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Abstract

Modern processors rely on exception handling mechanisms to detect errors and to implement
various features such as virtual memory. However, these mechanisms are typically hardware-
intensive because of the need to buffer partially-completed instructions to implement precise
exceptions and enforce in-order instruction commit, often leading to issues with performance
and energy efficiency. The situation is exacerbated in highly parallel machines with large
quantities of programmer-visible state, such as VLIW or vector processors. As architects
increasingly rely on parallel architectures to achieve higher performance, the problem of
exception handling is becoming critical.

In this thesis, I present software restart markers as the foundation of an exception
handling mechanism for explicitly parallel architectures. With this model, the compiler is
responsible for delimiting regions of idempotent code. If an exception occurs, the operat-
ing system will resume execution from the beginning of the region. One advantage of this
approach is that instruction results can be committed to architectural state in any order
within a region, eliminating the need to buffer those values. Enabling out-of-order commit
can substantially reduce the exception management overhead found in precise exception im-
plementations, and enable the use of new architectural features that might be prohibitively
costly with conventional precise exception implementations. Additionally, software restart
markers can be used to reduce context switch overhead in a multiprogrammed environment.

This thesis demonstrates the applicability of software restart markers to vector, VLIW,
and multithreaded architectures. It also contains an implementation of this exception han-
dling approach that uses the Trimaran compiler infrastructure to target the Scale vector-
thread architecture. I show that using software restart markers incurs very little perfor-
mance overhead for vector-style execution on Scale. Finally, I describe the Scale compiler
flow developed as part of this work and discuss how it targets certain features facilitated
by the use of software restart markers.

Thesis Supervisor: Krste Asanović
Title: Associate Professor
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Chapter 1

Introduction

In the continual quest to push the boundaries of high-performance, energy-efficient comput-
ing, designers employ a variety of techniques across multiple levels of the system hierarchy.
The rapid rate of technology improvements enables increasing numbers of transistors to be
placed on a chip. New microarchitectural approaches to hide memory access latency and
reduce power consumption are introduced on a yearly basis. Novel architectures are devel-
oped that can exploit multiple forms of parallelism. Compiler writers find ways to achieve
higher levels of performance in various applications. However, with all of the advancements
in these various fields, one aspect of the computer system has remained largely unchanged
over the years: exception handling.

Any processor needs some type of exception handling mechanism, whether it is used
to deal with unanticipated events such as program errors or to implement features such
as virtual memory. Where processors frequently differ is in the extent of their support
for various kinds of exceptions. In general-purpose systems, support for a wide range of
exceptions is mandatory. By contrast, embedded processors or supercomputers typically
handle a more limited set of exceptions, as more extensive support is either not required or
too costly.

Although different processors may provide varying levels of exception support, the actual
methods they use to handle exceptions are generally quite similar. After the development of
a handful of exception handling approaches many years ago, there has been little innovation
in this field. Even seemingly different exception handling mechanisms, which are unique
in certain respects, are usually lumped into one of two categories: those that are precise;
and those that are imprecise. The precise exception model makes it appear as though a
processor executes instructions one at a time in program order, regardless of the underlying
hardware implementation. This exception model has provided many benefits over the years,
and is widely considered to be the gold standard for dealing with exceptions. However, these
benefits come at a cost, and recent shifts in the landscape of computing are making the
problems of precise exception support more apparent. There are two recent trends in the
computer industry which are combining to increase the difficulty of handling exceptions
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precisely. The next two sections discuss those trends.

1.1 The Decline of Out-of-Order Superscalars

For many years, processor design for general-purpose computing was characterized by in-
creasing hardware complexity. Out-of-order superscalar execution was the paradigm of
choice, and a reliance on clock frequency scaling led to deeper and deeper pipelines. Keep-
ing the pipelines full with useful work required larger and more complicated hardware:
bypass networks, branch predictors, and register files were just some of the structures that
continued to grow in complexity.

This approach eventually ran into a dead end in the form of the “power wall,” which
caused Intel to change its processor roadmap [Wol04] and begin developing multicore designs
that place multiple processors on a single die. A problem with using complex superscalar
execution techniques is that they are generally not energy-efficient [GH96], leading to seri-
ous issues with scalability. As a result, many researchers now predict that future processors
will increasingly employ simpler in-order pipelines, particularly as the computer industry
goes beyond multicore architectures to manycore architectures, which will have thousands
of processors on a die [ABC+06]. This issue has motivated the design of processors such as
Cell [Hof05], which forego the power-hungry structures associated with out-of-order execu-
tion and instead rely on static scheduling.

The shift away from out-of-order execution has implications for exception handling,
as the same hardware structures used to implement techniques such as register renaming
and branch misprediction in dynamically-scheduled superscalar designs are also used to
enable precise exceptions. Thus, one could view precise exception support as “cheap” in a
sense for a system that already implements performance-enhancing features such as register
renaming. By contrast, a statically-scheduled in-order design would not implement precise
exceptions using these hardware structures, and in general would not contain the structures
at all. However, implementing precise exceptions in an in-order processor would require
bypassing logic to avoid pipeline stalls. In a very simple scalar pipeline that implements
a sequential architecture, the overhead of the bypass network is typically manageable, and
bypassing is often in place already to avoid stalls due to data dependences. When dealing
with an explicitly parallel architecture that can issue multiple operations simultaneously,
supporting precise exceptions becomes more expensive, and this issue leads to the next
computing trend that is troublesome for current exception handling approaches.

1.2 The Rise of Explicitly Parallel Architectures

Superscalar implementations of sequential architectures exploit program parallelism at run-
time by using hardware scheduling techniques. Thus, although the actual instruction set
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architecture (ISA) may only specify one operation in any given time slot, that does not
prohibit the underlying design from issuing multiple operations simultaneously, providing a
form of “implicit” parallelism. By contrast, explicitly parallel architectures such as vector
or VLIW processors extract parallelism at compile-time, and avoid the need for complex
dynamic scheduling approaches. These types of designs have been used in the embedded
and scientific processing domains for many years. However, they have only recently become
more widely used in general-purpose systems—albeit in a somewhat limited form—with the
advent of short-vector multimedia extensions such as Intel’s MMX/SSE [PW96, RPK00].

Explicitly parallel architectures will likely become more widely used in the future. A
key motivator for the increased interest in parallel architectures is the fact that issuing
operations in parallel allows a design to maintain a constant level of performance while
lowering the supply voltage; this technique reduces power as well as the total energy dissi-
pated [CSB92]. However, this fact by itself was not sufficient to motivate the widespread
use of explicitly parallel architectures in the past, as the applications that drove processor
design were often not amenable to static compilation techniques. Previously, the SPECint
benchmark suite [spe] was the primary workload used to gauge the effectiveness of new
architectural and microarchitectural approaches. SPECint benchmarks typically have un-
predictable branches, making them difficult for parallelizing compilers to handle. Thus, in
order to effectively achieve parallel execution of these applications, the burden of extracting
parallelism had to be placed almost entirely on the hardware, leading to complex branch
predictors and high degrees of speculation. Looking forward, many of the applications that
will be targeted by future processor designs have significantly more parallelism than these
SPECint-style programs. Several researchers from Berkeley have developed 13 “dwarfs,” or
classes of applications, which can be used to guide architectural innovation [ABC+06]. 12
of the 13 dwarfs have some form of parallelism and correspond to a variety of benchmarks
across multiple application domains. Explicitly parallel architectures can often be used to
target the parallelism inherent in these applications in a more energy-efficient manner than
conventional out-of-order superscalars.

Another reason for the rise of explicitly parallel architectures in general-purpose com-
puting is the fact that the traditional boundaries between computing domains are being
blurred. In the past, there were reasonably well-defined characteristics that distinguished
embedded, desktop, and server systems. While each processing domain is still distinct in
some respects, the number of similarities between these categories is increasing. Low-end
servers are essentially desktop PCs [HP07, Appendix D]. Asanović et al. [ABC+06] point
out several characteristics that embedded and high-performance server systems have in
common, including sensitivity to power consumption. Perhaps the most notable blurring
of boundaries has occurred as greater numbers of embedded systems have taken on the
general-purpose characteristics of desktop processors. Traditionally, embedded processors
were designed to perform a single task as cost-effectively as possible. While this character-
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istic is still true of many embedded systems, the rise of “convergence” devices in the cell
phone, PDA, and video game console markets has necessitated embedded processors that
can adapt to a variety of applications. These multifunction designs are often remarkably
similar to desktop machines in terms of the features they support, making it difficult to
draw a sharp line between the embedded and general-purpose domains [FFY05]. This fact
has significant implications for future processors, as embedded systems are more sensitive
to power consumption than desktop machines, further motivating the use of energy-efficient
parallel architectures. Additionally, embedded memory access latencies are typically more
predictable than in desktop PCs, facilitating the statically-scheduled execution that is typ-
ically found in parallel architectures.

The above shifts in the computing industry are leading to a surge of interest in ex-
plicitly parallel architectures. Recent architectures have been developed in both academia
and industry to statically exploit multiple forms of parallelism, including the TRIPS ar-
chitecture [SNL+03], the Scale vector-thread architecture [KBH+04a, KBH+04b], and the
Cell Broadband Engine [Gsc07]. However, parallel architectures cause problems for precise
exception handling mechanisms, one of which is the conflict caused by the fact that the
precise exception model is designed to hide the details of a processor implementation, while
architectures such as VLIW expose processor details to the user. The difficulty of handling
exceptions precisely in parallel architectures has led to a lack of precise exception support
in many designs, but this has typically come at the cost of certain features such as virtual
memory which are essentially required in any general-purpose system.

1.3 Contributions

The decline of out-of-order superscalar processors—which use hardware techniques to im-
plicitly exploit parallelism in a sequential ISA—and the corresponding increased interest in
explicitly parallel architectures will likely make it more difficult to provide precise exception
support in many future designs. These trends motivate research into alternatives to the pre-
cise exception model. The primary objective of this thesis is to develop an exception model
for explicitly parallel architectures that avoids the overhead of handling exceptions precisely.
This alternative exception model is based on the concept of software restart markers, which
are indicators that the compiler places in the program to show where a process can safely
be restarted after an exception is handled. Although software restart markers can be used
within multiple processor domains, I mainly focus on using this model to enable support
for general-purpose features in embedded systems. I also restrict the scope of this work to
exception handling within a single core. This thesis makes the following contributions:

• Classification of exception handling mechanisms: I describe a more compre-
hensive classification of exception handling mechanisms than simply precise or impre-
cise. Defining these characteristics enables a more accurate understanding of what
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different exceptions actually require from an exception handling mechanism. Some
authors [FFY05, HP07] have incorrectly stated that precise exceptions are needed
to support certain features such as virtual memory. The classification of exception
handling mechanisms presented in this thesis shows why this is not true.

• Software restart markers: I show how the software restart markers model can be
used to handle exceptions, with a particular focus on explicitly parallel architectures.
Software restart markers reduce the exception management overhead of precise ex-
ception implementations by permitting instructions to commit out of order while also
introducing the notion of temporary state which does not have to be preserved in the
event of a context switch. An exception handling mechanism based on software restart
markers has the necessary characteristics to enable features such as virtual memory.

• Software restart marker designs for different forms of parallelism: I show
how software restart markers can be used in vector, VLIW, and multithreaded archiec-
tures. Each of these designs corresponds to a different usage model for software restart
markers, and they collectively demonstrate that this exception handling approach is
not restricted to a particular type of architecture.

• Implementation of software restart markers in the Scale architecture: I
evaluate software restart markers in a specific processor design by implementing the
model for the Scale vector-thread architecture, using the Trimaran compiler infras-
tructure. I show that the total performance overhead of using software restart markers
to enable virtual memory support when executing vector-style code on Scale is less
than 4% compared with a design that does not support virtual memory.

• Compiling for the Scale architecture: Since a key motivation for this thesis is
the claim that parallel architectures will be more widely used in the future, I present
evidence to show the benefits that can be achieved from this approach. I implement
various phases of a compiler infrastructure for Scale and show that the compiler can
parallelize types of code that are difficult for established vector or VLIW compilers to
handle. I also target specific features of the Scale architecture that would be costly
to support under the precise exception model.

1.4 Thesis Overview

Chapter 2 provides an overview of exceptions. It describes the different exceptions that
might be supported in a system and discusses the popular precise exception model. While
there are a variety of precise exception implementations, they suffer from several different
sources of overhead. The chapter categorizes the different types of overhead to motivate the
development of a new exception model. To assist in this development, exception handling
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mechanisms are classified according to several different axes. The requirements imposed by
different exceptions are then analyzed, and the desirable characteristics of a new exception
model are presented.

Chapter 3 describes the software restart markers model of exception handling. This
model relies on the compiler to create regions of code in which it is possible to commit
instructions out of order. Additionally, another advantage of software restart markers is that
they can reduce context switch overhead through the use of temporary state. The chapter
discusses issues with using software restart markers, and also presents three different usage
models, which correspond to the designs presented in Chapters 4 through 6. These designs
are intended to demonstrate the applicability of software restart markers to a wide range
of architectures.

Chapter 4 shows how software restart markers can be used in vector architectures to
support features such as virtual memory without incurring the overhead of previous ap-
proaches. Additionally, various optimizations are presented to reduce the performance
overhead of software restart markers. The techniques described in this chapter are also
applicable to other architectures.

Chapter 5 presents a design for using software restart markers in VLIW architectures.
It shows how the use of this exception model can enable exception handling in sections of
code for which designers often disable exceptions altogether. It also demonstrates a way
in which the number of registers in a VLIW architecture can be reduced without hurting
performance.

Chapter 6 shows how software restart markers can be applied to multithreaded archi-
tectures. It presents an example of how reducing the per-thread architectural register usage
can enable a greater number of threads.

Chapter 7 presents a compiler implementation of software restart markers within the
context of the Scale vector-thread architecture. It shows the compiler modifications neces-
sary to support software restart markers for vector-style code, and also describes a potential
approach to implementing software restart markers for threaded code.

Chapter 8 presents data on the performance overhead of using software restart markers
to support virtual memory in the Scale architecture. It shows that this approach only incurs
a small performance degradation.

Chapter 9 summarizes the contributions of the thesis and discusses future work.
Appendix A discusses the overall Scale compiler flow that was developed as part of this

work, and also shows how the compiler can target certain features that are facilitated by
the use of software restart markers.
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Chapter 2

Exceptions Overview

In this chapter, I first define exception terminology, and then present a definition and
implementations of the precise exception model. I discuss the sources of overhead from
implementing precise exceptions, and introduce a more comprehensive classification of ex-
ception handling mechanisms than simply precise or imprecise. Finally, I show that certain
key exceptions do not require precise exception support, and I present the criteria that
should be satisfied by a new exception model.

2.1 Exception Terminology

Since there is no universally agreed upon terminology in the field of exceptions, this section
defines certain terms that will be used in this thesis.

An exception (also commonly referred to as an interrupt, fault, or trap) is an event
that interrupts the normal flow of program execution. When an exception is taken, the
current process is stopped and control of the processor is transferred to another thread, the
exception handler. Usually the handler is part of privileged operating system (OS) code,
but this is not a requirement.

An asynchronous exception occurs independently of the program being executed, and
can be taken at any convenient time after it is detected (although there is sometimes an
upper bound placed on the latency to take an asynchronous exception). By contrast, a
synchronous exception is caused by some action of the program being executed, and thus
the ordering of when it is taken must be specified relative to normal instruction execution.
Although some classifications describe an exception as a synchronous event and an interrupt
as an asynchronous event, the term “exception” is used to describe both types of events
throughout this thesis.

A terminating exception requires program execution be terminated, as there is no way
for a software handler to restart the process once the exception is taken. An exception
is restartable if it can be handled and then the process can be resumed from a point that
ensures correct execution. An exception is swappable if its handling normally involves saving
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all of the process state to memory so that a second process can be executed, and then later
restoring the original process state and resuming that process after the exception has been
handled. This swapping of processes is referred to as a context swap, or more typically a
context switch. (The latter term is used throughout this thesis.) Figure 2-1 shows how the
mechanisms required to support each class of exception are related to each other. (Note
that support for a particular class of exception does not imply that a mechanism can handle
every exception within that class—e.g. support for restartable exceptions only means that a
mechanism has the general capability to handle an exception and then restart the process.)
A system that supports swappable or restartable exceptions will also support terminating
exceptions, as the handler simply needs to kill the process upon detecting a terminating
exception, rather than the more complex task of handling the exception and restarting
the process when dealing with a restartable or swappable exception. Support for swappable
exceptions also implies support for restartable exceptions, as handling a swappable exception
requires the ability to restart the process. Note that the reverse is not true—i.e. support for
restartable exceptions does not imply support for swappable exceptions. For example, there
may be some exposed pipeline state that cannot be saved to memory, but if the exception
can be handled without modifying this state, the process can be restarted.

Terminating
Support

Restartable
Support

Swappable
Support

Figure 2-1: Venn diagram showing the relationship between support for terminating,
restartable, and swappable exceptions.

For an illustration of the basic exception handling process, first consider Figure 2-2(a).
This figure shows a scalar instruction stream being executed sequentially—only one in-
struction is being executed at any given time—and serially—instructions are executed in
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program order—with no exceptions occurring during program execution. (The definitions
for sequential and serial execution are taken from Walker and Cragon [WC95].) Executing
scalar instructions both sequentially and serially at run-time is consistent with the usage of
a sequential architecture, in which instructions contain a single operation and the compiler
or programmer only specifies one instruction at a time (serialization is implicit in the fact
that the instructions are listed in a particular order). Figure 2-2(b) shows an alternate
sequence of events in which instruction i4 causes an exception in cycle 4, causing the cur-
rent process to stop execution so that the exception handler can be run. A special machine
register, the exception program counter (EPC), is loaded with the address of the excepting
instruction before the exception is handled, as shown in Figure 2-2(c). If the process is to
be restarted after handling the exception, then the system can load the program counter
(PC) with the address contained in the EPC, and continue executing as normal, which is
shown in Figure 2-2(d). The exception handler is responsible for preserving the appropriate
process state so that the process can be safely resumed after the exception is handled. As
mentioned earlier, for a swappable exception, the handler will save and restore all of the
process state. However, even when dealing with a restartable exception, if the handler needs
to overwrite any registers to perform its task, it must first save the original register values to
memory and then later restore those values before restarting the process. Note that for cer-
tain types of exceptions, the excepting instruction should not be re-executed. For example,
as discussed in the next section, an unimplemented instruction might need to be emulated
in software. In this case, the exception handler can modify the EPC register to point to
the subsequent instruction—this would cause the process to restart from instruction i5 in
Figure 2-2(d).

