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My thesis, a bird’s eye view

• Computer architects rely heavily on software 
simulators to evaluate, refine, 
and validate new designs.

• Simulators are too slow!  

© 2006, Kenneth C. Barr
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My thesis, a bird’s eye view

• Computer architects rely on heavily on 
software simulators to evaluate, refine, 
and validate new designs.

• My thesis research provides…
– Software structures and algorithms to speed up 

performance simulation
– Approach

• Amortize time-consuming process of warming detailed 
models in a multiprocessor simulator

• Cache coherent memory system: store one set of data to 
reconstruct many target possibilities 

• Branch predictors: lossless, highly compressed traces
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Detailed performance simulation

Benchmark
Program

Detailed
Simulator

Baseline Configuration

Target Configuration 
(cache size, pipeline stages, 
number of cores, etc.)

Configuration1

Baseline Results

Performance Results
(cycles-per-inst, 
cache miss rate, power, etc.)

Results1

ConfigurationN ResultsN

Host computer
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Why is detailed software simulation slow?

• How slow?
– 5.9 trillion instructions in 

SPECINT 2000
– Actual 3.06 GHz 

Pentium 4 
≈31 minutes

– “Fast,” uniprocessor, 
user code only, detailed 
simulator 
≈1 Minsts/sec: 
≈68 days

– Our 4-CPU simulation with 
OS and memory system
≈280 Kinsts/sec: 
≈244 days

Benchmark

Detailed
Simulator

Results1Configuration1

ConfigurationN ResultsN

• Out-of-order, superscalar pipeline

• Cache coherent memory system

• Resource contention (buses, ports)

• Statistics gathering, power modeling

• Multiple runs to observe variation
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Intelligent sampling gives best speed-accuracy 
tradeoff for uniprocessors (Yi, HPCA `05)

• Single sample

• Fast-forward + 
single sample

• Fast-forward + 
Warm-up + sample

detailed ignored

ISA only detailed ignored

d e t a i l e dISA only ignored
measure

• Selective Sampling 
(SimPoint)

• Statistical Sampling

• Statistical sampling w/ 
Fast Functional Warming 
(SMARTS, FFW)

Online sampling: 
too much time required for 
fast-forwarding and warming 

ISA+µarch
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Snapshots amortize fast-forwarding, but require 
slow warming or bind to a particular µarch

ISA+µarch
→ “concrete”
snapshots

Fast (less warm-up), 
but tied to µarch

Slow due to warm-
up, but allows any 
µarch

µarch-
independent
snapshots 
(MINSnaps)

Fast, NOT tied to 
µarch

…or huge

ISA 
snapshots
(registers & memory)
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Agenda

• Introduction and Background
• Memory Timestamp Record (MTR)

– Multiprocessor cache/directory MINSnap
– Evaluation: versatility, size, speed

• Branch Predictor-based Compression (BPC)
– Lossless, specialized branch trace compression as 

MINSnap
– Evaluation: versatility, size, speed

• Conclusion

© 2006, Kenneth C. Barr
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The MTR initializes coherent caches 
and directory

• Modern memory system
– Multi-megabyte caches
– Cache coherence

• Warming with trace is 
prohibitive
– Lots of storage
– More time: must simulate 

each memory access
• MTR reconstructs state of 

many targets from concise
summary of trace

CPU1 CPU2 CPUn

$ $ $

Memory Directory

Network

© 2006, Kenneth C. Barr



10

Memory Timestamp Record: related work

• Single-pass cache simulators
– Stack based algorithms: [Mattson et al. 1970]
– SMP extensions: [Thompson 1987]
– Arbitrary set mappings, all-associativity: [Hill and Smith 1989]
– Faster algorithms, OPT, direct-mapped with varying line sizes 

[Sugumar and Abraham 1993]

• MTR improvements
– Like Thompson, supports SMP, but we add support for directory 

and silent drops.
– Smaller size
– No upper bounds
– Parallelizable
– Separates snapshot generation from reconstruction
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What is the Memory Timestamp Record (MTR)?

