
Massachusetts
Institute of
Technology

Summarizing Multiprocessor
Program Execution with Versatile,

Microarchitecture-Independent Snapshots

Kenneth C. Barr

Thesis Defense
August 25, 2006

2

My thesis, a bird’s eye view

• Computer architects rely heavily on software
simulators to evaluate, refine,
and validate new designs.

• Simulators are too slow!

© 2006, Kenneth C. Barr

3

My thesis, a bird’s eye view

• Computer architects rely on heavily on
software simulators to evaluate, refine,
and validate new designs.

• My thesis research provides…
– Software structures and algorithms to speed up

performance simulation
– Approach

• Amortize time-consuming process of warming detailed
models in a multiprocessor simulator

• Cache coherent memory system: store one set of data to
reconstruct many target possibilities

• Branch predictors: lossless, highly compressed traces

© 2006, Kenneth C. Barr

4

Detailed performance simulation

Benchmark
Program

Detailed
Simulator

Baseline Configuration

Target Configuration
(cache size, pipeline stages,
number of cores, etc.)

Configuration1

Baseline Results

Performance Results
(cycles-per-inst,
cache miss rate, power, etc.)

Results1

ConfigurationN ResultsN

Host computer

© 2006, Kenneth C. Barr

5

Why is detailed software simulation slow?

• How slow?
– 5.9 trillion instructions in

SPECINT 2000
– Actual 3.06 GHz

Pentium 4
≈31 minutes

– “Fast,” uniprocessor,
user code only, detailed
simulator
≈1 Minsts/sec:
≈68 days

– Our 4-CPU simulation with
OS and memory system
≈280 Kinsts/sec:
≈244 days

Benchmark

Detailed
Simulator

Results1Configuration1

ConfigurationN ResultsN

• Out-of-order, superscalar pipeline

• Cache coherent memory system

• Resource contention (buses, ports)

• Statistics gathering, power modeling

• Multiple runs to observe variation

© 2006, Kenneth C. Barr

6

Intelligent sampling gives best speed-accuracy
tradeoff for uniprocessors (Yi, HPCA `05)

• Single sample

• Fast-forward +
single sample

• Fast-forward +
Warm-up + sample

detailed ignored

ISA only detailed ignored

d e t a i l e dISA only ignored
measure

• Selective Sampling
(SimPoint)

• Statistical Sampling

• Statistical sampling w/
Fast Functional Warming
(SMARTS, FFW)

Online sampling:
too much time required for
fast-forwarding and warming

ISA+µarch

© 2006, Kenneth C. Barr

7

Snapshots amortize fast-forwarding, but require
slow warming or bind to a particular µarch

ISA+µarch
→ “concrete”
snapshots

Fast (less warm-up),
but tied to µarch

Slow due to warm-
up, but allows any
µarch

µarch-
independent
snapshots
(MINSnaps)

Fast, NOT tied to
µarch

…or huge

ISA
snapshots
(registers & memory)

© 2006, Kenneth C. Barr

8

Agenda

• Introduction and Background
• Memory Timestamp Record (MTR)

– Multiprocessor cache/directory MINSnap
– Evaluation: versatility, size, speed

• Branch Predictor-based Compression (BPC)
– Lossless, specialized branch trace compression as

MINSnap
– Evaluation: versatility, size, speed

• Conclusion

© 2006, Kenneth C. Barr

9

The MTR initializes coherent caches
and directory

• Modern memory system
– Multi-megabyte caches
– Cache coherence

• Warming with trace is
prohibitive
– Lots of storage
– More time: must simulate

each memory access
• MTR reconstructs state of

many targets from concise
summary of trace

CPU1 CPU2 CPUn

$ $ $

Memory Directory

Network

© 2006, Kenneth C. Barr

10

Memory Timestamp Record: related work

• Single-pass cache simulators
– Stack based algorithms: [Mattson et al. 1970]
– SMP extensions: [Thompson 1987]
– Arbitrary set mappings, all-associativity: [Hill and Smith 1989]
– Faster algorithms, OPT, direct-mapped with varying line sizes

[Sugumar and Abraham 1993]

• MTR improvements
– Like Thompson, supports SMP, but we add support for directory

and silent drops.
– Smaller size
– No upper bounds
– Parallelizable
– Separates snapshot generation from reconstruction

© 2006, Kenneth C. Barr

11

What is the Memory Timestamp Record (MTR)?