2.2 Exception Types

This section classifies various asynchronous and synchronous exceptions that may be sup-
ported in a system. The information presented is derived from [HP07, Appendix A]
and [MV96].

2.2.1 Asynchronous Exceptions

The following list includes several asynchronous exceptions.

• Reset is treated as an asynchronous exception in most architectures. It wipes out
architectural state, and thus is not a restartable exception.

• A hardware malfunction can generate a machine-check interrupt. This type of
fault may cause the termination of all running processes, although in some cases only
affected processes may need to be terminated. The hardware state at the time of the
interrupt may need to be preserved so that it can be later examined to determine
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Figure 2-2: (a) Sequential and serial execution of an instruction stream with no exceptions.
(b) Instruction i4 causes an exception, causing the current process to stop execution. (c)
After instruction i4 causes an exception, its address is saved in the EPC register and the
exception handler is executed. (d) Once the exception caused by instruction i4 has been
handled, the process resumes execution.

30



the cause of the error. The malfunction may be independent of program execution,
in which case the exception is asynchronous. However, it is also possible for a syn-
chronous malfunction to occur, so this exception is listed in both categories.

• A timer interrupt is an asynchronous event that is triggered when a process has
executed for some predetermined amount of time. This functionality can be used to
implement features such as multiprogramming, in which multiple processes time share
the execution resources. When a particular process has used up its allotted time, the
exception handler will perform a context switch to another process.

• An I/O interrupt is another type of asynchronous event. It occurs when an I/O
device has finished executing some task, such as reading from disk. The exception
handler may then select from a variety of different actions, such as copying data from
the I/O buffers.

2.2.2 Synchronous Exceptions

The following list includes several synchronous exceptions.

• A hardware malfunction can be triggered by the program being executed, in which
case it is a synchronous exception. The malfunction is dealt with in the manner
described in the last section.

• An illegal instruction exception occurs when the processor does not recognize
a particular opcode. This could be caused by the fact that the instruction is not
defined in the architecture, in which case the process will terminate. Alternatively, the
processor might not implement that particular instruction. In the latter situation, if
the handler can emulate the unimplemented instruction, the process can then resume.

• A misaligned memory access may cause an exception depending on the type of sys-
tem. The exception handler can emulate the misaligned access by using a combination
of aligned accesses and bit manipulation techniques.

• A system call is invoked by a user-level process when it needs to request a service
from the operating system. This can be used for actions such as accessing hardware
devices.

• A debugging exception can occur when breakpoints or watchpoints are used. This
type of trap halts the program and requires intervention by the programmer in order
for the process to resume.

• An arithmetic trap may occur for a variety of reasons, including arithmetic overflow
or underflow, a divide-by-zero error, or the need to handle floating-point special values
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such as denormals. Depending on the system and type of exception, the handler may
be able to deal with the trap and resume execution of the process.

• A virtual memory [Den70] event such as a page fault, memory protection viola-

tion, or software-managed TLB miss will trigger an exception. Since it incurs such
a significant performance overhead (typically ranging between 1,000,000 to 10,000,000
clock cycles depending on the system [HP07]), a page fault will also usually trigger
a context switch to another process. By contrast, the TLB miss penalty is much
smaller—e.g. on the order of tens of cycles [KS02a].

2.2.3 The Importance of Virtual Memory

As can be seen from the different types of exceptions, at least some basic level of exception
support is needed in a processor, even if only to provide the capability to reset the system.
Typically, events such as illegal instruction exceptions will be handled by the majority of
processors (although there have been instances of processors with “halt and catch fire” il-
legal instructions that were not handled correctly), but support for other exceptions will
vary depending on the target market. For example, many embedded processors are used
to perform a single task, such as automotive control, and thus do not need to implement
multiprogramming. However, with the advent of mobile computing and convergence de-
vices, the line between embedded and general-purpose systems is being blurred, making it
increasingly important for future processors to implement robust exception support. This
thesis work is designed to accommodate a variety of exceptions. However, I particularly
focus on demand-paged virtual memory support for three primary reasons. First, demand-
paged virtual memory is essentially a requirement for general-purpose systems, and is likely
to become a higher priority for future embedded systems. It provides a wide range of
benefits, including protection between processes, shared memory support, the enabling of
large address spaces, the enhancement of code portability, and support for multiple pro-
cesses being active without having to be fully memory-resident [JM98b, JM98a]. Virtual
memory exceptions can also be used to implement other features, such as garbage collec-
tion [AEL88], concurrent checkpointing [AL91], and pointer swizzling [WK92]. A second
reason for focusing on virtual memory in this thesis is that virtual memory events are
synchronous exceptions which require swappable exception support. Since synchronous ex-
ceptions are typically more difficult to implement than asynchronous exceptions—due to
the fact that a synchronous exception must be correlated with a particular instruction—and
since support for swappable exceptions implies support for restartable and terminating ex-
ceptions, a system that supports demand-paged virtual memory should be able to support
most exceptions. A final reason for emphasizing virtual memory is that virtual memory
events—particularly TLB misses in a system with software TLB refill—tend to occur far
more frequently than other types of exceptions [RBH+95] and thus typically have a greater
performance impact.
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Although I focus specifically on virtual memory support, it is worth noting that a
demand paging mechanism can be used even in a system that does not implement virtual
memory. For example, mobile embedded systems with on-chip SRAM for main memory and
flash memory as secondary storage can use demand paging to reduce the amount of SRAM
required [PLK+04, ISK07]. Even without virtual memory support, the use of demand
paging in these systems necessitates a robust exception handling mechanism.

2.3 Precise Exception Model Definition and Implementations

This section defines the precise exception model and presents several mechanisms that have
been used to implement precise exceptions.

For any exception handling mechanism, it is important to consider the simplicity of
restarting the process after handling a restartable exception. In the example presented in
Figure 2-2(b), determining the restart point is simple because execution is both sequential
and serial: instructions execute one at a time in program order, so all instructions before
the excepting instruction have completed, while none of the instructions after the excepting
instruction have been started. Thus, the restart point after handling the exception is simply
the last unexecuted instruction. As shown in Figure 2-2(c), the only hardware needed to
determine the restart point is the EPC register.

When techniques such as pipelining and out-of-order execution enter the picture, things
become more complicated, as there can be multiple instructions executing simultaneously,
and instructions are not necessarily executed in order. If an instruction causes an exception,
picking a single restart point may not be possible as the architectural state may not reflect
sequential or serial execution. For example, consider the classic RISC pipeline described
by Hennessy and Patterson [HP07, Appendix A]. Each instruction proceeds through five
stages: Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory Access
(MEM), and Write-Back (WB). Figure 2-3 shows a sample instruction sequence executing
in that pipeline. Instruction i4 causes an exception in the Execute stage during cycle 6.
Suppose the process is immediately stopped so that all instructions are killed in cycle 7,
as shown in the figure. Thus, instruction i3 never proceeds through the Write-Back stage,
which makes it difficult to restart the process (assuming the exception is restartable). For
example, suppose i3 is a store instruction. In this case, it has already updated memory
and does not need to be re-executed. However, if i3 is an add instruction, it has not yet
written back its result, and so it does need to be executed again. Restarting the process
from instruction i3 can cause another problem—as mentioned previously, for certain types
of exceptions, the excepting instruction should not be re-executed. If this is the case for
instruction i4, then the system would need to execute i3, skip i4, and jump ahead to
i5 (assuming i5 should be re-executed as well), which could lead to significant hardware
design complications.
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Figure 2-3: Instruction i4 causes an exception in the Execute stage of a five-stage pipeline,
and all of the instructions are killed in the following cycle, complicating the restart process.

The precise exception model avoids the above problems by giving the illusion of se-
quential and serial execution in processors that do not execute instructions sequentially or
serially. In the following definition of the precise exception model, the instruction pointed
to by the exception program counter when an exception is handled is referred to as the
“EPC instruction”. An exception is said to be precise if the architectural state reflects the
following conditions [SP85]:

• All instructions preceding the EPC instruction in program order have completed ex-
ecution and have correctly updated the architectural state.

• No instructions following the EPC instruction in program order have executed or
modified the architectural state.

• If the exception is synchronous, the excepting instruction is the same as the EPC
instruction. This instruction has either completed execution or is unexecuted.

The precise exception model requires instruction results to be committed in program
order, or that the equivalent state will be recreated before the software exception handler
begins running. From the perspective of the exception handler, the processor executes
instructions sequentially and serially as shown in Figure 2-2(a). Thus, when restarting a
process, picking a restart point is simple, and is only dependent upon whether the excepting
instruction needs to be re-executed: if so, the process will resume execution from the ex-
cepting instruction; if not, the process will resume execution from the instruction after the
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excepting instruction. For the five-stage in-order pipeline shown in Figure 2-3, precise ex-
ceptions can be implemented by only handling an exception once the excepting instruction
reaches the Write-Back stage (when all previous instructions have completed execution),
and ensuring that architectural state (including memory) is not updated by any subsequent
instructions. Typically processors will flush all instructions after the faulting instruction
before handling the exception. Not only does this prevent any incorrect updates of archi-
tectural state, but it also avoids any problems that could occur from switching protection
domains while still having active user-level instructions (in the case where the exception
handler is kernel-level code).

Enforcing precise exceptions in the five-stage pipeline is simplified by the fact that in-
structions complete in program order. However, in processors that support out-of-order
completion, exception handling becomes more difficult. Consider the pipeline for a su-
perscalar processor shown in Figure 2-4, which contains multiple functional units. The
functional units may have different latencies, which means that even if instructions are is-
sued in order, they may complete out of order. So an instruction may cause an exception
after subsequent instructions have already updated architectural state with their results.
This can cause an additional problem if subsequent instructions overwrite the input values
for the excepting instruction and the exception handler needs those values to correctly pro-
cess the exception. One approach to deal with this issue is to add delay elements to the
datapath so that each functional unit has the same latency. Although this increases the
latency for a single instruction, the use of bypassing can potentially avoid a negative effect
on overall instruction throughput. In effect, bypassing allows instruction results to be used
before it is known whether instructions will complete without exception. However, insert-
ing a bypass network does add overhead, particularly in deep pipelines that have a large
number of values which need to be forwarded. Additionally, if instructions are issued out
of order, or if multiple instructions are issued simultaneously, the problem of out-of-order
completion arises again.

To support precise exceptions in out-of-order processors, designers typically include a
dedicated commit stage, as illustrated in Figure 2-5. The idea behind this approach is
that instructions are allowed to execute out-of-order, but their results will be committed
to architectural state in program order, thus preserving the illusion of sequential and serial
execution. Also shown in Figure 2-5 is a stage to perform register renaming so that perfor-
mance will not be limited by false dependences [Tom67]. The Execute stage could contain
multiple functional units as in Figure 2-4, but this is not shown for the sake of simplicity.

There have been a variety of methods used to implement precise exceptions within
processors that allow instructions to complete out-of-order. The following sections illustrate
the most popular techniques and briefly touch on alternative approaches. The diagram for
each scheme is not meant to be an accurate representation of an actual microprocessor design
showing all of the datapath details—for example, not all of the diagrams show issue queues—
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Figure 2-4: A superscalar pipeline in which multiple instructions might be in the Execute
stage simultaneously.
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Figure 2-5: An out-of-order processor pipeline with a dedicated commit stage.
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but rather a high-level generic abstraction that illustrates the key differences between each
approach. In order to maintain some measure of consistency when comparing the different
approaches, the following designs are somewhat modified from the way they appeared in
the original works so that they correspond to the pipeline in Figure 2-5. For example,
an explicit rename table is shown in each diagram. Additionally, certain changes made to
the original schemes, such as Johnson’s modification of the future file design [Joh91] have
been incorporated into the figures. However, the basic ideas behind the original approaches
remain the same, despite the pipeline changes—e.g. although Smith and Pleszkun [SP85]
describe the reorder buffer, history buffer, and future file within the context of a superscalar
processor with in-order issue, the same structures can be used in the out-of-order pipeline
of Figure 2-5.

2.3.1 Reorder Buffer

The reorder buffer (ROB) [SP85] is the most prevalent mechanism used in today’s su-
perscalar processors to provide precise exception support. Figure 2-6 shows a high-level
overview of how this design works. The fundamental idea is that the reorder buffer serves
as a circular queue with head and tail pointers (not shown in the figure). Instructions enter
the reorder buffer in program order at the tail before being executed. Each valid rename
table entry maps an architectural register to the reorder buffer slot of the latest in-flight
instruction that will write that register. The reorder buffer holds the source operands for
each instruction, or a tag pointing to the entry of the instruction that will provide the
missing operand. When instructions complete, they write their results back to the reorder
buffer, and any instructions waiting on those values will have their source operands updated.
Store values are written to the store queue. The reorder buffer then ensures that values
are written to architectural state in program order by only allowing completed instructions
at the head of the queue to commit. If an instruction is being committed and the rename
table entry for its destination register points to the instruction’s reorder buffer slot, then
that rename table entry will be marked invalid to indicate that the register value should
now be obtained from the architectural register file. Note that there is a path from the
reorder buffer to the multiplexer which feeds source values to the reorder buffer; this is
used to provide completed results that have not yet been committed. An exception may be
detected at any point during execution, but it is only handled when an instruction reaches
the head of the reorder buffer, as this ensures that all previous instructions have committed
and no subsequent instructions have committed. Before handling an exception, the reorder
buffer, rename table, and store queue will typically be flushed so that there will be no more
active user-level instructions.
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Figure 2-6: A reorder buffer scheme.
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2.3.2 History Buffer

The history buffer [SP85] is similar to the reorder buffer. However, while the latter structure
ensures that the architectural state is always precise, a history buffer allows results to be
written to architectural state out of order, but maintains enough information to recreate
a precise state in the event of an exception. Figure 2-7 illustrates a history buffer design.
When an instruction that targets a destination register is renamed, that register’s current
value will be written into the history buffer. The rename table entry for the destination
register will be updated to point to the instruction’s issue queue slot. The issue queue
holds instructions that are waiting to execute as well as tags for source operands that
have not yet been produced. When an instruction completes, it writes back its result to
the architectural register file or to the store queue; additionally, its result is forwarded to
any waiting instructions and the rename table is updated if necessary to indicate that the
register value can now be obtained from the register file. When an instruction commits, the
entry in the history buffer holding the old value that it overwrote is invalidated; committed
stores have their values written from the store queue to memory. Again, exceptions are
handled at commit time. If an exception occurs, the processor can step through the history
buffer in reverse program order to restore all of the old register values.
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Figure 2-7: A history buffer scheme.
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2.3.3 Future File

The future file scheme [SP85] is similar to the reorder buffer approach in that architectural
state is updated in program order. Figure 2-8 shows a design incorporating a future file,
which is a separate register file from the architectural register file. The design is very similar
to Figure 2-6. The main difference is that if an instruction completes and it produces the
latest update of a particular register, its result will be written to the future file. The purpose
of this update is to remove the path present in Figure 2-6 from the reorder buffer to the
multiplexer which feeds source values to the reorder buffer. In the future file design, when
instructions are renamed, they no longer need to obtain any source values from the reorder
buffer in this stage: the future file will provide values of instructions that have completed
but not yet committed. In the event of an exception, the future file will be flushed. Apart
from those changes, the future file design is identical to the reorder buffer design.
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Figure 2-8: A future file scheme.

The design of Figure 2-8 only uses the future file to provide uncommitted values, which
is based on Johnson’s modification of the original future file design [Joh91]. In the original
scheme described by Smith and Pleszkun [SP85], all source register operands are obtained
from the future file, including values that have been committed to architectural state—i.e.
the reorder buffer no longer holds any source operands. Since the future file acts as a working
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register file in this latter design, its values have to be restored from the architectural register
file in the event of an exception, which can add performance overhead. However, for an in-
order processor, using the future file to provide all source operands can be beneficial to avoid
a complex bypass network. For example, Sun’s UltraSPARC-III [HL99] is a superscalar
processor that issues instructions in program order. It extends the integer pipeline to
match the depth of the floating-point pipeline so that floating-point exceptions will be
precise. While precise exception support is therefore straightforward and no reorder buffer
is needed, avoiding a performance penalty is a significant concern since the UltraSPARC-
III has a 14-stage pipeline, and implementing a full bypass network would significantly
increase the complexity of the design. To avoid this problem, the UltraSPARC-III’s integer
pipeline uses a working and architectural register file (WARF) scheme—essentially a future
file approach—to significantly reduce the bypassing complexity, enabling a short cycle time.
In this case, the working register file, or future file, replaces the result bypass buses that
would otherwise be used to prevent pipeline stalls.

2.3.4 Checkpoint Repair

Checkpoint repair [HP87] is somewhat similar to the history buffer idea of allowing instruc-
tions to update state and then recreating a precise state in the event of an exception. In this
approach, shown in Figure 2-9, the processor makes backup copies of architectural state at
certain points during program execution. Each instruction is associated with a particular
register file, and it will write its result to that register file. The register file corresponding
to the oldest checkpoint holds a precise state—all instructions preceding that checkpoint
have committed. When all instructions between the oldest checkpoint and the second-
oldest checkpoint have completed without exception, those instructions can be committed
by freeing the register file for the oldest checkpoint and writing appropriate values from
the store queue to memory. If an instruction causes an exception, the processor flushes the
pipeline and restores a precise state from the oldest register file. It then executes instruc-
tions sequentially in program order until the exception is recreated. This guarantees that
the process state will be precise when handling the exception.