• MTR is abstract picture of 
an multiprocessor’s 
coherence state

…
…
…0

… CPUn-1

Last Writetime

…
…

CPU0

N-1

Block
Address Last WriterLast Readtime

© 2006, Kenneth C. Barr



12

What is the Memory Timestamp Record (MTR)?

• MTR is abstract picture of 
an multiprocessor’s 
coherence state
– Fast snapshot generation
– Concrete caches and directory 

filled in prior to sampling

…

…

…0

… CPUn-1

Last 
Writetime

…

…

CPU0

N-1

Block
Address Last 

Writer
Last Readtime

CPU1 CPU2 CPUn

$ $ $

Memory Directory

CPU1 CPU2 CPUn

$ $ $

Memory Directory
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MTR:

Memory Trace:

Read c3

Read e1

4

2

0
Time 

Write b

Read b

Read a
CPU1CPU0

d
3c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

MTR example: generation

• MTR contains one entry 
per memory block; 
locality keeps it sparse.
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MTR:

Memory Trace:

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

MTR example: generation

• New access times 
overwrite old
(self-compressing)

Write b4
Read c5

Read c3

Read e1
2

0
Time 

Read b

Read a
CPU1CPU0
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MTR example: reconstruction

• 1. Choose target
• 2. Coalesce

(determine contents)

• 3. Fixup
(determine state)

© 2006, Kenneth C. Barr
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MTR example: reconstruction

• Choose target
– Two sets, two ways

Set 1

Set 0

Way 1Way 0 
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MTR example: reconstruction

• CPU0’s cache

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

Set 1

Set 0

Way 1Way 0 

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present.  Check validity later.
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MTR example: reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

a
Set 1

0Set 0

Way 1Way 0 

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present.  Check validity later.
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MTR example: reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

b
a

2Set 1

0Set 0

Way 1Way 0 

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present.  Check validity later.
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MTR example: reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

c
b
a

2Set 1

50Set 0

Way 1Way 0 

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present.  Check validity later.
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MTR example: reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

c
b
e

2Set 1

51Set 0

Way 1Way 0 

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present.  Check validity later.
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MTR example: reconstruction

CPU1?

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

c
b
e

2Set 1

51Set 0

Way 1Way 0 

4bwrite
Set 1

Set 0

Way 1Way 0 

• CPU0’s cache

• Coalesce
– What are the contents of CPU’s cache?
– Determine which blocks map to same set
– Only ways most recent timestamps are present.  Check validity later.
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Fixup: determine correct status bits

Set 1

Set 0

Set 3

Set 2 

Way 1Way 0

Cache 0

Set 1

Set 0

Set 3

Set 2 

Way 1Way 0

Cache 1
Set 1

Set 0

Set 3

Set 2 

Way 1Way 0

Cache n-1
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MTR example: fixup

• Reads prior to a write are invalid, valid writes are dirty, etc…

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

invalid valid, dirty

Which cache has the most recent copy of ‘b?’

c
b
e

2Set 1

51Set 0

Way 1Way 0 

4bwrite
Set 1

Set 0

Way 1Way 0 
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MTR example: directory reconstruction

d
5c

… CPUn-1

4

Last Writetime

…

…
…

CPU0

CPU12b

1e

a

Block
Address

0
Last WriterLast Readtime

Id
CPU0Sc

S

M
S
State

CPU1b

CPU0e

a

Block
Address

CPU0
Sharers

(Silent drop)

Directory:

MTR:
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Evicts cannot be recorded in the MTR, but 
many can be inferred: isEvictedBetween()

MTR:

CPU0

Writer

n+k

CPU0

b

address 

n

WritetimeCPU1

n n+k

CPU0
writes b

CPU0 
reads b

CPU0
writes b

CPU0 
reads b

CPU0 
writes b’ 
evicting b

Time

CASE A:

CASE B:

b = dirty

b = clean
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The MTR supports many popular organizations 
and protocols

• Snoopy or directory-based
• Multilevel caches

– Inclusive
– Exclusive

• Time-based replacement policy
– Strict LRU
– Cache decay

• Invalidate, Update
• MSI, MESI, MOESI

© 2006, Kenneth C. Barr



28

Evaluation / Results:  Detailed, full-system, 
execution-driven, x86, SMP simulation

cclite

Detailed
memory
system

D
et

ai
le

d 
M

od
e 

E
na

bl
e

Main
Memory

Bochs

Multiprocessor, 
full-system, x86 
emulator
(4-way Linux 2.4.24)

$ $ $

Network

Memory Directory

stall[0]

stall[n-1]

Memory
Timestamp
Record
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Parallel Benchmarks

• NASA Advanced Supercomputing Parallel 
Benchmarks:
– FFT, sort, diff. eqns., matrix manipulation
– OpenMP (loop iterations in parallel)
– Fortran

• 2 OS benchmarks
– dbench: (Samba) several clients making 

file-centric system calls
– Apache: several clients hammer web server 

(via loopback interface) 

• Cilk checkers: AI search plies in parallel
– uses spawn/sync primitives (dynamic thread 

creation/scheduling)

© 2006, Kenneth C. Barr
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We compare three simulation methods  

• Full detailed simulation

• Functional fast forwarding (FFW)

• Memory Timestamp Record (MTR) with online sampling

• Hypothesis
– Both FFW and MTR should be accurate and fast
– MTR should be faster than FFW
– To be useful, FFW and MTR must answer questions in the same way as 

a detailed model, but faster

Create Reconstruct

© 2006, Kenneth C. Barr
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MTR results: difficult to quantify accuracy

• Methodology
– Eight runs per benchmark
– Vary CPU timing to induce 

different thread interleavings
• Bar shows the median of eight 

runs, with ticks for min and max. 
Each run is a valid result!

• Open problem: can’t have true 
confidence intervals without 
independent random samples of 
entire population of possible 
interleavings

dbench

C
ac

he
 1

 m
is

s 
ra

te
 (%

)
1:10

1:100
1:1000
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Replicating “detailed”-mode stats less crucial 
than accurate answers to design questions

• Change from MSI to MESI
– Blocks are loaded “Exclusive” if no other sharers
– Less traffic for read-modify-write

© 2006, Kenneth C. Barr
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Replicating “detailed”-mode stats less crucial 
than accurate answers to design questions

• With respect to reply 
message types, the 
MSI vs. MESI change 
is dramatic. 
– All fast-fwd bars 

move with the 
detailed bar.

– Movement beyond 
range of detailed 
runs

• Discover evicts 
(isEvictedBetween()) 
to more closely match 
detailed run
– Less drastic timing 

variations helps, too

writeback rep

(no ambig. resolution)

(no ambig. resolution)
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MTR

MTR 
compacted

Size of MTR: 2-8 times smaller than 
compressed memory trace

– MTR amenable to 
compression

– Memory trace 
requires longer 
reconstruction

– Versatile MTR is 
same size as 5-15 
concrete 8x16KB 
cache snapshots 

bzip2 compression – 128 Kinsts/sample

6.3 8.3 6.5

(Note: plot shows reduction.  Higher is better.)
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Online sampling: MTR faster than FFW

0

0.2

0.4

0.6

0.8

1

1:10
1:10

0
1:10

00

R
un

tim
e

(n
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m
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 to
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FW
 1

:1
0)

0

0.2

0.4

0.6

0.8

1

1:1
0

1:1
00

1:1
00

0

• Online sampling:
– MTR spends less 

time in fast-forward
(up to 1.45x faster)

– Less work in 
common case

– Result can be used 
to initialize multiple 
targets

FFW (mg) MTR (mg)

Detailed Simulation
Detailed Warming
Fast to detailed
Fast Forward
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Snapshot-driven simulation: Reconstruction 
speed scales with touched lines

