1% 74.0% 80.4% 79.5%
epic-enc 78.7% 75.5% 81.6% 80.8%
g721-dec 78.0% 75.0% 82.3% 81.6%
g721-enc 78.0% 75.0% 82.3% 81.6%
gsm-dec 79.8% 76.8% 85.2% 84.4%
gsm-enc 79.8% 76.8% 85.2% 84.4%
jpeg-dec 74.3% 71.5% 78.4% 77.5%
jpeg-enc 74.2% 71.5% 78.7% 77.9%

mpeg2-dec 80.6% 77.9% 85.5% 85.2%
mpeg2-enc 81.6% 79.1% 86.4% 86.4%
pegwit-dec 80.0% 76.6% 84.4% 84.4%
pegwit-enc 80.0% 76.6% 84.4% 84.4%

Average 78.5% 75.5% 82.8% 82.3%

and 25�5b units, holding up to 8�10b heads and up to 16�5b tail
units. The 256b bundle has a four-bit instruction count field, two
empty bits, and 50�5b units which can hold up to 16�10b heads
and up to 32�5b tail units.

Note that we restrict the size of the head and tail regions to re-
duce the number of bits needed for the instruction count field and
for the tail-start bit vector if present. Neither the head nor tail re-
gion completely spans the bundle, although the boundary between
the regions is flexible. In practice, it is rare for bundle packing to
be affected by this restriction.

4.3 HAT Cache Implementation
MIPS-HAT is designed to be directly executed from cache, and

instructions remain in the same format after being fetched from
memory to cache, avoiding additional cache miss latencies. The
new format is only slightly more complex than regular MIPS to
decode, and the decompression is just folded into the decoder.

A conventional variable-length ISA would fetch words of data
sequentially from the cache into fetch buffers that can rotate the
data to the correct alignment for the instruction decoder. MIPS-
HAT would use the same scheme for the tails, but in addition would
be fetching a second stream for the fixed-length heads which would
not require an alignment circuit. The cache RAM does not require
a second read port to provide the head data stream, as the heads are
always from the same bundle as the tails and hence would be on the
same cache line. The cache RAM sense-amps just need a separate
set of bus drivers onto the head data bus.

Because head information is needed to extract the tails, the tail
instruction bits always lag the heads. To reduce the impact of this
additional latency on the execution pipeline, MIPS-HAT places
the instruction category in the head so that the instruction can be
steered to an appropriate functional unit before the tail arrives, al-
lowing the tail to be sent directly to the appropriate unit for further
decoding.

5. EXPERIMENTAL RESULTS
To test the effectiveness of the MIPS-HAT scheme, we selected

benchmarks from the Mediabench [14] benchmark suite, reencoded
the MIPS binaries generated by agcc cross-compiler (egcs-
1.0.3a -O2 ), and took static and dynamic measurements. For
the dynamic measurements, the Mediabench programs were run to

Table 5: Dynamic Compression Ratios - 128b
Input Line Ratio BrBV BrTail

adpcm-dec 72.0% 79.8% 75.0%
adpcm-enc 74.5% 84.0% 76.9%
epic-dec 75.2% 83.4% 77.7%
epic-enc 85.5% 89.3% 87.8%
g721-dec 75.3% 82.2% 78.4%
g721-enc 75.3% 82.2% 78.5%
gsm-dec 75.5% 79.6% 76.0%
gsm-enc 72.0% 74.1% 74.5%
jpeg-dec 68.2% 71.0% 69.1%
jpeg-enc 72.9% 79.9% 73.9%

mpeg2-dec 80.1% 85.3% 82.0%
mpeg2-enc 74.0% 79.1% 75.7%
pegwit-dec 79.1% 83.2% 80.8%
pegwit-enc 78.0% 82.3% 79.8%

average 75.5% 81.1% 77.6%

completion on the provided input sets.

5.1 Static Compression Ratios
Table 3 gives the static compression ratios (compressed-

size/original-size) for 128b and 256b versions of MIPS-HAT. The
bundle ratios for the two sizes includes the overhead bits to count
the instructions in each bundle and any wasted space due to frag-
mentation.

The average bundle compression ratio is 78.5% for the 128b bun-
dle and 75.5% for the 256b bundle. The smaller bundle incurs rel-
atively more overhead and has more internal fragmentation. If we
adopt the scheme that adds target tail links to speed taken branches,
the static code size increases, to a compression ratio of 82.8% for
128b bundles and 82.3% for the 256b bundles.

Table 4 shows the distribution of static instruction sizes averaged
over the benchmark set, with and without the tail pointer scheme.
Without target tails, over 80% of instructions are 25 bits or less.