• MTR is abstract picture of
an multiprocessor’s
coherence state

…
…
…0

… CPUn-1

Last Writetime

…
…

CPU0

N-1

Block
Address Last WriterLast Readtime

© 2006, Kenneth C. Barr

12

What is the Memory Timestamp Record (MTR)?

• MTR is abstract picture of
an multiprocessor’s
coherence state
– Fast snapshot generation
– Concrete caches and directory

filled in prior to sampling

…

…

…0

… CPUn-1

Last
Writetime

…

…

CPU0

N-1

Block
Address Last

Writer
Last Readtime

CPU1 CPU2 CPUn

$ $ $

Memory Directory

CPU1 CPU2 CPUn

$ $ $

Memory Directory

© 2006, Kenneth C. Barr

13

MTR:

Memory Trace:

Read c3

Read e1

4

2

0
Time

Write b

Read b

Read a
CPU1CPU0

d
3c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

MTR example: generation

• MTR contains one entry
per memory block;
locality keeps it sparse.

© 2006, Kenneth C. Barr

14

MTR:

Memory Trace:

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

MTR example: generation

• New access times
overwrite old
(self-compressing)

Write b4
Read c5

Read c3

Read e1
2

0
Time

Read b

Read a
CPU1CPU0

© 2006, Kenneth C. Barr

15

MTR example: reconstruction

• 1. Choose target
• 2. Coalesce

(determine contents)

• 3. Fixup
(determine state)

© 2006, Kenneth C. Barr

16

MTR example: reconstruction

• Choose target
– Two sets, two ways

Set 1

Set 0

Way 1Way 0

© 2006, Kenneth C. Barr

17

MTR example: reconstruction

• CPU0’s cache

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

Set 1

Set 0

Way 1Way 0

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present. Check validity later.

© 2006, Kenneth C. Barr

18

MTR example: reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

a
Set 1

0Set 0

Way 1Way 0

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present. Check validity later.

© 2006, Kenneth C. Barr

19

MTR example: reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

b
a

2Set 1

0Set 0

Way 1Way 0

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present. Check validity later.

© 2006, Kenneth C. Barr

20

MTR example: reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

c
b
a

2Set 1

50Set 0

Way 1Way 0

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present. Check validity later.

© 2006, Kenneth C. Barr

21

MTR example: reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

c
b
e

2Set 1

51Set 0

Way 1Way 0

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present. Check validity later.

© 2006, Kenneth C. Barr

22

MTR example: reconstruction

CPU1?

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

c
b
e

2Set 1

51Set 0

Way 1Way 0

4bwrite
Set 1

Set 0

Way 1Way 0

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present. Check validity later.

© 2006, Kenneth C. Barr

23

Fixup: determine correct status bits

Set 1

Set 0

Set 3

Set 2

Way 1Way 0

Cache 0

Set 1

Set 0

Set 3

Set 2

Way 1Way 0

Cache 1
Set 1

Set 0

Set 3

Set 2

Way 1Way 0

Cache n-1

© 2006, Kenneth C. Barr

24

MTR example: fixup

• Reads prior to a write are invalid, valid writes are dirty, etc…

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

invalid valid, dirty

Which cache has the most recent copy of ‘b?’

c
b
e

2Set 1

51Set 0

Way 1Way 0

4bwrite
Set 1

Set 0

Way 1Way 0

© 2006, Kenneth C. Barr

25

MTR example: directory reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

Id
CPU0Sc

S

M
S
State

CPU1b

CPU0e

a

Block
Address

CPU0
Sharers

(Silent drop)

Directory:

MTR:

© 2006, Kenneth C. Barr

26

Evicts cannot be recorded in the MTR, but
many can be inferred: isEvictedBetween()

MTR:

CPU0

Writer

n+k

CPU0

b

address

n

WritetimeCPU1

n n+k

CPU0
writes b

CPU0
reads b

CPU0
writes b

CPU0
reads b

CPU0
writes b’
evicting b

Time

CASE A:

CASE B:

b = dirty

b = clean

© 2006, Kenneth C. Barr

27

The MTR supports many popular organizations
and protocols

• Snoopy or directory-based
• Multilevel caches

– Inclusive
– Exclusive

• Time-based replacement policy
– Strict LRU
– Cache decay

• Invalidate, Update
• MSI, MESI, MOESI

© 2006, Kenneth C. Barr

28

Evaluation / Results: Detailed, full-system,
execution-driven, x86, SMP simulation

cclite

Detailed
memory
system

D
et

ai
le

d
M

od
e

E
na

bl
e

Main
Memory

Bochs

Multiprocessor,
full-system, x86
emulator
(4-way Linux 2.4.24)

$ $ $

Network

Memory Directory

stall[0]

stall[n-1]

Memory
Timestamp
Record

© 2006, Kenneth C. Barr

29

Parallel Benchmarks

• NASA Advanced Supercomputing Parallel
Benchmarks:
– FFT, sort, diff. eqns., matrix manipulation
– OpenMP (loop iterations in parallel)
– Fortran

• 2 OS benchmarks
– dbench: (Samba) several clients making

file-centric system calls
– Apache: several clients hammer web server

(via loopback interface)

• Cilk checkers: AI search plies in parallel
– uses spawn/sync primitives (dynamic thread

creation/scheduling)

© 2006, Kenneth C. Barr

30

We compare three simulation methods

• Full detailed simulation

• Functional fast forwarding (FFW)

• Memory Timestamp Record (MTR) with online sampling

• Hypothesis
– Both FFW and MTR should be accurate and fast
– MTR should be faster than FFW
– To be useful, FFW and MTR must answer questions in the same way as

a detailed model, but faster

Create Reconstruct

© 2006, Kenneth C. Barr

31

MTR results: difficult to quantify accuracy

• Methodology
– Eight runs per benchmark
– Vary CPU timing to induce

different thread interleavings
• Bar shows the median of eight

runs, with ticks for min and max.
Each run is a valid result!

• Open problem: can’t have true
confidence intervals without
independent random samples of
entire population of possible
interleavings

dbench

C
ac

he
 1

 m
is

s
ra

te
 (%

)
1:10

1:100
1:1000

© 2006, Kenneth C. Barr

32

Replicating “detailed”-mode stats less crucial
than accurate answers to design questions

• Change from MSI to MESI
– Blocks are loaded “Exclusive” if no other sharers
– Less traffic for read-modify-write

© 2006, Kenneth C. Barr

33

Replicating “detailed”-mode stats less crucial
than accurate answers to design questions

• With respect to reply
message types, the
MSI vs. MESI change
is dramatic.
– All fast-fwd bars

move with the
detailed bar.

– Movement beyond
range of detailed
runs

• Discover evicts
(isEvictedBetween())
to more closely match
detailed run
– Less drastic timing

variations helps, too

writeback rep

(no ambig. resolution)

(no ambig. resolution)

© 2006, Kenneth C. Barr

34

MTR

MTR
compacted

Size of MTR: 2-8 times smaller than
compressed memory trace

– MTR amenable to
compression

– Memory trace
requires longer
reconstruction

– Versatile MTR is
same size as 5-15
concrete 8x16KB
cache snapshots

bzip2 compression – 128 Kinsts/sample

6.3 8.3 6.5

(Note: plot shows reduction. Higher is better.)

© 2006, Kenneth C. Barr

35

Online sampling: MTR faster than FFW

0

0.2

0.4

0.6

0.8

1

1:10
1:10

0
1:10

00

R
un

tim
e

(n
or

m
al

iz
ed

 to
 F

FW
 1

:1
0)

0

0.2

0.4

0.6

0.8

1

1:1
0

1:1
00

1:1
00

0

• Online sampling:
– MTR spends less

time in fast-forward
(up to 1.45x faster)

– Less work in
common case

– Result can be used
to initialize multiple
targets

FFW (mg) MTR (mg)