0

0.2

0.4

0.6
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1

1:10
1:10

0
1:10

00

R
un

tim
e

(n
or

m
al

iz
ed

 to
 F

FW
 1

:1
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1:1
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1:1
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00

0

• Reconstruction 
speed:
– MTR has costlier 

transition than 
FFW, but

– Reconstruction 
scales with 
touched lines, not 
total accesses

FFW (mg)

Detailed Simulation
Detailed Warming
Fast to detailed
Fast Forward

MTR (mg)
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Agenda

• Introduction and Background
• Memory Timestamp Record (MTR)

– Multiprocessor cache/directory MINSnap
– Evaluation: versatility, size, speed

• Branch Predictor-based Compression (BPC)
– Lossless, specialized branch trace compression 

as MINSnap
– Evaluation: versatility, size, speed

• Conclusion

© 2006, Kenneth C. Barr



38

Why can’t we create µarch-independent 
snapshot of a branch predictor?

• In cache, an address maps to a particular cache set.
• In branch predictor, an address maps to many locations.  We 

combine address with history to reduce aliasing and capture 
context.

– Same branch
address…………..

– In a different
context……………

• In a cache, we can throw
away LRU accesses

• In a branch predictor, who
knows if ancient branch affects
future predictions?!

T T T T T T T N

2 4 0 0 2 4 0 0

T

NT
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If a µarch independent snapshot is tricky, can 
we store several branch predictor tables? 

• Suggested by
– TurboSMARTS / Livepoints

SIGMETRICS ’05 / ISPASS ’06
– SimPoint Group: HiPEAC ‘05

• Not always an option
– If you generate snapshots via 

hardware dumps, you can’t 
explore other microarchitectures

• Requires predicting the future
– If it takes two weeks to run a 

non-detailed simulation of a real 
workload you don’t want to 
guess wrong

gshare

bimodalperceptron

© 2006, Kenneth C. Barr
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If a µarch independent snapshot is tricky, can 
we store several branch predictor tables? 

• Suggested by
– TurboSMARTS / Livepoints

SIGMETRICS ’05 / ISPASS ’06
– SimPoint Group: HiPEAC ‘05

• Not always an option
– If you generate snapshots via 

hardware dumps, you can’t 
explore other microarchitectures

• Requires predicting the future
– If it takes two weeks to run a 

non-detailed simulation of a real 
workload you don’t want to 
guess wrong

“Several branch predictor tables” aren’t as small as you 
think!  They multiply like rabbits...

© 2006, Kenneth C. Barr
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One predictor is small, but we need many.  
Example: 8KB quickly becomes 1000’s of MB.

• P: gshare with 15 bits of global 
history

• n: 1 Billion instructions in trace 
sampled every million insts
requires 1000 samples 

• m: 10 other tiny branch predictors 
• 48 benchmarks in SPEC2000 
• 16 cores in design?
• Now, add BTB/indirect predictor, 

loop predictor…
• Scale up for industry: 100 

benchmarks, 10s of cores

8 KBytes

x 1000 = 8 MBytes
x 10 ≈ 78  MBytes
x 48 ≈ 3.7 GBytes
x 16 ≈ 59 GBytes

© 2006, Kenneth C. Barr
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Don’t store collection of concrete snapshots!
Store entire branch trace…  with BPC

• BPC = Branch Predictor-based Compression
• Entire branch trace

– inherently microarchitecture-independent

• Traces!?
– Fewer branches than memory operations
– Easier to predict branches than memory accesses

• Easy to compress well (< 0.5 bits/branch)
• Fast to decompress (simple algorithm)

BPC

BPC

© 2006, Kenneth C. Barr
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BPC compresses branch traces well and 
quickly warms up any concrete predictor.