2.3.5 Reorder Buffer With Unified Physical Register File

In the scheme proposed by Smith and Pleszkun [SP85], the reorder buffer holds instruction
results and then commits them to architectural state. This general approach of having a
dedicated architectural register file is also employed in the alternative schemes described
above such as the history buffer design. An alternative scheme is to use a unified physical
register file [MPV93] instead of having a separate structure to hold architectural state.
This approach is illustrated in Figure 2-10. In this design, the reorder buffer no longer
holds source operands or instruction results. Instead, it contains each instruction’s operand
mappings from architectural registers to physical registers. An instruction that is renamed
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Figure 2-9: A checkpoint repair scheme.
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will obtain the most recent mappings for its source operands, and will also update the
mapping for its destination operand to point to a physical register from the free list. The old
mapping of the destination register is copied into the reorder buffer as part of the instruction
status. When an instruction is ready to execute, it uses its operand mappings to obtain its
source data from the physical register file. When an instruction completes, it writes back its
result to the physical register assigned during the rename stage; it also updates the reorder
buffer to indicate it has finished execution. An instruction commits when it reaches the
head of the reorder buffer; at this point, there are no longer any instructions in the pipeline
that need the value pointed to by the old mapping for the instruction’s destination register,
so that physical register can be added to the free list. In the event of an exception—which is
handled at commit time—the old mappings contained in the reorder buffer can be restored
so that the rename table points to a precise architectural state. This design avoids the need
to copy values from working registers to architectural registers. Also, the rename table
now becomes part of architectural state, as the location of architectural register values can
change throughout the duration of a program.

It should be noted that the description in [MPV93] uses a unified physical register file
in conjunction with a history buffer, not a reorder buffer. However, the optimized scheme
that the authors present is identical to the approach illustrated in Figure 2-10, which is
described as using a reorder buffer. Both labels are appropriate in this context: although
not shown in the figure, the buffer keeps a history of old physical register mappings, making
it somewhat similar to the history buffer approach; however, it does not actually allow
old values to be overwritten until commit time, making it somewhat similar to the reorder
buffer approach. Given the more widespread usage of the term “reorder buffer” as opposed
to “history buffer,” the former label is used in Figure 2-10; the term “reorder buffer” is also
used in the description of the Pentium 4’s unified physical register file design [HSU+01].

2.3.6 Other Approaches

There are several other proposals for handling exceptions precisely; in certain cases the
designs may have different names but are actually similar or identical to the approaches
already described in terms of exception handling. For example, Smith and Pleszkun’s orig-
inal reorder buffer scheme is described solely within the context of implementing precise
exceptions in a superscalar processor with in-order issue. The register update unit [Soh90]
extends the concept of the reorder buffer so that the same structure can also be used to
support register renaming. The idea of using the reorder buffer for speculative execution
is touched on in that work, but is more extensively addressed elsewhere, notably with the
deferred-scheduling, register-renaming instruction shelf (DRIS) technique [PSS+91], as well
as the schedule table design [PM93]. Manohar, Nyström, and Martin [MNM01] use an ap-
proach similar to the reorder buffer scheme to enforce precise exceptions in an asynchronous
processor. They insert a queue that causes instruction results to be written back to archi-
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Figure 2-10: A reorder buffer with a unified physical register file.

tectural state in program order. However, regardless of the name, the same basic approach
is used in all of these cases to implement precise exceptions.

Smith and Pleszkun [SP85] also describe another technique in which a newly-issued
instruction that takes i cycles to execute will prevent any subsequent instructions from
issuing for i cycles by “reserving” pipeline stages. However, this approach can significantly
degrade performance.

The WISQ architecture [PGH+87] uses a reorder buffer to implement precise excep-
tions, but it presents an additional challenge because it makes internal pipeline details
programmer-visible. The exposing of the pipeline provides multiple benefits: old register
values can be used while new ones are being computed (due to the delay between issuing an
instruction and the result being written back); results in the reorder buffer can be explicitly
sourced; and instructions that have not yet committed can be selectively undone (as opposed
to flushing all of the instructions past a certain point). However, the fact that the reorder
buffer is programmer-visible means that it has to be saved in the event of an exception.
When the process restarts, any previously-issued instructions that had not written back
their results into the reorder buffer will be reissued. The authors argue that reorder buffer
size (and thus the overhead of saving it) will be limited due to the fact that the number of
entries only needs to equal the number of stages in the longest-latency functional unit, but
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they do not account for cache misses. Also, WISQ imposes a restriction that an instruction
can only commit when a new instruction enters the reorder buffer. This is done to keep a
constant buffer length, but it can potentially cause performance problems if a long-latency
load causes the commit stage to get backed up.

The Fast Dispatch Stack (FDS) system [DT92] is similar to the future file scheme in that
a second “working” register file is used in addition to the architectural register file. The key
difference is that unlike the future file scheme, in which results to be committed are stored
in the reorder buffer, the issue unit in the FDS system does not store any results. Instead,
when an instruction commits, a signal is given that the result stored in the working register
can be copied to its corresponding architectural register. To prevent the problems caused
by the fact that multiple instructions may target the same register, an instruction cannot
be issued if there is a previous instruction that has the same register destination; however,
this approach can limit performance. The system also uses a copy-back cache in which each
cache line has a duplicate. A store instruction that executes causes the line it updates to be
marked as “Pending.” When the store actually commits, the line switches from “Pending”
to “Current.” The authors point out that in their scheme they can issue and commit more
than one instruction at a time and can execute stores out-of-order, as compared to the
various designs described by Smith and Pleszkun [SP85]. However, it should be noted that
the designs proposed by Smith and Pleszkun are not inherently limited to only single-issue
or committing a single instruction at a time.

Hwang and Kyung [HK94] propose a content-addressable register file in which the ar-
chitectural registers do not have fixed locations. Their scheme uses an “in-order buffer” to
keep track of old register mappings that will be restored in the event of an exception. Over-
all, their approach is similar to the unified physical register file scheme with the primary
exception being the content-addressable nature of their register file.

The FLIP processor [Hen94] takes advantage of existing branch mechanisms to handle
exceptions while in user mode. An asynchronous exception is treated like a jump instruc-
tion which allows the processor to begin fetching exception handler instructions immediately
without having to invalidate uncompleted instructions in the pipeline. A synchronous excep-
tion is handled in the same manner as a branch misprediction, causing all instructions after
the excepting instruction to be flushed. Kernel-mode exceptions are handled by adding a
mode bit to each instruction to indicate its protection domain. FLIP uses a template buffer
that is similar to a reorder buffer which holds instruction results. However, it does not use
a rename table, instead keeping register-tag bindings in the template buffer, and using a
scan circuit to find the most recent tag for a particular register.

Alli and Bailey [AB04] propose a physical register file scheme in which an age tag is
associated with each instruction. Each newly allocated physical destination register also
stores the age tag of the instruction that will generate the result. Each rename table entry
contains both the actual architectural-to-physical register mapping as well as the age tag of
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the last instruction to read the register. For each entry, a FIFO queue is maintained of the
last n pairs of mappings and age tags. The design also contains a completion table that holds
age tags and is used to commit the corresponding instructions in-order as they complete.
When an instruction commits, the corresponding tag is broadcasted to the rename table so
that mappings for physical registers which are no longer needed will be freed. In the event
of an exception, the faulting instruction first signals the register file that it has excepted
and broadcasts its age tag. If any registers have an associated tag that is less than the
broadcasted tag—i.e. an older instruction is still uncompleted—the excepting instruction
will wait for some number of cycles and re-broadcast its tag. Once all preceding instructions
have completed, the excepting instruction then broadcasts its tag to the rename table so
that all previous instructions will commit, releasing any unneeded architectural-to-physical
register mappings.

Finally, Walker and Cragon [WC95] provide a comprehensive survey of exception han-
dling mechanisms and describe many of the techniques discussed in this section as well as
others such as shadow registers.

2.3.7 Precise Exceptions in Commercial Processors

To this point, I have described several research proposals for precise exception implemen-
tations. This section illustrates how various commercial processors have implemented the
precise exception model. The purpose of this section is not to cover all processors that have
ever been created, but rather to show that in general, industrial designs tend to use only
a few basic approaches to implement precise exceptions. To limit the scope of this section,
I focus on the major commercial architectures developed by companies that either are or
were significant forces in the industry. Also, the emphasis of this section is on designs that
allow out-of-order completion—as was previously mentioned, it is relatively straightforward
to implement precise exceptions in processors with in-order completion. Finally, most of the
processors in this section are for desktop systems, due to the fact that embedded processors
often forego precise exception support, or alternatively because some embedded systems are
simple in-order designs.

Intel’s P6 microarchitecture [Gwe95]—which is employed in the Pentium Pro, Pentium
II, and Pentium III processors—uses a reorder buffer that holds operation results and com-
mits them to the retirement register file (RRF) in program order. The subsequent Netburst
microarchitecture used in the Pentium 4 [HSU+01] also uses a reorder buffer scheme, but
with a unified physical register file.

Like Intel, AMD has been consistent in its precise exception implementations. The
AMD K5 [Chr96] uses a reorder buffer that stores instruction results until commit time.
Similarly, reorder buffers are used in the K6 [Hal96], K7 (Athlon) [Die98], and K8 (Opteron
being the first implementation) [KMAC03] cores.

The IBM RISC System/6000 [OG90] handles floating-point exceptions imprecisely in
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the normal mode of execution, but also offers a precise mode in which only one floating-
point instruction can execute at a time. Many of IBM’s later processors use a completion
buffer to ensure in-order instruction commit. A completion buffer is another name for a
reorder buffer that controls when instruction results in “rename” registers can be committed
to architectural state. Examples of processors that have a completion buffer include chips
in the PowerPC series—which was jointly designed with Apple and Motorola—such as the
PowerPC 603 [BAH+94], 604 [SDC94], 620 [LTT95], and 740/750 (G3 “Arthur”) [KAF+97].
The POWER3 [OW00], POWER4 [TDJSF+02], and POWER5 [SKT+05] processors also
incorporate completion buffers.

The Alpha AXP architecture specifies that virtual memory exceptions are handled pre-
cisely, but that arithmetic exceptions are imprecise by default [Sit93]. If the user requires
precision for arithmetic exceptions, trap barrier instructions can be inserted. The use of
trap barriers in the 21064 implementation of the architecture causes a performance degra-
dation of between 3% to 25% in floating-point code, but this software-based approach also
enables shorter cycle times [McL93]. The Alpha 21164 also handles virtual memory ex-
ceptions precisely and arithmetic exceptions imprecisely [ERPR95]. Both the 21064 and
21164 processors issue instructions in program order; by contrast, the Alpha 21264 supports
out-of-order issue [Kes99]. To support precise exceptions, it employs a reorder buffer with
a unified physical register file.

The Hewlett-Packard PA-8000 [Hun95] uses a reorder buffer to enforce in-order commit.
When an instruction retires, its result is copied from its associated rename register to the
appropriate architectural register.

The MIPS R8000 (TFP) [Hsu94]—which is the first superscalar implementation of the
MIPS architecture—decouples the integer and floating-point pipelines. Thus, floating-point
exceptions are imprecise with respect to integer instructions. The R8000 has a “precise-
exception” mode which stalls the integer pipeline during the execution of a floating-point
instruction. The MIPS R10000 [Yea96] uses a reorder buffer (referred to as an “active list”)
with a unified physical register file.

The SPARC architecture specifies a floating-point queue, which is essentially a re-
order buffer that is visible to the exception handler. The HaL R1 CPU [PKL+95] im-
plements the SPARC version 9 architecture. It contains a Precise State Unit (PSU)
that uses checkpointing to implement precise exceptions. Sun’s UltraSPARC-I [TO96]
and UltraSPARC-II [GT96] are in-order issue machines that enforce precise exceptions
for long-latency floating-point instructions by artificially lengthening the integer pipeline
so that it is the same length as the floating-point pipeline. By contrast, earlier SPARC
processors like the Texas Instruments SuperSPARC [BK92] use the SPARC deferred float-
ing point trap model in which there is a hardware floating-point queue that is visible to
the exception handler. The use of the floating-point queue in these systems allows ex-
ceptions to be restartable. Sun’s UltraSPARC-III [HL99] uses a future file scheme to im-
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plement precise exceptions for integer instructions. It also uses the approach from the
UltraSPARC-I and Ultra-SPARC-II of lengthening the integer pipeline so that floating-
point exceptions will be precise. Metaflow’s Lightning [LH91] is a SPARC processor that
uses a Dataflow Content-Addressable FIFO (DCAF) to implement the functionality of
the Deferred-scheduling, Register-renaming Instruction Shelf (DRIS)—essentially a reorder
buffer—described in [PSS+91].

As a final example, the Motorola MC88110 uses a history buffer approach to implement
precise exceptions [UH93].

2.4 Sources of Overhead in Precise Exception Implementa-

tions

As the previous section showed, over the last 15 years, commercial designs have used only
a few different techniques to support precise exceptions, with the reorder buffer being the
most widespread approach. While this has been acceptable until recently, the constant
push to increase performance has exposed certain problems with existing precise excep-
tion implementations—namely, they introduce several sources of overhead. This section
describes the different types of overhead associated with precise exception handling mecha-
nisms, discusses various proposals to reduce that overhead, and shows that further research
into the area of exception handling is warranted.

2.4.1 Overhead Unique to Precise Exceptions

One obvious source of overhead is the chip area required for the hardware structures used to
support precise exceptions. Implementations of precise exceptions are typically hardware-
intensive and make little use of software support [SG01]. All of the techniques that have
been discussed rely on the use of buffers, whether that entails buffering new values before
allowing them to be committed to architectural state, or buffering old values until they are
no longer needed. For most of these implementations, a buffer is required for every result-
producing instruction in the instruction window. The buffer could be a physical register,
a history buffer entry, or some other form of storage. Even in the checkpointing approach,
which does not have to buffer every register value, every store result has to be buffered.
Buffers can also be found in a simple in-order pipeline in the form of pipeline latches
between each stage that hold values for uncompleted instructions. As a result, the amount
of buffering in all of these schemes is proportional to the size of the instruction window. As
performance increases and the instruction window becomes larger, the number of buffers
required will increase as well. Wang and Emnett [WE93] evaluate the designs proposed
by Smith and Pleszkun [SP88] by generating VLSI implementations in a pipelined RISC
processor. They conclude that the reorder buffer and history buffer schemes each introduce
15% area overhead, while the future file scheme introduces 46% area overhead. The actual
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sizes of the buffers used are not specified, but a size of 8 might be likely given the examples
presented in the paper as well as the time period of this work. Although this evaluation
is somewhat dated, it provides an indication that the area overhead of these approaches
is not trivial. Also, a parallel architecture might require significantly more area to buffer
instruction results—e.g. a single instruction in a vector architecture could produce on the
order of 100 scalar results.

Adding large amounts of hardware also introduces overhead in the form of energy con-
sumption. These structures consume energy in every clock cycle, not just when an exception
occurs. The support needed for precise exceptions can lead to significant total energy costs;
for example, in a Pentium III-style microarchitecture, 27% of the processor energy is dissi-
pated in the reorder buffer [FG01]. This type of overhead conflicts with the push toward
more energy-efficient computing.

Precise exception implementations also incur significant overhead in terms of perfor-
mance. Aside from the fact that hardware structures such as a large physical register file
can constrain cycle time, the fact that instructions are committed in order can lead to
resources being tied up by completed but uncommitted instructions—e.g. there could be
a long-latency load at the head of the instruction window that blocks newer instructions
from committing. In Wang and Emnett’s evaluation [WE93], the reorder buffer degrades
performance by 20% versus an imprecise exception model, while the history buffer and fu-
ture file degrade performance by 17%. Bell and Lipasti [BL04] also evaluate the overhead
of in-order commit, and discover that permitting out-of-order commit in certain “safe”
cases can improve performance by up to 68% for floating-point benchmarks, and by up to
8% for integer benchmarks. Performance (and energy) overhead also stems from the fact
that precise exception implementations typically flush all subsequent instructions from the
pipeline when handling an exception, even if those instructions have completed execution.
This can lead to significant amounts of wasted work, as those instructions later have to be
re-executed. Again, parallel architectures exacerbate these problems, as they typically have
a larger number of in-flight instructions than conventional out-of-order superscalars.

Note that the above sources of performance overhead are independent of the time re-
quired to actually execute the exception handler instructions. In fact, the number of cycles
required to actually deal with many exceptions is often insignificant compared to the ac-
tual program execution time, because most exceptions are designed to be “exceptional”
events—i.e. they occur infrequently. There are a few exceptions whose handling can have
a substantial impact on performance, notably TLB misses as well as swappable exceptions
including page faults and timer interrupts. In general, TLB misses are by far the most
frequent type of exception in a system with a software-managed TLB. For example, Rosen-
blum et al. [RBH+95] execute program development, database, and engineering workloads
on a 1994 MIPS R4400 processor-based machine model and present data showing that the
frequency of TLB misses is more than an order of magnitude greater than the frequency
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of the second-most common type of exception, “VM faults” (which might include both
page faults and memory protection violations). Other exceptions in this study such as
system calls or interrupts are even more infrequent. As a more recent example, Caşcaval
et al. [CDSW05] execute scientific applications on an Apple Xserve G5 system and show
that on average a data TLB miss might occur as frequently as once every 1000 cycles or so,
while there are typically many millions of cycles between page faults, even when using small
pages. This TLB miss frequency combined with the actual time to handle the miss can sig-
nificantly impact performance: Huck and Hays [HH93] state that database applications can
incur 5–18% performance overhead from TLB management, with extreme cases incurring
40% overhead; Kandiraju and Sivasubramaniam [KS02a] show that one-fourth of the SPEC
CPU2000 benchmarks have TLB miss rates higher than 1%, and with an “optimistic” 30-
cycle miss penalty and a CPI of 1.0, this can result in 10% performance overhead; Peng et
al. [PLW+06] find that TLB misses can account for 24% to 50% of the total execution time
when running Java applications on embedded processors. Depending on the type of system
and the workload, the performance penalty of handling a software-managed TLB miss can
be substantial. Swappable exceptions such as page faults may be less frequent, but they
incur another form of overhead due to the fact that the process is swapped out, typically
for millions of cycles. This can drastically increase the total execution time of a program.
Although TLB misses and swappable exceptions can be costly, the performance overhead of
actually handling most exceptions is often not that significant. This is particularly true in
a system that handles TLB misses in hardware, or one that does not even support virtual
memory. But if precise exceptions are supported, the other sources of overhead not related
to handling the exception—such as area and energy consumption—are incurred regardless of
whether an exception occurs. In a sense exception handling implementations can be viewed
as “just in case” mechanisms. Although they are only infrequently required for an actual
exception, they need to be available just in case an exception does need to be handled. And
this can lead to significant costs with respect to other aspects of the system.