5.2 Dynamic Measures
We measured the reduction in dynamic bits fetched

from the instruction cache using the MIPS-HAT scheme.
We report this number as a dynamic fetch ratio
(new-bits-fetched/original-bits-fetched). We evaluated several
different schemes to avoid taken branch penalties

Tables 5 and 6 show the dynamic fetch ratios for 128b and 256b
bundles, respectively, for a variety of implementations. The base-
line column shows the ratios including the cost of fetching the in-
struction count on every access to a new bundle. The 256b scheme
has a slightly lower fetch ratio (75.0% versus 75.5%) as relatively
fewer overhead bits are fetched.

The BrBV column shows the large increase in dynamic fetch ra-
tio when a tail-start bit vector (Section 3.1) is used to reduce branch
taken penalties. The increase is less for the 128b bundles which
have a 16b vector per line, such that these now have lower fetch
ratios than 256b bundles, which must fetch a 32b vector on every
taken branch.

The BrTail columns shows the fetch ratio for the tail pointer
scheme, where branch instruction encodings include a tail pointer.
These fetch ratios are much lower than for the BrBV approach, but
this technique has a higher static code size.

A BTB aproach to locating target tails would add nothing to the
static code size, and would have a dynamic fetch ratio similar to
the BrTail scheme, except now some of these bits would be fetched



Table 4: Instruction Size Distribution
15b 20b 25b 30b 35b 40b

Average (w/o BrTail) 22.1% 13.0% 47.5% 3.8% 3.3% 10.4%
Cumulative 22.1% 35.1% 82.6% 86.4% 89.6% 100.0%

Average (w/ BrTail) 19.8% 16.1% 35.1% 17.3% 3.3% 8.4%
Cumulative 19.8% 35.9% 70.9% 88.2% 91.6% 100.0%

Table 6: Dynamic Compression Ratios - 256b
Input Line Ratio BrBV BrTail

adpcm-dec 71.2% 86.9% 74.5%
adpcm-enc 73.5% 92.5% 76.4%
epic-dec 74.5% 91.0% 77.3%
epic-enc 85.1% 92.8% 87.1%
g721-dec 75.0% 88.9% 78.5%
g721-enc 73.8% 87.7% 78.4%
gsm-dec 74.8% 83.1% 77.5%
gsm-enc 71.3% 75.5% 72.2%
jpeg-dec 67.5% 80.7% 68.8%
jpeg-enc 72.4% 86.3% 75.3%

mpeg2-dec 79.7% 90.1% 79.7%
mpeg2-enc 76.1% 83.8% 75.1%
pegwit-dec 78.2% 86.5% 79.9%
pegwit-enc 77.1% 85.8% 78.8%

average 75.0% 86.5% 77.1%

from the BTB structure. The BTB scheme will also incur additional
latency penalties on BTB mispredicts.

5.3 Results Discussion
The numbers show that there are tradeoffs between static code

size, dynamic fetch ratio, and taken branch performance, depend-
ing on the bundle size and the branch penalty avoidance scheme.
The larger bundle generally gives the best reduction in code size
and bits fetched. Our dynamic results did not measure the expected
increase in performance due to the effective increase in cache ca-
pacity, which should lower miss rates.

Other work has presented compression numbers for MIPS code.
CCRP [20] achieves a compression ratio of 73% but has to un-
compress instructions into cache to allow parallel fetch and decode.
MIPS16 [13] obtains a compression ratio of around 60%, but at the
cost of limiting operations and operand addressing modes which
reduces performance. SAMC and SADC [15] use more complex
algorithms to achieve a compression ratio nearly 50% on MIPS
code but either with a long decoding delay or an added dictionary
lookup step.

6. CONCLUSIONS
We have introduced a new head-and-tails (HAT) variable-length

instruction format that separates instructions into fixed-length
heads that can be easily indexed and variable-length tails that pro-
vide code compression. The format can provide high code den-
sity in memory and in cache, while allowing parallel fetch and de-
code for direct superscalar execution from cache. The HAT scheme
makes it difficult to quickly locate an entire instruction at a branch
target. A number of techniques are possible to reduce taken branch
penalties, and these were shown to have differing effects on static
code size, dynamic bits fetched, and branch penalties.

We developed a simple MIPS instruction compression scheme
by re-encoding the MIPS ISA into a variable-length format, and

mapping the resulting variable-length instructions into the HAT
format. Our experiments showed that the MIPS-HAT format can
provide a compression ratio of 75.5% and a dynamic fetch ratio re-
duction of 75.0% while supporting deeply pipelined or superscalar
execution.

The HAT format can be applied to many other types of instruc-
tion encoding. For example, each instruction slot in a VLIW in-
struction could be encoded in a similar way as MIPS-HAT to give
similar savings (over and above simple NOP compression). In fu-
ture work, we are also investigating more aggressive instruction
compression techniques tuned for the HAT format, as well as de-
veloping new instruction sets that take advantage of the HAT format
to increase performance without sacrificing code density.
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