1. Simulator decodes 
branches

2. BPC Compresses 
trace
– Chaining if necessary

3. General-purpose 
compressor shrinks 
output further
– PPMd

4. Reverse process to fill 
concrete predictors, 
one branch at a time

Functional
Simulator

Benchmark

BPC
Decompressor

General-purpose
Decompressor

Concrete
Branch
Predictors

General-purpose
Compressor

Compressed
Trace

BPC
Compressor
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BPC uses branch predictors to model a branch 
trace.  Emits only unpredictable branches.

• Contains the branch predictors from your 
wildest dreams!  Hurrah for software!
– Large global/local

tournament predictor
• 1.44Mbit
• Alpha 21264 style 

– 512-deep RAS
– Large hash tables for static info

• Three 256K-entry
– Cascaded indirect predictor

• 32KB leaky filter
• path-based (4 targets)
• PAg structure

BPCBPC

© 2006, Kenneth C. Barr
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BPC Compression

BPC
comp

0x00:  bne 0x20 (NT)
0x04:  j 0x1c (T)
0x1c:  ret (T to 0xc4)

Output:  
– If BPC says “I could have told you that!” 

(Common case): no output
< >

– If BPC says “I didn’t expect that branch record!” 
< skip N, branch record >

Input: branch trace from functional simulator

Update internal predictors with every branch.

© 2006, Kenneth C. Barr
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BPC Decompression

BPC
decompOutput:

if (skip==0)
emit branch record
// update predictors

while(skip > 0)
BPC says “let me guess!”
emit prediction – guaranteed correct
// update predictors
// decrement skip

< 0,         0x00:  bne 0x20 (NT) >
< 0,         0x04:  j 0x1c (T) >
< 13,       0x3c:  call 0x74          >

Input: list of pairs < skip N, branch record >

© 2006, Kenneth C. Barr
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We produce long chains of good predictions 
represented by single <skip, branch record>.  

© 2006, Kenneth C. Barr
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With BPC, choice of predictor is implicitly 
provided, not included in output stream.

Branch record

Output: <>

Predictor
#1

Predictor
#2

Predictor
#3

=

Match

BPC:

Predictor
#1

Predictor
#2

Predictor
#3

Value

= = =

Match Mispred Mispred

Output: <P1>

Value Predictor-based Compression 
(Burtscher et al., 2003-2005) 
Championship Branch Prediction
(Stark et al. w/ Micro, 2005)
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Results: Size.  BPC-compressed traces are 
smaller than a concrete snapshot in all cases

BPC smaller than other
compression techniques in 
almost all cases

© 2006, Kenneth C. Barr
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Results: Scaling.  BPC-compressed traces 
grow slower than concrete snapshots

• Growth
– BPC has shallow slope, 

adapts to phase changes
– concrete scales with mnP
– Concrete = one Pentium 4 

style predictor
• BPC is 2.7x smaller (avg)
• But if m=10 predictors →

BPC is 27x smaller!

• Both grow with number of 
benchmarks and cores Instructions 

(Millions)
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Results: Speed. BPC compresses well and 
decompresses fast

• Best region: upper left
fast and small

• BPC is faster than other 
decompressors

• …and sim-bpred
• BPC+PPMd faster than 

PPMd alone

Server Integer

Bits per branch Bits per branch

Multimedia Floating Point
B

ra
nc

he
s 

pe
r s

ec
on

d
B

ra
nc

he
s 

pe
r s

ec
on

d

Good

Bad
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Conclusion

• Goal: fast, accurate simulation for multiprocessors
• Approach: Summarizing Multiprocessor Program 

Execution with Versatile, µarch-Independent Snapshots
• Thesis Contributions

– Memory Timestamp Record (MTR): 
• Versatile: a microarchitecture-independent representation of 

coherent caches and directory
• Fast: easy to create, O(touched lines) reconstruction
• Small: self-compressing, sparse

– Branch Predictor-based Compression (BPC):
• Versatile: compressed trace, lossless
• Fast: decompression faster than general purpose 

algorithms and functional simulation
• Small: compressed branch traces are smaller

than concrete branch predictor snapshots

© 2006, Kenneth C. Barr
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