One caveat that should be mentioned at this point is that precise exception implemen-
tations such as the reorder buffer approach are frequently used to implement a variety of
other performance-enhancing features in superscalar processors, such as register renaming
to eliminate false dependences, branch misprediction recovery, and load speculation. Thus,
depending on the particular design, it could be misleading to attribute all of these sources
of overhead to the implementation of precise exceptions. However, as mentioned in the
introduction to this thesis, there has been a shift away from using increasingly complex
superscalar processors. Also, even in superscalar designs, the amount of overhead that is
introduced by the structures used in precise exception implementations has recently be-
gun to outweigh the benefits. The next section addresses various attempts to reduce that
overhead.
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2.4.2 Approaches to Reduce Precise Exception Management Overhead

A key issue that has arisen in recent years is the problem of scalability: designers want
to support thousands of in-flight instructions in order to better tolerate memory access
latency, but the typical superscalar designs which rely on the reorder buffer have hit a wall,
only supporting on the order of 100 in-flight instructions. While there have been schemes
devised to reduce the complexity of a reorder buffer that holds instruction results [KPEG04],
there are still other issues to consider, such as large store queues. Akkary, Rajwar, and
Srinivasan [ARS03b, ARS03a] argue that it is not actually the reorder buffer that limits
scalability—since it is typically implemented as a FIFO—but instead the mechanisms that
use the ROB to handle misprediction recovery and register file management. In their
approach, called Checkpoint Processing and Recovery (CPR), they create checkpoints at
low-confidence branches to allow for fast recovery with low overhead. They use a hierarchical
store queue to avoid increasing cycle time. Also, instead of using in-order commit semantics
to determine when to free a register, they reclaim a register as soon as all the readers have
read the value and the logical register has been renamed to a different physical register. The
follow-on Continual Flow Pipelines (CFP) work [SRA+04] uses a non-blocking register file
and scheduler to attain the performance of a large instruction window while still keeping
the register file and scheduler small.

There have been many other proposals to tolerate memory access latency without in-
troducing excessive overhead due to the various structures involved in implementing precise
exceptions. Several of these techniques are based to some extent on the work of Dundas and
Mudge [DM97], who introduce runahead processing as a means of pre-executing instructions
when a cache miss occurs. Cristal et al. [CSC+05] present a survey of much of the recent
work, including the aforementioned CPR and CFP work, as well as Cherry [MRHP02],
runahead execution for out-of-order processors [MSWP03], out-of-order commit proces-
sors [COLV04], and kilo-instruction processors [CSVM04]. As a recent example from in-
dustry, Sun uses hardware scouting [CCYT05] to improve single-thread performance in a
multithreaded processor. When a performance-reducing event such as a load miss or a full
store buffer occurs, the processor takes a checkpoint and then the hardware scout contin-
ues to process instructions in the instruction stream until the event is resolved. A shadow
register file is used to avoid updating architectural state. When execution resumes from
the checkpoint, additional data that will be needed later will have been prefetched by the
scout; additionally, on-chip structures such as the branch predictor will have been warmed
up.

One thing to note is that the extra energy consumption overhead due to these techniques
is not measured. Also, these proposals rely on checkpointing: while they are suitable for
sequential architectures, which typically have a small amount of architectural state, they
would not be readily adaptable to systems with a large amount of architectural state such
as vector machines because of the massive checkpoints that would be required.
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As mentioned previously, another problem with precise exception implementations is
the fact that they typically flush the pipeline before handling an exception. Keckler et
al. [KCL+99] propose concurrent event handling for multithreaded architectures to reduce
the overhead associated with handling exceptions. In this approach, which is used in the
MIT Multi-ALU Processor, the handler runs in a thread slot dedicated to dealing with
exceptions. This design avoids the need to stop the faulting thread and flush its instructions,
saving wasted work. Additionally, since the exception handler has its own register state,
the faulting thread’s registers do not have to be saved and restored. Finally, running the
handler concurrently with the faulting thread can improve performance. A similar approach
is proposed in [ZES99] for a multithreaded processor. Jaleel and Jacob [JJ06] develop a
method for a single-threaded processor to allow the exception handler to run concurrently
with user code. Their approach relies on Henry’s technique [Hen94] of attaching a privilege
bit to each instruction. Also, the hardware has to know the length of the exception handler
to permit nonspeculative execution (there has to be enough space in the reorder buffer for
the handler). Although these schemes can be advantageous, they do not provide any benefit
for events which would cause a thread to be swapped out, such as page faults.

2.4.3 The Problem of Context Switch Overhead

The aforementioned proposals are designed to reduce the various sources of overhead at-
tributed to precise exception support. As mentioned previously, in typical out-of-order
superscalar designs, not all of the overhead can be solely attributed to precise exceptions—
e.g. a large physical register file is also used for register renaming. However, there is an
additional source of overhead that is unique to exception handling, one that is common
to both precise and imprecise exception handling mechanisms: context switch overhead.
When handling a swappable exception, a context switch is performed, so the process state
needs to be saved to memory and later restored. One of the frequently-listed benefits of the
precise exception model is that the only state which needs to be preserved across a swap-
pable exception is the architectural state—there is no need to save any internal pipeline
state. While it is certainly true that only saving and restoring the architectural state can
keep context switch overheads manageable in a sequential architecture (which typically only
has a relatively small number of programmer-visible registers), things can rapidly spiral out
of control in an explicitly parallel architecture that has a much larger amount of state
to be preserved. This section discusses two particular processor examples that illustrate
this point, and also addresses the issue of why previous proposals to reduce context switch
overhead have not proven completely satisfactory.

Processor Examples

The Cydra 5 minisupercomputer [BYA93] has a numeric processor that uses a VLIW ar-
chitecture. The cost just to enter and exit the exception handler (not including actual
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time to run the handler) is about 2000 cycles, mainly due to the large amount of state
that needs to be saved and restored. Rudd [Rud97] presents an analysis of the average
per-operation performance cost that can be attributed to this exception handling overhead.
Based on exception frequencies in [RBH+95], Rudd concludes that the exception handling
overhead is approximately 10 cycles per operation on the Cydra 5. This overhead is for
each operation in the program, not just operations that cause exceptions. Although the
typical usage of the Cydra 5 rarely results in context switches—as it is a supercomputer
with a large main memory designed to make demand paging infrequent—Rudd points out
that aggressive processors in other processor domains can have similarly high context switch
overheads. It is also worth noting that Rudd’s analysis apparently understates the actual
frequency of exceptions per operation by factors ranging from 4.1× to 8.5×, depending on
the workload. Table 4.2 in [RBH+95], from which Rudd derives his data, lists exception
rates using the metric of events per second; however, Rudd’s analysis treats the rates as
the total number of events for the entire duration of the program. Using the correct data
substantially increases the exception handling overhead per operation, which only serves to
further highlight the problem of context switching.

As a more recent example to illustrate Rudd’s point, the Cell processor [Hof05] is
designed to avoid many of the sources of overhead found in modern superscalar proces-
sors, such as structures to support out-of-order execution, hardware branch prediction, and
deep pipelines. It is a multicore processor that contains eight Synergistic Processing El-
ements (SPEs) which work in conjuction with a Power Architecture core. Cell is able to
exploit data-level, instruction-level, thread-level, memory-level, and compute-transfer par-
allelism [Gsc07]. To enable a power-efficient design, it relies heavily on large architectural
register files and statically-scheduled parallelism as opposed to the register renaming and
dynamic extraction of parallelism found in superscalar processors. However, this approach
comes at a significant cost in the form of context switch overhead. Saving the context of a
single SPE—which includes a local store that resides between the processing element and
memory—requires over 258 KB of storage space [IBM07], and this leads to a substantial
performance overhead when swapping out a context. (For reference, a typical sequential
architecture might have a fraction of a kilobyte of architectural register state.) As a result,
the recommended programming model for Cell is one that is “serially reusable”—i.e. an
SPE executes a task to completion, and then another task is assigned to it in a serial man-
ner. However, avoiding the use of multiprogramming in the SPEs can lead to decreased
resource utilization if there are frequent stalls due to waiting for data from memory.

Proposals to Reduce Context Switch Overhead

Snyder, Whalley, and Baker [SWB95] describe a method in which the compiler inserts a bit
for each instruction to indicate whether it is a fast context switch point, which is defined as a
point at which no caller-saved registers (“scratch” registers) are live. (Unless interprocedural
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analysis is used, the compiler cannot determine whether callee-saved registers are live.)
This means that only callee-saved registers (“non-scratch” registers) have to be saved when
performing a context switch. If an exception occurs and a processor does not reach a fast
context switch point within a predetermined amount of time, it will simply save all registers.
A register remapping technique can also be used to remap scratch registers to non-scratch
registers when possible, potentially increasing the number of fast context switch points.
While the approach described in this work can be useful for asynchronous exceptions such
as timer interrupts, it does not typically improve context switch overhead for synchronous
exceptions such as page faults, unless the faulting instruction is also a fast context switch
point.

A similar technique is proposed by Zhou and Petrov [ZP06], who pick “switch points”
(typically loop boundaries) where there are very few live registers and create special regis-
ter/save restore routines for these points. If an exception occurs, execution will continue to
the switch point and then the exception will be handled. As with the above proposal, this
approach only works for asynchronous exceptions.

Saulsbury and Rice [SR01] use dirty bit registers to indicate whether a working register
(or group of working registers) is live in the event of a context switch. If only a few registers
are live, the time to save and restore the values can be significantly reduced. One drawback
of this approach is that the programmer has to insert an mnop instruction to indicate a
dead value, which can lead to bloated code. While there are alternative methods to mark
whether values are live or dead—such as a dirty bit mask at the boundary of a loop or
function—another problem is that the exception handling routine has to check each dirty
bit individually. If there are only a few live values, there will probably be a net benefit to this
technique even with the dirty bit checks due to the avoidance of load and store operations.
However, if most of the values are live, then not only will the majority of registers have
to be saved and restored, but there will also be additional overhead from having to check
the dirty bit of each register. When dealing with a large number of registers, this overhead
could be substantial.

An idea that is not specifically targeted toward reducing context switch overhead for
swappable exceptions but is similar in spirit involves support for user-mode exception han-
dlers. Although exceptions are typically handled in kernel mode (and that is the approach
used throughout this thesis), certain exceptions could be handled at the user level. This can
improve exception handling efficiency in systems that use a general-purpose handler which
does not differentiate between restartable and swappable exceptions—i.e. it saves and re-
stores process state even when it is not required, incurring the overhead of a context switch
although the process is not swapped out. Thekkath and Levy [TL94] show how user-mode
exception handling can avoid this unnecessary saving and restoring of state and also reduce
the number of crossings between protection domain boundaries. They demonstrate the use
of their scheme with memory protection violations and misaligned accesses, and show how it
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can be used in applications such as distributed shared memory, unbounded data structures,
and pointer swizzling. Similarly, Appel and Li [AL91] discuss several algorithms that are
used in systems which allow user-mode handling of memory protection violations. Applica-
tions that they cover include concurrent and generational garbage collection, shared virtual
memory, concurrent checkpointing, and persistent stores. Although these schemes can avoid
saving and restoring registers for certain exceptions and have a variety of applications, they
do not address the issue of swappable exceptions.

2.5 Imprecise Exception Handling Mechanisms

Given the sources of overhead associated with precise exception implementations, it is worth
considering the ramifications of handling exceptions imprecisely. This notion dates back to
at least the time of the IBM System/360 Model 91 [AST67], which allowed an “impre-
cise interrupt” in certain situations in order to avoid a significant performance reduction.
Section 2.3.7 listed additional processors that have an “imprecise” mode for performance
reasons—e.g. when handling floating-point exceptions. However, there have been rela-
tively few approaches to handling exceptions imprecisely while still supporting swappable
exceptions such as page faults. This section discusses the primary techniques.

Smith [Smi98] describes the approach used by the CDC STAR-100 and Cyber 200 to im-
plement virtual memory, which is the same technique used by the DEC Vector VAX [BSH91].
When an exception occurs, those processors save the entire pipeline contents in an “invisible
exchange package”—a technique I refer to as microarchitectural swapping. However, there
are certain problems with this approach, as brought out by Rudd (who refers to this as the
Snapshot approach) [Rud97] as well as Moudgill and Vassiliadis [MV96]. One drawback
is that the amount of state to be saved can easily become unmanageable, particularly in
complex pipelines. Also, a substantial amount of logic and wiring is required so that every
pipeline latch can be saved and restored; besides the area and complexity that is involved,
this requirement can also lead to an increase in the processor’s cycle time. Another prob-
lem is that a global signal is needed to freeze the state of the processor in the event of an
exception; delivering that global signal across a large processor could prove problematic.
Finally, the operating system’s view of the machine is made more complicated by the need
to preserve internal pipeline state.

The instruction window scheme [TD93] is another alternative to precise exceptions.
The actual instruction window structure has entries that each contain a tag, the instruc-
tion, and whether the instruction has been issued. If an exception occurs, only instructions
that have reached a “no return point” (which can be set to either the final machine cycle
of an instruction for fast exception handling, or the start of instruction execution to allow
all executing instructions to complete, or somewhere in between) can complete and update
state. The processor then handles the exception and saves the contents of the instruction
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window, providing a “modified precise” exception model. (This approach is also referred to
as “functionally precise” by Richardson and Brunvand [RB95], who use it to handle excep-
tions in a self-timed, decoupled processor that supports out-of-order completion. Moudgill
and Vassiliadis generalize this scheme and refer to it as “sparse restart” [MV96].) When
the process resumes, the instruction window and register state are restored, and execution
can continue where it left off. Thus, only uncompleted instructions will be executed after
the exception; although not specified in the paper, this scheme requires each instruction’s
source operands to be stored in the instruction window in case a later instruction over-
writes a required value and then an exception occurs. Also, only instructions at the top
of the instruction window are considered for issue, because the window does not store any
instruction results: the architectural register file is updated as instructions complete. While
the instruction window approach localizes the state that has to be saved (versus saving the
entire pipeline contents), it can still incur significant overhead when dealing with a large
number of in-flight instructions.

Rudd [Rud97] proposes the use of replay buffers to handle exceptions in architectures
with exposed pipelines, such as VLIW processors. The results of in-flight instructions can
be drained into the replay buffers in the event of an exception, and then later replayed
into the pipeline after handling the exception to preserve the original order of instruction
execution. However, besides the fact that this approach requires enough buffer space to
hold each in-flight result, it also does nothing to reduce context switch overhead. In fact,
context switch overhead is increased since the replay buffer has to be saved and restored
when handling a swappable exception.

Smith and Pleszkun [SP88] argue that instead of trying to make a parallel implementa-
tion conform to a sequential architectural model by supporting precise exceptions, a better
approach might be to have the exception handler assume that the implementation is parallel.
However, their proposals for future research still incur significant hardware overhead. They
mention the possibility of saving all the pipeline state (as in the CDC STAR-100 and Cyber
200), but recognize the problems of a global signal and an implementation-dependent ex-
ception handler. They suggest a variant of this approach for vector architectures in which
the intermediate state of vector instructions is saved (using length counters). The IBM
System/370 vector facility [Buc86] uses this length counter technique to track how many
elements of a vector have been processed; after handling an exception, execution will be
resumed from the point indicated by the counter. However, the IBM design only executes
one vector instruction at a time. The length counter technique can become unwieldy if a
large number of in-flight vector instructions are permitted, particularly since each counter
has to be saved in the event of a swappable exception. Another solution proposed by Smith
and Pleszkun is saving a series of program counter values, each one pointing to an uncom-
pleted instruction that has to be executed after handling an exception. They also mention
a variant in which the actual uncompleted instructions are saved, rather than just their
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program counter values. These approaches are similar to the instruction window approach
mentioned earlier and have the same scalability issues.

2.6 Classification of Exception Handling Mechanisms

Section 2.4 illustrated the various sources of overhead associated with precise exception im-
plementations and provided the motivation for research into precise exception alternatives.
As shown in Section 2.5, existing imprecise exception handling mechanisms have certain
disadvantages. These drawbacks have prevented these proposals from becoming widely
adopted. In fact, the imprecise techniques listed earlier have frequently been ignored due to
their complexity or simply overlooked, as evidenced by the fact that there have been some
incorrect assertions regarding exceptions in certain computer architecture publications, even
in ones that are established references in the field. For example, although the approaches
described in Section 2.5 can be used to implement demand-paged virtual memory, Hen-
nessy and Patterson state that demand paging requires precise exception support [HP07,
Appendix A]. Fisher, Faraboschi, and Young make a similar claim and use that as part of
the justification for their argument that future embedded processor designs should support
precise exceptions [FFY05]. These statements might be attributable to the fact that the
vast majority of systems which support demand-paged virtual memory also implement pre-
cise exceptions. However, part of the problem may also be due to the traditional view of
exception handling mechanisms as being either precise or imprecise, which tends to obscure
whether a particular feature actually requires precise exception handling. To address this
issue, the following two sections of this thesis are designed to more systematically illustrate
what is needed to support various exceptions. In this section, I present a new classification
of exception handling mechanisms that goes beyond simply labeling an approach as either
“precise” or “imprecise.”

The first axis along which an exception handling mechanism can be classified is its level
of restartability, which is defined as its support for terminating, restartable, and swappable
exceptions. Since a terminating exception only requires the ability to kill the process, any
basic mechanism supports terminating exceptions. A mechanism that only supports termi-
nating exceptions has the lowest level of restartability, as it never resumes the process after
an exception. The next level involves support for restartable exceptions as well as terminat-
ing exceptions: this requires a sufficient interface to the handler so that the process can be
restarted after the exception is handled. A mechanism at the highest level of restartability
supports swappable exceptions, which also implies support for restartable and terminating
exceptions.

The second axis of classification for exception handling mechanisms is the condition
of the process state when handling an exception. To simplify the comparison to precise
exceptions, the possible values for this category are defined according to whether the mech-
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anism conforms to the expected behavior of a sequential architecture. One possibility is
that the condition of the process state reflects what would be expected from a sequential
architecture—i.e. it is identical to the state that would result in a processor which executes
instructions both sequentially and serially. A second possibility is that the process state is
identical to what would be found in a system that supports sequential execution but not
serial execution—i.e. instructions are executed one at a time but not in order. For example,
the instruction window approach [TD93], in which instructions can commit out of order,
would fall into this category. A third possibility is that the process state reflects serial
execution but not sequential execution. An example of this would be a VLIW architecture
that executes instructions in order, but handles exceptions at the granularity of an entire
instruction rather than an individual operation. The final possibility is that the process
state does not reflect either sequential or serial execution.