Detailed Simulation
Detailed Warming
Fast to detailed
Fast Forward

© 2006, Kenneth C. Barr

36

Snapshot-driven simulation: Reconstruction
speed scales with touched lines

0

0.2

0.4

0.6

0.8

1

1:10
1:10

0
1:10

00

R
un

tim
e

(n
or

m
al

iz
ed

 to
 F

FW
 1

:1
0)

0

0.2

0.4

0.6

0.8

1

1:1
0

1:1
00

1:1
00

0

• Reconstruction
speed:
– MTR has costlier

transition than
FFW, but

– Reconstruction
scales with
touched lines, not
total accesses

FFW (mg)

Detailed Simulation
Detailed Warming
Fast to detailed
Fast Forward

MTR (mg)

© 2006, Kenneth C. Barr

37

Agenda

• Introduction and Background
• Memory Timestamp Record (MTR)

– Multiprocessor cache/directory MINSnap
– Evaluation: versatility, size, speed

• Branch Predictor-based Compression (BPC)
– Lossless, specialized branch trace compression

as MINSnap
– Evaluation: versatility, size, speed

• Conclusion

© 2006, Kenneth C. Barr

38

Why can’t we create µarch-independent
snapshot of a branch predictor?

• In cache, an address maps to a particular cache set.
• In branch predictor, an address maps to many locations. We

combine address with history to reduce aliasing and capture
context.

– Same branch
address…………..

– In a different
context……………

• In a cache, we can throw
away LRU accesses

• In a branch predictor, who
knows if ancient branch affects
future predictions?!

T T T T T T T N

2 4 0 0 2 4 0 0

T

NT

© 2006, Kenneth C. Barr

39

If a µarch independent snapshot is tricky, can
we store several branch predictor tables?

• Suggested by
– TurboSMARTS / Livepoints

SIGMETRICS ’05 / ISPASS ’06
– SimPoint Group: HiPEAC ‘05

• Not always an option
– If you generate snapshots via

hardware dumps, you can’t
explore other microarchitectures

• Requires predicting the future
– If it takes two weeks to run a

non-detailed simulation of a real
workload you don’t want to
guess wrong

gshare

bimodalperceptron

© 2006, Kenneth C. Barr

40

If a µarch independent snapshot is tricky, can
we store several branch predictor tables?

• Suggested by
– TurboSMARTS / Livepoints

SIGMETRICS ’05 / ISPASS ’06
– SimPoint Group: HiPEAC ‘05

• Not always an option
– If you generate snapshots via

hardware dumps, you can’t
explore other microarchitectures

• Requires predicting the future
– If it takes two weeks to run a

non-detailed simulation of a real
workload you don’t want to
guess wrong

“Several branch predictor tables” aren’t as small as you
think! They multiply like rabbits...

© 2006, Kenneth C. Barr

41

One predictor is small, but we need many.
Example: 8KB quickly becomes 1000’s of MB.

• P: gshare with 15 bits of global
history

• n: 1 Billion instructions in trace
sampled every million insts
requires 1000 samples

• m: 10 other tiny branch predictors
• 48 benchmarks in SPEC2000
• 16 cores in design?
• Now, add BTB/indirect predictor,

loop predictor…
• Scale up for industry: 100

benchmarks, 10s of cores

8 KBytes

x 1000 = 8 MBytes
x 10 ≈ 78 MBytes
x 48 ≈ 3.7 GBytes
x 16 ≈ 59 GBytes

© 2006, Kenneth C. Barr

42

Don’t store collection of concrete snapshots!
Store entire branch trace… with BPC

• BPC = Branch Predictor-based Compression
• Entire branch trace

– inherently microarchitecture-independent

• Traces!?
– Fewer branches than memory operations
– Easier to predict branches than memory accesses

• Easy to compress well (< 0.5 bits/branch)
• Fast to decompress (simple algorithm)

BPC

BPC

© 2006, Kenneth C. Barr

43

BPC compresses branch traces well and
quickly warms up any concrete predictor.

1. Simulator decodes
branches

2. BPC Compresses
trace
– Chaining if necessary

3. General-purpose
compressor shrinks
output further
– PPMd

4. Reverse process to fill
concrete predictors,
one branch at a time

Functional
Simulator

Benchmark

BPC
Decompressor

General-purpose
Decompressor

Concrete
Branch
Predictors

General-purpose
Compressor

Compressed
Trace

BPC
Compressor

© 2006, Kenneth C. Barr

44

BPC uses branch predictors to model a branch
trace. Emits only unpredictable branches.