An exception handling mechanism can also be classified in terms of its exception report-
ing order. Exceptions can either be reported in program order or out of program order.
Note that this ordering applies to synchronous exceptions. Because the timing of asyn-
chronous events is independent of the actual program execution, ordering constraints do
not apply in those situations.

The fourth axis of classification specifies the inputs to the exception handler. When
supporting restartable or swappable exceptions, the handler requires at the very least the
address of the faulting instruction, which is stored in the exception program counter. If the
handler is provided with the EPC, it can deal with the exception; however, in order for the
latency of the handler to be reasonable, the specific cause of the exception should also be
supplied as an input. For example, when a page fault occurs in the Intel i860, the exception
handler is only provided with the address of the faulting instruction and the information
that some kind of memory fault has occurred. As a result, the processor must execute an
extra 26 instructions to interpret the faulting instruction in order to determine the specific
cause of the exception [ALBL91]. Typically, the combination of the EPC and the exception
cause form the optimal set of inputs to the exception handler in terms of performance.
Additional inputs are typically provided only when the handler has to do additional work,
such as in the situation where some instructions before the faulting instruction have not yet
completed execution.

The final axis of classification of an exception handling mechanism is the amount of
overhead required to handle the exception. This category encompasses the various sources
of overhead discussed in Section 2.4. Precise exceptions are attractive in many cases as
there is little work needed by software to deal with the exception state. The standard
architectural state can be saved and restored using conventional instructions, and execution
can then resume with a jump back to the exception PC.
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2.7 Exception Needs

By definition, an exception handling mechanism that supports precise exceptions at the
granularity of an operation ensures that the process state reflects sequential and serial exe-
cution when the handler is invoked, and also that exceptions are reported in program order.
(Parallel architectures such as vector or VLIW with instruction-level precision rather than
operation-level precision do not require the process state to reflect sequential execution.) An
advantage of this approach is that providing the exception handler with the EPC and the
exception cause is sufficient for it to deal with the exception. However, as discussed earlier,
this approach can lead to implementation challenges due to the need to buffer results to
enforce in-order commit. These issues make it worthwhile to consider which types of excep-
tions actually require precise exception support. (It should also be noted that although it is
not explicitly required by the definition, precise exception implementations typically handle
swappable exceptions.) This section presents a general overview of the characteristics that
various exceptions require to be true of an exception handling mechanism, although it does
not go too deeply into the issue because certain requirements may vary depending on the
overall system.

Asynchronous events such as timer or I/O interrupts may require support for swappable
exceptions, as these events might trigger a context switch. However, in general they can be
taken at any convenient time after being detected, and thus do not need to be reported in
order. Additionally, the process state does not need to reflect sequential or serial execution
when handling these types of exceptions, as long as the process can later be resumed.

Virtual memory events such as software-managed TLB misses or page faults do not need
the process state to reflect sequential or serial execution, or for exceptions to be reported
in order. This is because these events affect programmer-invisible state such as the page
table, and thus the precision of the architectural state is unimportant. However, it is
desirable—but not required—to have a simple interface to the exception handler because of
the frequency of TLB misses. Since TLB misses are frequent relative to other exceptions,
it is also important that the handler overhead be low. Additionally, a system with demand
paging requires support for swappable exceptions, as otherwise the large number of clock
cycles required to bring in a page from the disk will cause the processor to be idle for an
unacceptably long period of time. Since swapping out a process in the event of a page
fault is designed to improve processor resource utilization, it is also important to have low
context switch overhead, or else the purpose of performing the swap will be defeated.

Arithmetic traps typically only require support for restartable exceptions, as the traps
can often be handled within a short bounded period of time. Also, it is frequently desirable
for the process state to reflect sequential and serial execution when handling an arithmetic
trap, and for exceptions to be reported in order, as this simplifies the handling of events
such as arithmetic overflow. The alternative would be to implement a structure such as the
instruction window which preserves the inputs of the faulting instruction for the handler to
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examine and also keeps track of uncompleted instructions.
System calls may need full precise exception support, depending on what the particular

operating system call needs to do. Finally, debugging events such as breakpoints or watch-
points also require precise exceptions so that the programmer can accurately examine the
process state.

In general, precise exception support is only occasionally required for certain events.
However, the hardware overhead associated with supporting precise exceptions affects the
execution of all programs, regardless of the types of exceptions that actually occur.

2.8 Developing a New Exception Model

The previous section illustrates the fact that a precise exception model is not necessary
to support many types of exceptions. Given the numerous sources of overhead associated
with existing precise exception implementations—particularly in parallel architectures—it
is worth exploring alternatives to the precise exception model. In order for a new model to
achieve widespread usage, it should have certain characteristics:

• The model should facilitate support for swappable exceptions, retain a sim-

ple interface to the exception handler, and reduce or eliminate the various

sources of overhead associated with precise exceptions. Swappable exception
support is required to enable features such as multiprogramming and demand-paged
virtual memory, which are necessary in any system that is designed to gain mainstream
acceptance. A handler interface that retains the simplicity of precise exceptions is such
an important characteristic that it could almost be treated as a requirement for any
new model. Finally, unless the new model can improve on the disadvantages of precise
exceptions by reducing the overhead discussed earlier, there will be little or no benefit
to using it.

• Implementing the model should not require unreasonable tradeoffs. Al-
ternatives to established approaches typically come at a cost, so a new model that
reduces the overhead of precise exceptions while retaining many of its benefits will
likely have some other disadvantages. Although the overall importance of these dis-
advantages will vary from system to system, there should be at least some designs in
which these tradeoffs do not outweigh the advantages of the new exception model.

• The new model should be applicable to a wide range of architectural

paradigms. Introducing a model that is targeted toward a specific design will limit its
usefulness. Given the recent trend toward parallel computing, it would be especially
appropriate if the new model could be used in different types of parallel architectures.

This thesis describes an exception model that satisfies the above constraints. It is
not designed to completely replace precise exceptions, but rather to provide an acceptable
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alternative with reduced exception management overhead that can be used in a variety of
situations.

2.9 Summary

This chapter presented an overview of exceptions and existing exception handling mecha-
nisms. Exceptions are used to enable a variety of features, including multiprogramming and
demand-paged virtual memory. Robust exception support is a requirement for any general-
purpose system, and is likely to become increasingly important for future embedded designs.
A key issue in dealing with exceptions is being able to restart the process after the excep-
tion is handled. In a processor that executes instructions both sequentially and serially,
determining the restart point is simple. The precise exception model replicates that sim-
plicity in other types of processors by ensuring that instructions commit in program order.
While there have been various schemes proposed to implement precise exceptions, only a
few have been used in commercial processors, with the reorder buffer being the primary ap-
proach. However, existing precise exception implementations introduce significant amounts
of overhead with respect to chip area, energy consumption, and performance. Although the
structures that enable precise exceptions in out-of-order superscalar processors are often
used for other features such as register renaming, an additional source of overhead unique
to exception handling is the time required to perform a context switch when dealing with
a swappable exception. This is an issue for both precise and imprecise exception handling
mechanisms. Given the various problems with precise exception implementations—and the
fact that existing imprecise exception handling approaches have certain disadvantages which
have prevented their widespread adoption—it is worth exploring alternatives to the precise
exception model. This thesis has presented a new classification of exception handling mech-
anisms that avoids the typical approach of viewing techniques as either precise or imprecise.
Additionally, an overview of what different exceptions require from a mechanism has been
discussed, showing that certain key features such as demand-paged virtual memory do not
actually require precise exception support. Finally, the characteristics that should be found
in a new exception model were listed.
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Chapter 3

Software Restart Markers

In this chapter, I present an alternative to the precise exception model for handling excep-
tions that is based on the usage of software restart markers. This approach relies on compile-
time information to coarsen the granularity at which instructions are committed. Software
restart markers have been presented in previous work within the context of energy-exposed
architectures [Ham01, AHKW02]. However, that work focused on an exception handling
approach designed to reduce energy consumption within a simple five-stage RISC pipeline
for a sequential architecture. The focus of this thesis is on using software restart markers
to reduce multiple sources of exception management overhead within parallel architectures
while still supporting features such as demand-paged virtual memory. Additionally, some of
the concepts that were previously introduced are extended and refined within this chapter.

I begin by building on the overview presented in Chapter 2 to show the basis for the
software restart markers model. I present the fundamental concepts behind the model and
the advantages that it provides. I then discuss the disadvantages of this approach and set
the stage for future chapters by presenting three different usage models for software restart
markers.

3.1 Determining Where to Restart a Process

Section 2.3 discussed an important issue when supporting restartable or swappable ex-
ceptions: knowing where the process should be restarted after the exception is handled.
Imprecise exception handling mechanisms can complicate the situation because there may
be instructions before the faulting instruction that have not yet completed, or instructions
after the faulting instruction that have completed. For example, consider the following
instruction (Note: all scalar instruction examples used throughout this thesis follow the
MIPS architecture format):

add r1, r1, 1
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Suppose that another instruction occurs before the above add in program order and causes
an exception, but that the add updates architectural state before the exception is handled.
When the process resumes, if the add is executed again, then the final value of r1 will be
incorrect.

The problem with the add instruction is that it overwrites one of its input values. If
that input value was preserved, it would be safe to re-execute the instruction, as the same
result would be produced. To illustrate this point, consider Figure 3-1. The value of each
element in array A is to be copied into the corresponding element in array B, which initially
contains random values. Since A and B are disjoint, the copy can be performed in parallel—
e.g. by using a vectorized memcpy function in a system that supports vector instructions.
If the arrays are large enough, the number of elements that could be copied in parallel
would be limited in an actual implementation (bounded by the maximum vector length in a
vector processor); however, for the purpose of this example, assume that there are sufficient
resources to copy all elements simultaneously. Now suppose that a page fault occurs when
copying one of the elements, as shown in Figure 3-2. In the figure, elements that have
been successfully copied at the time the fault is handled are indicated by the lack of arrows
between the two arrays. Note that the processor has completed copying elements after the
faulting element. If the page fault is handled and the process is later restarted from the
faulting element, it would be safe to re-execute the copies of those completed elements since
array A has not been modified—the last three elements of B which contain 5, 8, and 1 will
simply have the values 5, 8, and 1 copied into them once again, producing the same result.

185…6327…409A

B

… …

???…????…???

Figure 3-1: The contents of array A are to be copied into array B.

While this example avoids the problem of overwriting the input values of completed
instructions which will later be re-executed, another problem still has to be addressed:
certain elements before the faulting instruction have not completed execution at the time
of the exception. In Figure 3-2, at least the first three elements of array A are still being
copied when the page fault is handled. This could be due to an event such as a cache miss.
Regardless of the cause, if all instructions are flushed from the pipeline before handling
the exception, those values will not have been copied when the process resumes. Thus, if
execution restarts from the faulting element, array B will end up missing some values when
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185…6327…409A

B

… …X

185…?327…???

Figure 3-2: A page fault occurs when copying the element with a value of 6 from array
A to array B. Some of the elements both before and after the faulting element have been
successfully copied at the time of the exception, as indicated by the lack of arrows between
the arrays. Also, some of the elements before the faulting element are still being copied.

the copy is finally completed.

As discussed in Chapter 2, previous exception handling proposals have suggested keeping
track of which instructions before the faulting instruction have not yet completed, and
selectively executing those after handling the exception. This avoids re-executing previously
completed instructions, but it can also incur significant hardware overhead. We can improve
upon this approach by noting that if it is safe to re-execute copies of elements after the
faulting element in Figure 3-2, it is also safe to re-execute copies of elements before the
faulting element. Once the page fault is handled, if the process restarts execution from the
beginning of the array copy code, then that will provide the opportunity to successfully
copy the first three elements of array A, as well as the faulting element. Although some
elements will be copied more than once as a result of restarting from the beginning, this is
safe because of the fact that the contents of array A are preserved.

The key property of this example is that the array copy operation is an idempotent
task—in other words, it can be executed multiple times and still produce the same result.
This characteristic simplifies the issue of restarting the process after handling the exception.
The precise exception model also simplifies the issue of process restart, but it does so by
requiring that instructions commit in order. This approach necessitates the use of structures
such as physical registers and store queues to buffer intermediate values. By contrast, in the
approach just described of restarting the array copy from the beginning, no intermediate
values have to be buffered. If an exception occurs, all intermediate values will be recreated
after the exception is handled. Thus, there is no need to place the values being written to
array B into a store queue—they can be sent directly to memory. While this scheme does
introduce additional issues, they will be discussed later in the chapter. First, it is important
to show how these idempotent tasks can be detected.
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3.2 Marking Idempotent Regions of Code

In order to enable the processor to detect idempotent tasks, two options are possible: either
develop a hardware mechanism that can examine the program (which introduces the type of
overhead that is a problem with precise exception implementations); or provide annotations
in software indicating idempotent sections of the program. The latter approach is the
foundation of the new exception model proposed in this thesis, based on software restart
markers. Figure 3-3 shows a comparison between code executed under the precise exception
model and code executed under this new approach. In the precise exception model, there
is an implicit “commit” barrier attached to each instruction, as indicated by the fact that
each instruction resides within its own colored region in Figure 3-3(a). (Previous work on
software restart markers referred to this as a “trap” barrier, indicating that the barrier
would be lifted if all earlier instructions had cleared exception checks. However, this label
does not properly encompass the precise exception requirement that all earlier instructions
also have to update architectural state.) If an instruction causes an exception, the implicit
barrier on each instruction ensures that the exception will only be handled once all previous
instructions have committed, and also that no subsequent instructions have committed.
Each barrier indicates the end of a region. The beginning of a region serves as a restart
point for the instructions within that region. In the event of an exception, the process
will resume from the associated restart point once the exception is handled, unless the
handler also processes the region’s commit barrier—e.g. when emulating an instruction,
the exception handler will actually perform the commit and update architectural state, and
then restart from the subsequent instruction.

Figure 3-3(b) shows how code is viewed in the software restart markers model. The
number of colored regions has been significantly reduced: rather than a commit barrier
being associated with each instruction, it can be attached to a group of instructions. The
only requirement is that each region be idempotent—i.e. the instructions in the region can
be executed over and over while still producing the same final result. This model coarsens
the granularity of commit and makes it possible for instructions to commit out-of-order
within a region, without requiring any buffering of values. For example, the instructions
composing the array copy task from the previous section could be placed entirely within a
single region, avoiding the need to buffer the store data for array B. Since there is no longer
an implicit barrier on each instruction, it is the responsibility of software to explicitly mark
restart points. It does this by inserting software restart markers in the code to delimit the
boundary of each region, referred to in this thesis as a restart region. If an instruction within
a particular region causes a restartable or swappable exception, all in-flight instructions will
be flushed from the pipeline, the exception will be handled, and then the process will restart
execution from the head of the region. Any previously completed instructions will have their
results reproduced, while any uncompleted instructions will have the opportunity to finish
execution. Note that conventional precise exception semantics can be replicated by simply
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placing each instruction within its own region.
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Figure 3-3: (a) Code executed under the precise exception model. There is an implicit
restart point associated with each instruction. Each colored region corresponds to a com-
mit barrier; for the precise exception model, every instruction has a barrier to enforce
in-order commit. (b) Code executed under the software restart markers model. Software is
responsible for explicitly marking restart points. This enables a significant reduction in the
number of commit barriers, and allows greater freedom of execution within each region.

In order for the exception handler to know where the beginning of a restart region is, the
address of the first instruction in the region must be stored somewhere. This address can
either be held in a kernel-visible register or in memory. Since storing the address would only
require a single register, and this would be the only additional hardware required for the
basic software restart markers model, the approach employed in this thesis work is to hold
the address in a register, called the restart PC. The use of a register avoids the possibility of
increasing the exception handler latency if there is a cache miss when retrieving the restart
address. When the commit barrier for a region is processed, the restart PC will be updated
with the address of the instruction at the head of the subsequent region. To enable support
for swappable exceptions, the restart PC is counted as part of the process state and is saved
in the event of a context switch. As long as the exception handler has access to the restart
address, the simple interface associated with the precise exception model can be retained:
the only additional inputs the handler needs are the exception program counter and cause
of the exception. An exception handler in the software restart markers model can thus
be almost identical to a corresponding handler in the precise exception model. The only
change required would be that the handler jumps back to the address in the restart PC
after dealing with the exception.

Besides the fact that instructions can commit out-of-order within a region, another key
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distinction between the software restart markers model and the precise exception model is
that the former approach divides programmer-visible state into three different categories
with respect to exception handling: checkpointed state, stable state, and temporary state.
Checkpointed state is updated each time a commit barrier is executed, and is preserved
across an exception by the kernel. In the software restart markers model, the only check-
pointed state is the restart PC. Stable state can be updated throughout a restart region,
and is also preserved across an exception: conventional user-level architectural state such as
general-purpose registers and memory fall into this category. These first two categories can
also be seen in systems that implement precise exceptions; the third category of temporary
state is a distinguishing feature of the software restart markers model. Temporary state
is defined as state that is only valid within a restart region, and is not live across region
boundaries. For example, in the array copy task from the previous section, registers would
typically be used to hold intermediate values when copying elements from array A to array
B. If the array copy task is placed within a single restart region, then those register values
are initially defined within the region and are not used outside of the region. Thus, those
registers can be treated as temporary state while the region is active. The advantage of this
classification is that in the event of an exception, temporary state values will be recreated
when the process restarts from the head of the region, and therefore do not need to be
preserved. If the compiler can set up restart regions in a program such that certain regis-
ters are always mapped to temporary state, the overhead involved in saving and restoring
those registers when handling an exception can be completely avoided. This can produce
substantial performance benefits—e.g. Section 4.2 shows how an entire vector register file
can be mapped to temporary state, drastically reducing context switch overhead. Addition-
ally, the concept of temporary state makes it possible to expose internal microarchitectural
state to the compiler without requiring access paths to save and restore that state. Making
hidden pipeline state visible can provide benefits with respect to performance, area, and
energy consumption—e.g. Section 5.4 shows how exposing ALU inputs in a VLIW archi-
tecture can reduce architectural register requirements, while Section 6.2 discusses the use
of programmer-visible ALU inputs to improve performance.