• Contains the branch predictors from your
wildest dreams! Hurrah for software!
– Large global/local

tournament predictor
• 1.44Mbit
• Alpha 21264 style

– 512-deep RAS
– Large hash tables for static info

• Three 256K-entry
– Cascaded indirect predictor

• 32KB leaky filter
• path-based (4 targets)
• PAg structure

BPCBPC

© 2006, Kenneth C. Barr

45

BPC Compression

BPC
comp

0x00: bne 0x20 (NT)
0x04: j 0x1c (T)
0x1c: ret (T to 0xc4)

Output:
– If BPC says “I could have told you that!”

(Common case): no output
< >

– If BPC says “I didn’t expect that branch record!”
< skip N, branch record >

Input: branch trace from functional simulator

Update internal predictors with every branch.

© 2006, Kenneth C. Barr

46

BPC Decompression

BPC
decompOutput:

if (skip==0)
emit branch record
// update predictors

while(skip > 0)
BPC says “let me guess!”
emit prediction – guaranteed correct
// update predictors
// decrement skip

< 0, 0x00: bne 0x20 (NT) >
< 0, 0x04: j 0x1c (T) >
< 13, 0x3c: call 0x74 >

Input: list of pairs < skip N, branch record >

© 2006, Kenneth C. Barr

47

We produce long chains of good predictions
represented by single <skip, branch record>.

© 2006, Kenneth C. Barr

48

With BPC, choice of predictor is implicitly
provided, not included in output stream.

Branch record

Output: <>

Predictor
#1

Predictor
#2

Predictor
#3

=

Match

BPC:

Predictor
#1

Predictor
#2

Predictor
#3

Value

= = =

Match Mispred Mispred

Output: <P1>

Value Predictor-based Compression
(Burtscher et al., 2003-2005)
Championship Branch Prediction
(Stark et al. w/ Micro, 2005)

© 2006, Kenneth C. Barr

49

Results: Size. BPC-compressed traces are
smaller than a concrete snapshot in all cases

BPC smaller than other
compression techniques in
almost all cases

© 2006, Kenneth C. Barr

50

Results: Scaling. BPC-compressed traces
grow slower than concrete snapshots

• Growth
– BPC has shallow slope,

adapts to phase changes
– concrete scales with mnP
– Concrete = one Pentium 4

style predictor
• BPC is 2.7x smaller (avg)
• But if m=10 predictors →

BPC is 27x smaller!

• Both grow with number of
benchmarks and cores Instructions

(Millions)

© 2006, Kenneth C. Barr

51

Results: Speed. BPC compresses well and
decompresses fast

• Best region: upper left
fast and small

• BPC is faster than other
decompressors

• …and sim-bpred
• BPC+PPMd faster than

PPMd alone

Server Integer

Bits per branch Bits per branch

Multimedia Floating Point
B

ra
nc

he
s

pe
r s

ec
on

d
B

ra
nc

he
s

pe
r s

ec
on

d

Good

Bad

© 2006, Kenneth C. Barr

52

Conclusion

• Goal: fast, accurate simulation for multiprocessors
• Approach: Summarizing Multiprocessor Program

Execution with Versatile, µarch-Independent Snapshots
• Thesis Contributions

– Memory Timestamp Record (MTR):
• Versatile: a microarchitecture-independent representation of

coherent caches and directory
• Fast: easy to create, O(touched lines) reconstruction
• Small: self-compressing, sparse

– Branch Predictor-based Compression (BPC):
• Versatile: compressed trace, lossless
• Fast: decompression faster than general purpose

algorithms and functional simulation
• Small: compressed branch traces are smaller

than concrete branch predictor snapshots

© 2006, Kenneth C. Barr

53

Acknowledgements

• Krste Asanović
– Guidance, contributions, perspective, opportunity

• Michael Zhang: Bochs/cclite infrastructure
• Heidi Pan: Corner cases
• Joel Emer: Internship opportunity, BPC idea

© 2006, Kenneth C. Barr