Although the category of temporary state is novel with respect to exception handling,
that does not mean that the use of temporary state automatically changes the architecture’s
programming model. For example, when dealing with a vector processor, mapping the vec-
tor register file to temporary state has no effect on the compilation process. What changes
in this situation is the fact that the operating system can now ignore the vector register file
when performing a context switch. The “temporary” nature of the vector register file is a
run-time characteristic indicating that the values do not need to be preserved across an ex-
ception. From the standpoint of the compiler, the vector register file is simply architectural
state that falls into the same general category as the scalar register file which is preserved
across exceptions. Even when the concept of temporary state is used to expose pipeline

68



details to the compiler, the changes to the programming model do not necessarily pose any
novel challenges. For example, making ALU inputs programmer-visible essentially extends
the number of registers the compiler can target. To maximize the benefit from this ap-
proach, the compiler should be modified so that it tries to use the ALU inputs as frequently
as possible, but whether the compiler actually uses the inputs does not affect correctness,
just as failing to use certain general-purpose registers would not affect correctness.

Note that although the per-instruction barriers in the precise exception model make it
appear as though a single instruction is completely executed before the next one begins
execution, implementations frequently work around this and actually execute instructions
in parallel or out-of-order. Similarly, although each region has a barrier in the software
restart markers model, it would be possible to execute instructions from multiple regions
simultaneously. However, just as in precise exception implementations, this would typically
incur significant hardware overhead when instructions can complete out-of-order. Only
instructions from the oldest region would be allowed to update architectural state, while
instructions from later regions would have their results buffered and any exception reporting
would be delayed. Since this thesis is designed to develop an exception model that reduces
or avoids the types of overhead seen in precise exception implementations, throughout this
work the restriction is imposed that for processors which permit out-of-order instruction
completion, only a single restart region can have active instructions at any given point
in time. (For processors with in-order instruction completion, it is safe to have multiple
active regions in the system.) This restriction means that regions must be sufficiently large
to allow parallel or out-of-order execution; otherwise, performance could be significantly
degraded.

Figure 3-4 summarizes the differences in the exception handling process between the
precise exception model and the software restart markers model. To present the most general
case, the steps shown in the figure are for dealing with a swappable exception; a restartable
or terminating exception would not typically require all of the steps to be executed. Software
restart markers reduce the amount of buffering in the system by allowing the processor to
simply abort pending instructions in the event of an exception, rather than enforcing in-
order instruction commit. Immediately flushing the pipeline also avoids the time required
to undo imprecise state changes, such as in a history buffer scheme. Although software
restart markers require an additional register to be saved and restored in the event of a
context switch—the restart PC—the notion of temporary state can drastically reduce the
overall amount of state to be preserved, leading to decreased exception handling time.

3.3 Concerns with the Use of Software Restart Markers

I have shown how the software restart markers model satisfies the first criterion for a
new exception model presented in Section 2.8: saving the restart PC enables support for
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Figure 3-4: (a) The exception handling process for the precise exception model when dealing
with a swappable exception. (b) The exception handling process for the software restart
markers model when dealing with a swappable exception.
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swappable exceptions; the exception handler has a simple interface; and the overhead due
to buffering or context switches can be significantly reduced. The second criterion from
Section 2.8 was that implementing the new model should not require unreasonable tradeoffs.
I have already mentioned the fact that the only hardware required to implement software
restart markers is the restart PC. This section presents the other issues with the model.

As discussed in the last section, the fact that only instructions from a single restart
region at a time are executed in a processor with out-of-order completion means that small
restart regions can significantly hurt performance. At the other extreme, attempting to
make restart regions as large as possible may not always be the best approach, as there
can potentially be significant performance overhead from executing the same instructions
more than once in the event of multiple exceptions within a region. The issue of the
performance impact of software restart markers will be considered throughout this thesis.
However, to give an indication of the feasibility of creating large restart regions, consider
that a sufficient condition for a region to be idempotent is that the inputs to the region
are preserved throughout its execution. This condition means that functions which do not
overwrite their input arguments are idempotent (with a notable exception being code that
uses memory-mapped I/O, as it is not possible in that case to read or write the same
values multiple times). Many parallelizable functions that are the focus of this work such as
memcpy() do not overwrite their input arguments at the source code level. However, even
functions that do modify their inputs can typically be made idempotent by simply copying
any overwritten input values. The question to consider in that situation is whether the
overhead involved in copying those values—which could be stored in registers or memory—
is worth the potential benefits of using software restart markers.

Another concern with software restart markers is ensuring forward progress in the face
of finite resources—i.e. avoiding livelock. For example, in a demand-paged virtual memory
system the number of memory pages touched in a restart region must be less than the
number of available physical pages to allow execution to proceed through the entire region
without a page fault. In practice, this particular restriction is not usually significant, as any
program will have a minimum physical memory requirement, and the program’s working set
can be sized accordingly so that it will not exceed the minimum when using software restart
markers. A more significant restriction arises if TLB refills are handled in software, as the
number of different pages accessed within a region must be less than the number of available
TLB entries so that the region can run from start to finish without incurring a TLB miss.
Although a hardware page table walker is a more suitable method to perform TLB refill in
processors that execute large numbers of concurrent operations [JM98c], software-managed
TLBs have proven popular in the past because they give the operating system the flexibility
of choosing a page table structure [UNS+94]. Chapter 4 considers the issue of livelock in
more detail.

Debugging usually requires precise exception support to provide maximum benefit to the
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programmer; otherwise it could be difficult to know which instructions have modified the
process state. There are two types of debugging to consider. For application-level debug-
ging, the programmer can have the compiler generate code with single-instruction restart
regions—i.e. replicate the precise exception model. This approach of “turning off” software
restart markers is similar in concept to turning off compiler optimizations when debugging
programs. Debugging optimized code continues to be problematic despite the introduction
of various techniques designed to address the issue [JGS99]. Thus, the fact that it could
be difficult to debug code with restart regions is not really a fundamentally new problem
from that seen in existing systems. The second area to consider is compiler debugging, in
which it is necessary to provide debugging support for code with software restart markers
so that the compiler writer can track down the source of any incorrect restart regions. A
possible solution to this problem is to have the operating system provide a software emula-
tion of the processor when executing a buggy region. This emulation approach could also
potentially be used for application-level debugging of code with restart regions, although it
might be the case that the compiler writer has access to a more comprehensive debugging
environment than the application-level programmer (e.g. when dealing with industrial de-
signs). An additional observation that applies to both compilers and applications is that
maintaining a precise state for debugging is motivated by the fact that users frequently
deal with sequential architectures and the corresponding programming models. The recent
shift toward parallel computing could lead to an increased usage of parallel programming
models and architectures that do not specify execution ordering at the granularity of an
instruction. If tools are developed in the future to facilitate debugging of programs even
when execution has an element of nondeterminism, the same techniques could be applied
to debugging code with software restart markers.

A final concern with the software restart markers approach is that it changes the mem-
ory model in an SMP system. One solution is to add fences around memory operations
used for inter-thread communication. For example, consider a multithreaded version of the
quicksort routine, in which each thread checks a shared work queue in memory for array
partitions that need to be sorted. The only communication between threads occurs when
accessing the work queue; once a thread pops a task from the queue and begins sorting a
partition, it proceeds independently of the other threads until it needs a new task. Placing
fences around the memory operations used to access the work queue allows the memory
model to remain unchanged. While this topic is an interesting one to explore, as mentioned
in the thesis introduction, this work focuses on exception handling within a single processor.

3.4 Usage Models for Software Restart Markers

The third criterion for a new exception model presented in Section 2.8 was that it should
be applicable to a wide range of architectural paradigms. To that end, this section pro-
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vides three different usage models for software restart markers. This list is not meant to
exhaustively classify all possible ways to use software restart markers, but it does contain
some key applications, and each model corresponds to a design that I illustrate in this the-
sis. Also, although the differences between the models may appear somewhat subtle, they
have significant implications for the benefits that can be achieved by using software restart
markers.

One point needs to be emphasized about the general usage of software restart markers.
This exception model is primarily designed for explicitly parallel architectures that rely on
compiler techniques to achieve a high level of performance. Architectures that implicitly
exploit parallelism by using dynamic techniques such as out-of-order execution are typically
less suitable for the software restart markers model, for two main reasons. First, these pro-
cessors typically already incorporate hardware structures such as store queues that would
be needed for precise exception support, so the additional amount of overhead required to
implement exceptions precisely is reduced. Second, the model of only executing instruc-
tions within a single restart region could lead to an inefficient use of hardware resources
in sections of code with small regions. For example, if the processor supports 128 in-flight
instructions, and it is executing a region that only contains 3 instructions, its capabilities
are being wasted. Thus, in processors such as out-of-order superscalar designs, the precise
exception model would probably be more appropriate. The focus of this thesis is on parallel
architectures that do not implement techniques such as out-of-order execution.

3.4.1 Black Box Model

Perhaps the most natural application of software restart markers is to implement a “black
box” model. In this approach, illustrated in Figure 3-5, the system contains a main pro-
cessor and a coprocessor. The main processor implements the precise exception model; for
example, it could be an out-of-order superscalar design that uses a reorder buffer. The
coprocessor uses the software restart markers model for exception handling. A section of
code such as a function or loop that gets mapped to the coprocessor will be placed within a
restart region. This provides two advantages. First, a coprocessor is frequently a specialized
design such as a vector unit intended to accelerate the execution of certain types of code.
However, under the precise exception model, this performance improvement can incur a
substantial hardware cost in the form of buffers to hold uncommitted results. By exclu-
sively using software restart markers to handle coprocessor exceptions, the need to buffer
any results of coprocessor instructions is completely eliminated. The second advantage is
that by placing a coprocessor code section within its own restart region (and ensuring that
no coprocessor registers are live across region boundaries), the entire state of the coproces-
sor can be mapped to temporary state, avoiding the need to save and restore it in the event
of an exception. This characteristic is the motivation for labeling this type of design the
“black box” model: from the perspective of the exception handler, it does not matter how
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the coprocessor is designed or what kind of state it contains; in fact, since the coprocessor
state does not need to be preserved in the event of an exception, it can actually be com-
pletely invisible to the operating system. Any type of processing element could be plugged
into this black box, and it would make no difference in terms of handling the exception.
Chapter 4 presents an example of this usage model in vector architectures.
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Figure 3-5: In the black box usage model, there is a main processor which implements
exceptions precisely, and a coprocessor which uses software restart markers. Any segment
of code that is mapped to the coprocessor will be placed within a restart region. All of the
coprocessor state is temporary state in this model.

3.4.2 Partial Model

Software restart markers can also be used in a system that only has a single processor, as
shown in Figure 3-6. In this model, the processor implements exceptions precisely during
certain parts of the program. However, there are also certain sections of code that are
grouped into restart regions. When execution enters a restart region, only instructions from
within the region will be issued, and an exception will cause the process to resume from the
address in the restart PC. Upon reentering a “precise” section of code, the processor will
return to the approach of in-order instruction commit. Since the processor needs to support
precise exceptions in parts of the program, the same types of overhead are present in this
design as would be seen in a system that implements exceptions precisely throughout the
entire program. An advantage of using software restart markers on a partial basis is that
the use of temporary state in certain key sections of code could enable the same level of
performance with a reduced amount of stable state—i.e. registers that have to be preserved
in the event of an exception. This approach permits a flexible switching between precise
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exceptions and software restart markers. An example of this “partial” usage model is shown
in Chapter 5 for VLIW architectures. Note that although the black box model also uses
software restart markers on a partial basis throughout the entire program, that partial
usage is only visible to the main processor; from the perspective of the coprocessor, the
only exception handling approach used is software restart markers, which is why a different
label is applied to that usage model.
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Figure 3-6: In the partial usage model, there is a single processor which has the ability to
implement exceptions precisely and to incorporate software restart markers. The processor
makes use of temporary state within restart regions to reduce the amount of stable state in
the processor.

3.4.3 Complete Model

The partial usage model still requires support for precise exceptions. In a design such as an
out-of-order superscalar, this would require the use of a reorder buffer or some other scheme.
In the “complete” usage model shown in Figure 3-7, software restart markers are used
throughout the entire program. Only using software restart markers eliminates the need
for any mechanism to support precise exceptions; however, it also means that for sections
of code with small restart regions, the processor will have about the same performance as a
machine that executes instructions sequentially and serially. The benefit of using software
restart markers in this model is that temporary state could enable a reduction in the use of
stable state throughout the program. Chapter 6 shows how this usage model can be used
in multithreaded architectures.
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Figure 3-7: In the complete usage model, there is a processor which only uses software
restart markers to deal with exceptions. Temporary state can reduce the use of stable state
in the processor.

3.5 Related Work

Sentinel scheduling [MCH+92] is used to deal with exceptions in a software speculated
architecture. In this work, a speculative instruction is associated with a later “sentinel”
instruction, which checks whether an exception has occurred. If a correctly speculated
instruction causes a restartable or swappable exception, the process will resume from that
instruction, which means that all of the instructions up to the sentinel will be re-executed.
This restart point imposes the requirement that the sequence of instructions between a
speculative instruction and its sentinel must be idempotent, just as a restart region must be
idempotent. However, the software restart markers exception model is more general in that
it is designed to be used within a variety of parallel architectures, not just to recover from
faulting speculative instructions. Also, software restart markers enable the use of temporary
state, which can reduce context switch overhead.

Kim et al. [KOE+01] explore the notion of idempotent memory references within the
context of a speculative multithreaded processor. They focus on non-parallelizable pro-
gram sections—e.g. loops with cross-iteration dependences—and use compiler analysis to
determine loads and stores which are idempotent within a segment. A segment is a unit of
speculative execution, and multiple segments make up a region—e.g. a loop iteration could
be a segment, while the entire loop could be a region. Regions execute and are committed in
order, while segments can execute out of order. The purpose of their work is to reduce the
pressure on speculative storage by allowing idempotent references to directly access non-
speculative storage; if there is any error, the value will eventually be correctly recreated. By
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contrast, this thesis focuses on forming regions that are completely idempotent and using
that property as the basis of an exception model for parallel architectures, regardless of
whether speculation is used.

The Alpha architecture handles floating-point exceptions imprecisely by default, mean-
ing that if an instruction causes an arithmetic trap, additional instructions past the ex-
cepting instruction might have executed—these instructions are referred to as the “trap
shadow” of the excepting instruction [Cor98]. A trap shadow can be viewed as a type of
restart region, although it is more restricted, as it is only used in conjunction with floating-
point exceptions, and there are several conditions that must be satisfied. For example, the
exception handler in the Alpha system has to determine which instruction caused the ex-
ception by beginning at the exception PC address and performing a backwards linear scan,
comparing destination registers of trap shadow instructions with the registers specified by
the arithmetic trap’s register write mask parameter. For this linear scan to work correctly,
the destination register of the excepting instruction cannot be used as the destination reg-
ister of any trap shadow instruction; additionally, the trap shadow is limited to be within a
basic block. By contrast, software restart markers permit arbitrary overwriting of registers
within a region as long as the original input values are preserved, and regions can encom-
pass entire functions. The Alpha’s exception handler is also responsible for re-executing
instructions in the trap shadow, so each of those instructions need to have their inputs
preserved. By contrast, with software restart markers, only the inputs to a region—not an
individual instruction—have to be preserved, and the exception handler can simply jump
to the restart PC without having to deal with re-executing individual instructions.

Bell and Lipasti [BL04] examine the conditions that must be satisfied before an instruc-
tion can be committed in a superscalar processor. They implement techniques that can be
used to commit instructions out of order, with the purpose of freeing up processor resources
more quickly. However, their work relies on the fact that their design incorporates a reorder
buffer, and they utilize the existing superscalar hardware to determine when it is safe to
commit instructions out of order and introduce additional logic to collapse ROB entries. A
parallel architecture that does not support techniques such as register renaming may not
have existing structures to facilitate the detection of when instructions can be committed
out of order. Additionally, their approach can only commit instructions out of order if it
is guaranteed that no previous instructions will cause an exception. This restriction can
limit potential performance gains—for example, in a parallelized loop, an iteration has to
wait for all previous active iterations to clear exception checks before its instructions can
commit. Finally, their work does nothing to reduce context switch overhead.

The software restart markers approach is somewhat similar to using the hardware-based
checkpoint repair scheme [HP87] discussed in Section 2.3.4. In a sense, software restart
markers act like checkpoints that are statically determined by the compiler: in the event of
an exception, execution resumes from the last marker, just like an exception in the check-
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point repair scheme causes execution to resume from a checkpoint. The software restart
markers model is less flexible than a hardware checkpointing scheme, as restart regions
have to be idempotent and only one region is active at a time. However, software restart
markers have the advantage of significantly reduced hardware overhead. Also, checkpoint
repair incurs significant overhead for processors with a large amount of architectural state,
as a backup is needed at every checkpoint. Software restart markers avoid this overhead
and can also use the concept of temporary state to drastically reduce context switch time
for processors with a significant amount of architectural state.

Melvin and Patt [MP89] discuss three types of atomic units and how the sizes of those
units can affect performance. An architectural atomic unit, or AAU, is defined by the
granularity at which an architectural-level exception can occur. For example, in a VLIW
architecture that supports precise exceptions at the instruction level rather than at the
operation level, an entire instruction would be an AAU. A compiler atomic unit, or CAU,
is defined by the granularity at which a compiler can generate code; for a VLIW archi-
tecture, this would be a single operation. Finally, an execution atomic unit, or EAU, is
implementation-specific, and is defined as an indivisible group of operations issued by the
hardware. An EAU can be smaller than an AAU (e.g. in a microcoded machine), equiv-
alent, or larger (if the hardware dynamically groups AAUs into indivisible units of work).
However, supporting EAUs which are larger than AAUs can be complicated because of the
need to handle exceptions at the granularity of an AAU, which requires the ability to switch
“modes” in the event of an exception and handle one AAU at a time. For example, IBM’s
POWER4 [TDJSF+02] and POWER5 [SKT+05] processors group up to five instructions
and dispatch them together. If an instruction within the group causes an exception, all of
the group’s instructions are flushed and then the instructions are individually replayed in
the pipeline. Melvin and Patt argue that large EAUs can be beneficial for performance (due
to the fact that a chunk of work will be issued at one time), which implies that it would
be good to have large AAUs as well—i.e. the granularity of exception handling should
be coarsened. This approach is similar to the software restart markers model: an AAU is
somewhat analogous to a restart region, although in the latter case a region can be partially
executed. A restart region can contain large EAUs such as VLIW or vector instructions,
potentially improving performance. Melvin and Patt also state that another benefit of large
AAUs is that they could potentially reduce the amount of architectural state in the proces-
sor, since temporary values within an AAU do not have to go through the register file—they
can be referred to by their position within the block. This idea is similar to the concept of
temporary state in a restart region. Finally, the authors advocate for small CAUs, which
give the compiler greater control over the work to be done. Software restart markers do not
impose any restriction on the granularity of compiler-visible units of work within a region,
so small CAUs are possible.

There have been several designs which coarsen the granularity of commit. For example,
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the Transmeta Crusoe processor has software-controlled exception barriers at the borders
of blocks of x86 code that have been translated into the native VLIW format [Kla00]. This
scheme has a future file for registers and a speculative store buffer that allow state updates
to be revoked if an exception is encountered in a translated block. A commit operation
copies state updates into the architectural state. A similar approach is used in the TRIPS
architecture [SNL+03], in which programs are partitioned into blocks of instructions that
commit atomically. Exceptions are “block precise” and are handled at block boundaries.
Each active block has access to its own set of registers and execution resources. A third
example is found in the use of transactional memory [HM93], which is designed to simplify
parallel programming. In this scheme, a memory transaction is an atomic sequence of
memory operations which either commit—i.e. execute completely—or abort—i.e. have no
effect. To ensure that a transaction can be aborted, some form of backup state must be
maintained to permit rollback. In general, all of these schemes rely on state updates being
buffered in some manner, as a block must either be completely committed or have no effect.
By contrast, software restart markers allow updates to architectural state within a restart
region, eliminating the need for buffering.

The Inmos transputer family has a type of temporary state in the form of a three-
register evaluation stack that is not preserved across context switches [WS85]. However,
context switches are only allowed to occur when the stack contains no live values, which
also prevents support for features such as demand paging. By contrast, software restart
markers allow context switches to occur at any point in the program.

3.6 Summary

This chapter presented software restart markers as an alternative to implementing precise
exceptions. In the software restart markers model, the compiler is responsible for marking
restart points in the code; in the event of an exception, the process will resume from the
most recent restart point. To ensure correct execution, the sequence of instructions between
restart points—referred to as a restart region—must be idempotent, meaning that it can
be executed multiple times and still produce the same result. This exception model has
two primary benefits: it permits out-of-order commit within a region, eliminating the need
for costly buffering mechanisms; and it introduces the notion of temporary state, which
can significantly reduce context switch overhead. While using software restart markers
does involve certain tradeoffs, these drawbacks are often acceptable, as will be brought out
in more detail in subsequent chapters. This chapter also introduced three different usage
models for software restart markers, which correspond to designs that will be developed in
this thesis.
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Chapter 4

Software Restart Markers in

Vector Architectures

In this chapter, I illustrate the black box usage model of software restart markers by showing
how it can be applied to vector architectures. I begin by presenting an overview of vector
architectures and the problems with exception handling in these designs. I then show how
software restart markers can be used in vectorized code. Finally, I discuss the issue of livelock
and also present some optimizations that can help to reduce performance overhead from
using software restart markers. While the livelock and performance issues are addressed
within the context of vector architectures, the techniques that are presented in this chapter
can be used in other designs which employ the software restart markers model.

4.1 Vector Architecture Background

A vector architecture encodes data-level parallelism, or DLP, by allowing a single instruction
to indicate that multiple elements of data can be operated on independently. Figure 4-1
shows how a basic vector processor might execute a vector-add instruction. Since the
compiler checks for dependences, the processor does not need complex hardware to perform
this task—it can simply issue the independent operations specified by the vector-add. This
also leads to reduced instruction fetch and decode overhead. Parallelism can be enhanced
by incorporating multiple lanes [HP07, Appendix F], or parallel pipelines, which are used to
execute multiple operations within an instruction simultaneously. Additionally, the regular
access patterns seen in vector processing make it possible to perform datapath optimizations
for both registers and memory.

With all of these benefits, it is easy to see why vector architectures can provide high
performance with relatively low complexity for data parallel codes across a wide range of
application domains ranging from supercomputing [Rus78, EAE+02] to embedded media
processing [Asa98, LS98, QCEV99, Koz02]. However, extensive vector capabilities have yet
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Figure 4-1: Execution of a vector-add instruction in a single-lane vector machine.

to appear in recent commercial products other than newer versions of traditional large-scale
vector supercomputers [Bro02, KTHK03]. Although short-vector multimedia extensions
such as Intel’s MMX/SSE [PW96, RPK00] and Apple/IBM/Motorola’s Altivec [DDHS00]
provide some of the benefits of vector processing, they cannot provide the same degree
of complexity reduction in instruction fetch, decode and register renaming, or the same
improvement in sustained memory performance as a traditional long-vector architecture.

One of the factors that has hindered the widespread adoption of vector architectures is
the difficulty of supporting demand-paged virtual memory in these machines. Virtual mem-
ory is typically implemented in superscalar designs with precise exception handling mecha-
nisms, but vector machines introduce two major complications. First, many vector units are
designed to run decoupled from the scalar unit, which runs far ahead fetching instructions
for subsequent loop iterations [EV96], and vector instructions can be long running, so a
vector instruction might complete hundreds of clock cycles after a scalar instruction that
follows it in program order. The problem of out-of-order completion is further exacerbated
when multiple vector instructions are executing simultaneously. This issue makes support-
ing precise exceptions through conventional register renaming and reorder buffer techniques
very expensive due to the length and number of instructions in flight. Second, vector units
have far more architectural state than scalar units. For example, a simple scalar processor
with a 32-entry integer register file might have 128 bytes of architectural register state, not
including any additional control registers. Even if floating-point registers are added, the
amount of state would probably only increase by a factor of 2 or 3. By contrast, a vector
register file is substantially larger than a scalar register file, as shown in Figure 4-2. Adding
a vector unit to a processor could easily increase the amount of architectural register state
by 2 orders of magnitude [HP07, Appendix F]. This dramatically lengthens context switch
times for precise exceptions.
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Figure 4-2: Illustration of the size difference between a scalar register file and a vector
register file.

Despite these problems, there have been some implementations of precise exceptions
in vector processors. The IBM System/370 vector facility [Buc86] only allows one vector
instruction to execute at a time. Although this restriction avoids the problems caused by
multiple in-flight vector instructions, it severely limits potential performance. The IBM
design also maintains in-use and dirty bits for the vector registers to avoid unnecessary
register saves and restores in the event of a context switch. However, this approach still
requires a significant amount of state to be saved and restored when the vector unit is
active. There are other vector designs which use register renaming to facilitate in-order
commit [EVS97, EAE+02, KP03]. This technique can enable virtual memory support but
requires a substantial amount of buffering in the form of additional physical vector registers.
Although register renaming can provide other benefits if it is used to support out-of-order
execution with a limited number of architectural vector registers [EVS97], this performance
advantage will be reduced for newer designs with more architectural vector registers.

An imprecise approach to virtual memory support is employed by the DEC Vector
VAX [BSH91], which uses microarchitectural swapping to preserve the internal state of the
vector unit in the event of an exception. However, saving pipeline state can hurt performance
and energy consumption, and also complicates the OS interface. The DEC design attempts
to reduce context switch overhead by only saving the vector unit state if a vector instruction
is encountered in the new process. However, this technique provides little benefit unless the
vector unit is used by very few processes.

Smith and Pleszkun [SP88] propose an approach in which each architectural vector
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register has two physical registers associated with it. A specific architectural register can
only be targeted by one in-flight instruction at a time. One physical register holds the “old”
value, while the other physical register will receive the updated value. If an exception occurs
before the instruction can commit, the “old” physical register will become current again.
The problem with this scheme is that it can limit performance if there are a small number
of architectural vector registers; also, for maximum effectiveness it relies on the compiler
using a round-robin register allocation policy. The authors also discuss the idea of allowing
a vector instruction to partially complete, relying on length counters to restart from an
intermediate state after an exception. This approach adds hardware overhead, particularly
if multiple vector instructions are in-flight simultaneously.

Given the drawbacks of the above approaches, vector supercomputers typically have
not supported virtual memory [Rus78, UIT94, KTHK03]. This lack of support has been
acceptable in the supercomputing domain, since supercomputer jobs are designed to fit into
physical memory so that expensive CPUs do not wait while pages are swapped in from disk.
Also, supercomputers commonly use batch scheduling, where a queue manager ensures the
set of running jobs can fit in physical memory. However, if traditional vector architectures
are to become more widely used in general-purpose systems, they need to support virtual
memory.

4.2 Restart Regions in Vectorized Code

This section illustrates how restart regions can be formed in vectorizable functions. For
the purpose of applying the software restart markers model, functions can be divided into
two major categories: functions that do not modify any input memory arrays (including
functions that have no input arrays at all, such as the memset routine); and functions
that modify one or more input memory arrays. These two categories will be considered
separately.

4.2.1 Functions With No Overwritten Input Memory Arrays

To illustrate how software restart markers can be applied to vector architectures for func-
tions which do not modify any input memory arrays, consider the C memcpy function, for
which the prototype is given below.

void* memcpy(void *out, const void *in, size_t n);

This function copies the first n bytes of in to the first n bytes of out. The input and output
arrays do not overlap in memory, otherwise the behavior is undefined. The preservation
of the input memory values means that the memcpy instructions can be placed within a
single restart region, as shown in Figure 4-3. If an instruction within the function causes
an exception, the process can be restarted from the beginning of the function.
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Figure 4-3: The entire memcpy function is placed within a single restart region.

Although the memcpy function may be idempotent at the source code level, things can
change when the code is actually compiled. To illustrate this, consider the sample vector-
ized loop shown in Figure 4-4, which could be used as a partial implementation of memcpy.
(The loop does not implement the complete functionality of memcpy, as it does not account
for misaligned byte vectors and it can only be used when the number of bytes is a multi-
ple of 512.) The code in this figure and all subsequent examples in this chapter use the
VMIPS instruction set [HP07, Appendix F]. Strip mining [Lov77] is used to perform the
work of multiple scalar loop iterations simultaneously. Each vector register holds 64 8-byte
elements, so each strip-mined iteration copies 512 bytes. In the VMIPS code, the argument
registers are overwritten in each loop iteration. This problem can be handled by copying
the argument register values to other registers at the beginning of the restart region. The
registers with the copied values can then be used to execute the loop. Figure 4-5 shows the
memcpy loop inside a restart region. Although copying register values can increase the reg-
ister pressure, the effect will often be insignificant—typically only the number of iterations
and a few memory pointers will have to be preserved, and these will be held in scalar regis-
ters, not vector registers. Thus, any performance overhead will usually be small compared
to the total execution time of the function.

Placing all of the vectorized code within a single restart region allows the vector in-
struction results to be committed to architectural state as soon as they are available. Since
the memcpy code is a DOALL loop, its iterations can be executed in parallel, restricted
only by the available execution resources, without requiring any buffers in the form of addi-
tional physical registers or store queues. Additionally, no vector registers are live across the
boundaries of the restart region, which means that the vector register state will be recreated
each time the region is restarted, and the vector register file can be treated as temporary
state. In general, unless techniques such as interprocedural dependence analysis [PW86]
are used, vector registers are typically only live within a single function (and usually only
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# void* memcpy(void *out, const void *in, size_t n);

loop: lv v0, a1            # Load input vector
sv a0, v0            # Copy the data to output vector

addiu a1, 512        # Increment the input base register
addiu a0, 512        # Increment the output base register
subu a2, 512         # Decrement the number of bytes remaining

bnez a2, loop        # Is loop done?
done:

Figure 4-4: Vectorized memcpy loop.

begin restart region
move t0, a0          # Copy the argument registers
move t1, a1

move t2, a2
loop: lv v0, t1            # Load input vector

sv t0, v0            # Copy the data to output vector

addiu t1, 512        # Increment the input base register
addiu t0, 512        # Increment the output base register

subu t2, 512         # Decrement the number of bytes remaining
bnez t2, loop        # Is loop done?

end restart region
done:

Figure 4-5: Vectorized memcpy loop placed inside a restart region. The argument registers
are copied to working registers when the region is entered, and the working registers are
used to execute the loop.
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within a loop iteration). This allows the vector unit to be treated as a black box that can be
ignored by the operating system. Figure 4-6 shows how the software restart markers model
leads to a drastic reduction in context switch overhead by avoiding the need to preserve the
vector register file.
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Figure 4-6: In the software restart markers model, the vector register file is treated as
temporary state that does not have to be saved and restored across an exception.

4.2.2 Functions With Overwritten Memory Input Arrays

As shown in Figure 4-5, overwritten input registers to a region can simply be copied to
backup registers so that the values will be preserved. Input memory values that are over-
written are more difficult to handle, as the amount of data is often much larger. Although a
vectorizing compiler may apply transformations to remove dependences that inhibit restart
region formation, certain types of code will still cause problems. Consider the vectorized
function in Figure 4-7, which takes an input array in of size n and multiplies each element
by 2, overwriting the input values. To form a restart region, the in array can be copied to
a temporary buffer allocated in memory, as shown in Figure 4-8. The temporary buffer can
then provide the input elements, while the original array will be updated with the output
elements. In the event of an exception, the original input values will still be available and
execution can resume from the beginning of the restart region. Using a temporary buffer
transforms the function so that it has disjoint input and output arrays, making the problem
similar to the last section.
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# void multiply_2(char *in, size_t n);

loop: lv v0, a0            # Load input vector
mulvs.d v0, v0, f0   # Multiply vector by 2

sv a0, v0            # Store result
addiu a0, 512        # Increment the base register
subu a1, 512         # Decrement the number of bytes remaining

bnez a1, loop        # Is loop done?
done:

Figure 4-7: Vectorized multiply 2 loop which multiplies each element of an array by 2 and
stores the result into the same array.

# void multiply_2(char *in, size_t n);
Allocate temporary buffer of size n pointed to by t2
memcpy(t2, a0, a1) # Copy input values to temporary buffer
move t3, t2         # Preserve start address of buffer

begin restart region
move t0, a0         # Get original inputs
move t1, a1
move t2, t3

loop: lv v0, t2           # Load input vector from temporary buffer
mulvs.d v0, v0, f0  # Multiply vector by 2
sv t0, v0           # Store result into original array
addiu t0, 512       # Increment first base register
addiu t2, 512       # Increment second base register
subu t1, 512        # Decrement the number of bytes remaining
bnez t1, loop       # Is loop done?

end restart region
done:

Figure 4-8: Vectorized multiply 2 loop with software restart markers that copies all of the
original array elements into a temporary buffer and uses that buffer to supply the input
values during execution.
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While this approach does not require actual hardware buffers, it could still incur sub-
stantial space overhead in memory depending on the size of the dataset. This issue can
be alleviated by using strip mining, where the single large restart region encompassing the
entire loop is broken up into smaller regions containing a certain number of loop iterations.
Another drawback of this scheme is the performance overhead due to copying all of the
memory elements, which could be significant in functions that perform little computation
on each element. However, although the extra copies could make the vectorized code slower,
the modified code will often still be much faster than the alternative of executing scalar
code. The primary purpose of applying the software restart markers model to vector ar-
chitectures is to make it more practical to include a vector unit in a processor that might
otherwise devote that chip area to more inefficient scalar execution resources. Even a vec-
tor unit that has reduced performance on certain types of codes because of restart region
formation will often be preferable to having no vector unit at all. In situations where the
overhead of creating idempotent regions is too high—e.g. code with a tiny dataset—the
processor can revert to executing the scalar version of the code. To enable this, the compiler
can generate both vector and scalar versions of the code, and add a test at the beginning of
the function to determine which version to execute, as shown in Figure 4-9. Occasionally
falling back to scalar code execution is acceptable since software restart markers are not
intended to handle every single vectorized program for all datasets, but rather to handle
the vast majority of code using a low-cost exception handling mechanism.

# void multiply_2(char *in, size_t n);
sltiu t0, a1, 64        # Is n less than threshold?
bnez t0, scalar_version # If so, use scalar version

# Vector version of function with restart regions here
.
.
j done

scalar_version:
# Scalar code without restart regions here

.

.
done: # return from function

Figure 4-9: Code for the multiply 2 loop that consists of both a vectorized implementation
with software restart markers and a scalar implementation without software restart markers
.

Although copying the array elements when necessary provides a suitable solution to
dealing with overwritten input arrays, I present two other approaches for the sake of com-
pleteness. One alternative method of inserting software restart markers in the code for the
multiply 2 function is to divide each loop iteration into two restart regions, as shown in
Figure 4-10. However, this technique sacrifices performance in machines that implement
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vector chaining, as the store will not be able to chain to the multiply. Additionally, perfor-
mance will be degraded in systems that otherwise decouple the scalar unit and vector unit,
as the scalar operations at the end of the loop have to wait for the vector store to complete,
which in turn delays the vector load in the subsequent iteration.

loop:

begin restart region
lv v0, a0            # Load input vector

mulvs.d v0, v0, f0   # Multiply vector by 2

begin restart region
sv v0, a0            # Store result

end restart region
addiu a0, 512        # Increment the base register

subu a1, 512         # Decrement the number of bytes remaining
bnez a1, loop        # Is loop done?

done:

Figure 4-10: Vectorized multiply 2 loop with software restart markers that divides each
loop iteration into distinct restart regions. An explicit end restart region instruction is
not included for the first region since that region is automatically terminated by the begin
restart region instruction for the second region.

A separate issue with the code in Figure 4-10 is that vector register values are live across
restart region boundaries. Thus, for correctness the vector register state must now be saved
and restored around a context switch, removing one of the primary advantages of using
software restart markers. The context switch overhead could be somewhat alleviated by
adapting existing techniques. For example, software can set a status bit on the begin restart
region instruction to inform the kernel whether the vector register state is live on a fault.
The status bit must then be saved along with the process state to indicate if the vector
register state should be reloaded when swapping the process back in. However, as discussed
in Sections 2.4.3 and 4.1, the benefits of this and other techniques to reduce context switch
depend on multiple factors. As a result, the approach discussed earlier of copying the array
elements is probably preferable.

One more alternative to copying array elements that is interesting to consider is to
use a speculative vector-store instruction in the code of Figure 4-7, assuming speculative
instructions are supported by the architecture. For example, a speculative bit could be
associated with each cache line. A speculative vector-store instruction would be allowed
to update the cache, but the speculative bits for the corresponding lines would be set.
Only when the speculative bits are reset—at the end of a restart region—would the system
allow updated cache lines to be written back to memory. In the event of an exception, all
cache lines with speculative bits set would simply be flushed. To avoid having too many
outstanding speculative memory operations, the strip mining technique described previously
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can be used so that a restart region only encompasses a small number of loop iterations.
The problem with this approach is that it requires support for dealing with speculative
stores and ensuring that the cache—or any other auxiliary store buffer that is included in
the pipeline—does not overflow because of too many outstanding speculative operations.
Note that the maximum number of speculative vector-stores within a restart region depends
not just on the cache capacity, but also the associativity and the memory access pattern.
While using speculation could be an approach to consider, the drawbacks will probably
outweigh the benefits.

4.3 Avoiding Livelock for TLBs with Software Refill

One of the concerns with software restart markers discussed in the previous chapter was
the issue of livelock. In particular, if TLB refills are handled in software, the memory op-
erations in a restart region cannot touch more pages than the number of available TLB
entries. There are two initial points to consider regarding this problem. First, most com-
mercial architectures use hardware to refill the TLB, including Intel machines and Power-
PCs [JM98a], and a TLB miss does not cause an exception in these systems, so TLB-refill
livelock is not a concern. Since refilling TLBs in hardware is more appropriate for vector
processors—and in general, for any design that supports a large number of in-flight oper-
ations [JM98c]—it is unlikely that TLB-refill livelock would actually be an issue in most
systems that use software restart markers. (As mentioned in Section 3.3, the other poten-
tial source of livelock—allowing the number of unique virtual pages in a restart region to
exceed the number of physical pages—is unlikely to be a concern in any reasonably designed
program.) However, it is possible that a vector unit could be added to an existing design
which uses a software-managed TLB, such as a MIPS or Alpha processor. For example,
the Tarantula vector extension to the Alpha architecture [EAE+02] employs software TLB
refill. This leads to the second point, which is that the issue of livelock in vector processors
with software-managed TLBs is not unique to software restart markers. Vector machines
that implement precise exceptions at instruction-level granularity and use software TLB
refill have to make the TLB large enough to allow a single vector memory instruction to
complete without incurring a TLB miss. For example, if the maximum vector length is 128,
the TLB has to support at least 128 different page mappings since each element of a vector
memory access can touch a different page.

One approach to avoiding livelock with software restart markers when dealing with a
software-managed TLB is to limit the number of memory operations within a restart region
to be no greater than the number of available TLB entries. The problem with this solution
is that performance could be severely degraded—e.g. if there are 128 available TLB entries,
and the vector length is 128, then a restart region can only contain a single vector memory
instruction. Since unit-stride vector memory accesses are so common [HP07, Appendix F]
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(around 80% of all vector memory accesses according to Espasa et al. [EAE+02]), it is overly
conservative to assume that each operation within a vector memory instruction touches a
different page. In the memcpy function, copying a single page of data would typically require
several vector memory instructions, since the memory accesses have a stride of 1. Thus,
creating large restart regions is still possible by using compile-time analysis to determine an
upper bound on the number of pages touched within a region. For example, if the program
loads 128 KB of input data within each restart region, and the page size is 128 KB, then
it can be statically determined that at most 2 distinct input data pages will be accessed in
a region (the actual number of pages touched depends on the alignment of the data). Note
that the page size and number of available TLB entries are design parameters that have to
be exposed to the compiler.

In general, where the compiler can determine strided memory accesses are used and the
stride is small, it can often create restart regions without having to account for the possibility
of livelock. In order to handle datasets that are too large to be completely mapped by the
TLB, strip mining can be employed so that a new restart region is started before there is
any danger of overflowing the TLB. However, for code with indexed memory accesses or
strided memory accesses with large strides, restart region formation may be significantly
restricted if software TLB refill is used, possibly leading to performance degradation. This
is a drawback of software restart markers that should be taken into consideration when
deciding on an exception model.

4.4 Performance Optimizations

Another concern discussed in the previous chapter was the potential performance overhead
if multiple exceptions occur within a restart region, causing the same instructions to be
executed more than once. This re-execution can be particularly harmful in a system with a
software-managed TLB if a restart region contains accesses to several different data pages.
For example, if maximally sized restart regions are used with the memcpy routine, then
there will be a significant overhead from performing the same memory transfers multiple
times. After copying the first page of data, a TLB miss will occur when the second page
of data is accessed, causing the program to begin from the head of the restart region and
copy the first page again. The subsequent TLB miss on the third page of data will cause
the first and second pages to be copied again, and this pattern will continue, with the
overhead becoming worse as more of the restart region is processed. Additionally, if a
context switch occurs, then when the original process resumes, all of the TLB mappings
will have been flushed. This section discusses two optimizations that can be used to reduce
the performance overhead of software restart markers: the first is specifically designed for
systems with software-managed TLBs; while the second can be used regardless of the TLB
refill method, and reduces performance overhead for other types of exceptions as well.
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4.4.1 Prefetching for Software-Managed TLBs

One method to reduce performance overhead of repeated restarts with a software-managed
TLB is to prefetch the mappings that will be needed for each region. The idea of prefetching
TLB entries to avoid misses has been previously explored within various contexts [BKW94,
PA95, SDS00, KS02b, KS02a, PLW+06], although many of those designs are hardware-
based and intended for systems that refill the TLB using a finite state machine. A notable
exception is the work of Park and Ahn [PA95], who discuss the approach of exploiting
compile-time knowledge to statically determine points in the program where compulsory
TLB misses would occur, and inserting explicit TLB prefetch instructions before those
points to avoid any misses. The same technique can be used with software restart markers.
As long as the data pages that will be accessed within each restart region can be statically
determined, either explicit prefetch instructions can be used or a value can simply be loaded
from each page, causing the corresponding mapping to be placed in the TLB. Since the use of
a software-managed TLB already requires the compiler to perform an analysis of the pages
accessed in each region to avoid livelock, this information can also be used for prefetching.
Even if the memory accesses in a region are data-dependent, prefetching can still be used if
the entire dataset can be mapped by the TLB—i.e. the dataset size is less than the available
TLB capacity. The compiler can simply load a byte from each page in the dataset, and
place all of the memory accesses within a single restart region.

Prefetching only helps with TLB misses, and does not avoid having to repeat work for
other types of exceptions, such as timer interrupts. Also, the compiler must employ a suit-
able heuristic to determine when the overhead introduced by adding prefetching instructions
outweighs the potential benefit.

4.4.2 Counted Loop Optimization

When dealing with counted DOALL loops, which make up the bulk of vectorizable code,
another way of avoiding wasteful repeated restarts is to only restart execution from the
earliest uncompleted loop iteration after handling an exception, instead of restarting at the
beginning of a region. This can be accomplished by adapting the concept of recovery blocks,
which are used in [ADM95] to alleviate the overhead associated with the original sentinel
scheduling work. Recovery blocks can similarly be used with software restart markers to
reduce performance overhead. To illustrate this, consider that if an instruction inside a
vectorized DOALL loop triggers an exception, there may be multiple active loop iterations.
Additionally, some number of iterations may have also fully completed and updated ar-
chitectural state. Suppose the first i iterations have completed execution, and subsequent
iterations are in various stages of completion. In the basic software restart markers model,
an exception will cause the process to resume from the very beginning of the loop, causing
iterations 1 through i to be re-executed. With the counted loop optimization, after the
exception is handled, the process will restart at the head of a block of fixup code. This
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code will adjust the loop counters and pointers to equal the values associated with the
earliest uncompleted loop iteration—i.e. iteration i+1. The end of the code then branches
back to the head of the loop, avoiding the re-execution of previously completed iterations.
Figure 4-11 presents a modified version of the vectorized memcpy loop which incorporates
the counted loop optimization.

move t0, a0          # Copy the argument registers
move t1, a1
move t2, a2
move lc, 0           # Initialize loop iteration counter

begin restart region (put fixup code address into restart PC)
loop: lv v0, t1            # Load input vector

sv t0, v0            # Copy the data to output vector
addiu t1, 512        # Increment the input base register
addiu t0, 512        # Increment the output base register
subu t2, 512         # Decrement the number of bytes remaining
commitbar_loop # Non-blocking instruction that increments

# loop iteration counter when all previous
# instructions have completed

bnez t2, loop        # Is loop done?
done:

end restart region
fixup_code:

move t3, lc # Get value of loop iteration counter
sll t3, 9            # Each iteration copies 512 bytes
addu t0, a0, t3      # Set output base register
addu t1, a1, t3      # Set input base register
subu t2, a2, t3      # Set loop counter
j loop               # Restart loop

Figure 4-11: Vectorized memcpy loop that uses the counted loop optimization. A loop
iteration counter is incremented by the commitbar loop instruction upon the completion
of each iteration. This counter can then be used to restore all of the induction variables in
the event of an exception.

The loop in Figure 4-11 uses a special barrier instruction—commitbar loop—that will
increment a loop iteration counter once all previous instructions have completed execution.
If an exception occurs, the counter can be used in conjunction with the original pre-loop
values of the induction variables to skip past all of the completed iterations. Note that there
is still only a single explicit restart region around the entire loop, and only a single restart
address is used: the address of the head of the fixup code block. The commitbar loop

instruction does not need to update the restart PC because the same segment of code is
being executed in a loop; however, the instruction effectively creates “mini-regions” within

94



the loop, each of which correspond to a single iteration. Multiple mini-regions can be active
simultaneously. With the basic software restart markers model, having multiple active
restart regions would be problematic because results from later regions would have to be
buffered. However, with the counted loop optimization, having multiple active mini-regions,
or iterations, is acceptable because they satisfy two conditions. First, since the loop as a
whole is idempotent, and only DOALL loops are considered (no values are communicated
between iterations), each iteration is automatically idempotent and so it is safe to allow later
iterations to update architectural state. Second, because the iterations are independent of
each other, it is simple to create the fixup code block: updated induction variable values are
easily reconstructed by using just a counter and the original pre-loop values; by contrast, it
would be very difficult to deal with a non-induction variable that is live across iterations.

The counted loop optimization can reduce re-execution overhead regardless of the type
of exception that is handled. It relies on the ability to determine when all instructions
before an instance of the commitbar loop instruction have completed, but this can typi-
cally be accomplished by using existing pipeline mechanisms to track the status of in-flight
instructions. If the loop iteration counter is kept in a register, then that register also has
to be preserved across a context switch. However, even a total hardware overhead of two
registers—the other register being the restart PC—is a small cost for the other benefits
provided by using software restart markers.

4.5 Summary

This chapter discussed the advantages of vector architectures and the problems with imple-
menting precise exceptions in these designs. It showed how software restart markers can be
used to treat the vector unit like a black box that can be ignored by the operating system. It
is typically straightforward to form restart regions in vectorized functions that do not have
any overwritten input memory arrays; however, even in functions that do modify their input
arrays, restart regions can still often be created with little overhead. The issue of livelock
is a concern for systems with software-managed TLBs, but since most code has unit-stride
vector memory accesses, livelock can be easily avoided in many situations. Finally, the
techniques of prefetching for software-managed TLBs and the counted loop optimization
can be used to reduce any performance overhead from software restart markers.
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Chapter 5

Software Restart Markers in VLIW

Architectures

This chapter presents an example of the partial usage model of software restart markers
within the context of VLIW architectures. I begin by presenting some background on VLIW
architectures and discussing the issues with exception handling. I illustrate how software
restart markers can be used to support virtual memory when executing software-pipelined
loops in a VLIW machine that employs the EQ scheduling model, and I also show how the
concept of temporary state can reduce the amount of architectural state in the processor,
even in systems that do not use software restart markers.

5.1 VLIW Architecture Background

VLIW architectures are designed to exploit instruction-level parallelism, or ILP, without
the significant control logic overhead found in out-of-order superscalar processors. To ac-
complish this, the compiler extracts independent operations from the program and places
them in a single instruction, as shown in Figure 5-1. The advantage of this approach is that
the processor does not need complex hardware to detect parallelism; instead, it can simply
execute the statically scheduled program produced by the compiler. Also, the ability of the
compiler to perform global analysis on a program makes many optimizations possible that
cannot be easily accomplished in hardware.

Op6Op5Op4Op3Op2Op1

Figure 5-1: A sample VLIW instruction that contains six independent operations.

Implementations of VLIW architectures have appeared in multiple processing domains
over the years. Fisher et al. [FFY05] present a historical perspective of various VLIW ma-
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chines as well as processors that were designed to exploit ILP before the actual term “VLIW”
was coined by Fisher in [Fis83]. In the 1980s, the Multiflow Trace [CNO+87, CHJ+90]
and Cydrome Cydra 5 [RYYT89, BYA93] used VLIW architectures to try to approach
the performance of supercomputers at a substantially reduced cost. Many of the ideas
used in those machines were incorporated into later processors, notably Intel’s Itanium de-
signs [SA00, MS03], which are examples of the EPIC (explicitly parallel instruction comput-
ing) paradigm. Aside from Itanium, VLIW designs are primarily seen in the DSP and em-
bedded processor domains. Examples include the Trimedia processors [ESV+99] from NXP
(formerly Philips), the Texas Instruments C6x family of DSPs [Ses98], and the Lx family
of embedded cores from Hewlett-Packard Laboratories and STMicroelectronics [FBF+00].

Since current VLIW architectures are largely associated with the embedded processor
domain, it is common for these designs to employ an imprecise exception model. In general-
purpose systems, it is essentially a requirement to support features such as demand-paged
virtual memory and multiprogramming, so designers have been willing to incur the overhead
of buffering mechanisms to enforce in-order commit (although as shown in Chapter 2, this
overhead is becoming increasingly unacceptable). By contrast, embedded systems often do
not need to support demand paging—there may be no secondary storage for swapping—
and typically face stricter constraints with respect to area, cost, and power consumption.
Even in instances when features such as demand paging are desirable, VLIW processors
frequently have such a large number of registers that support for swappable exceptions is
prohibitively expensive due to the high context switch overhead. For example, as brought
out in Section 2.4.3, exception handling in the Cydra 5 could incur an overhead of several
cycles per operation. Thus, the drawbacks of the precise exception model have frequently
not been worth the benefits in VLIW architectures.

Using an imprecise exception model introduces the issues discussed in Chapter 2 of hav-
ing instructions in various stages of completion. For example, consider Figure 5-2, which
shows a snippet of code mapped to a VLIW architecture that can bundle three integer
operations, a load operation, and a store operation into a single instruction. Assume that
both load and multiply operations take two cycles in this architecture. Suppose that the
second load instruction causes an exception before the first load completes. In the pre-
cise exception model, the hardware would ensure that the first load completes execution
and updates architectural state before the exception is handled. In an imprecise excep-
tion model, if the exception for the second load is handled immediately and the pipeline is
flushed, the first load will be uncompleted. An alternative is to drain the pipeline and allow
in-flight instructions to complete, but this could also cause problems if later instructions
have issued—e.g. if the exception is detected after the first multiply has begun execu-
tion. The hardware-based solutions discussed in Section 2.5 can also be adapted to VLIW
architectures. For example, the current-state buffer [OSM+98] is a structure that keeps
track of which instructions are uncompleted. Upon resuming after an exception, a process
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can use this information to avoid re-executing instructions. Unlike the instruction window
scheme [TD93], the current-state buffer does not store source operands, and it also does not
buffer results. Instead, it relies on compiler scheduling restrictions to ensure that uncom-
pleted instructions have their source operands preserved. While this avoids a substantial
amount of hardware overhead, the actual buffer still needs to be saved and restored in the
event of an exception, which can be significant in processors that support a large number
of in-flight instructions. Replay buffers [Rud97] are designed to avoid compiler restrictions
by buffering results, this approach is even more hardware-intensive.

a[0] = b[0] * c;
a[1] = e[0] * f;

sw r2,4(a)

sw r1,(a)

mult r2,r2,f

mult r1,r1,c

lw r2,(e)

lw r1,(b)

StoreLoadInt3Int2Int1

time

Figure 5-2: A code segment that is mapped to a VLIW architecture that can execute
three integer operations, one load operation, and one store operation in parallel. Load and
multiply operations have a two-cycle latency. The arrows between operations indicate the
flow of data.

Since embedded processors frequently do not support features such as virtual memory,
the problems discussed above are somewhat mitigated by the fact that often the primary
type of exception which requires process restart in an embedded system is an asynchronous
exception, such as a timer interrupt. An asynchronous exception is not correlated with a
particular instruction, so it is safe to simply drain the pipeline and restart after the last
completed instruction. For example, if a timer interrupt occurs after the first multiply has
been issued in Figure 5-2, the processor can simply allow all instructions to complete and
then restart after the interrupt from the instruction containing the second multiply opera-
tion. While there may also be support for restartable synchronous exceptions in embedded
systems—e.g. for trap instructions or for the emulation of floating-point instructions in
software—these are typically predictable at compile-time (a compiler knows when it in-
serts a trap instruction, while a TLB miss is often unpredictable), and the code can be
appropriately scheduled so that it is safe to drain the pipeline in the event of an exception.

Although many existing embedded processors do not implement robust exception sup-
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port, the blurring of the boundary between the embedded and general-purpose domains
could lead to increased requirements for features such as demand paging in the future.
However, even in systems that do not support virtual memory, there is another problem
with asynchronous exception handling that is not illustrated in the example of Figure 5-2.
Some compilers take advantage of the exposed pipelines in VLIW architectures and employ
certain techniques which rely on specific sequences of instructions to be executed without
interruption. To avoid any issue with unpredictable asynchronous exceptions, these designs
may disable exception handling during these sections of code. Fisher et al. refer to this
as an “unprotected state” [FFY05], and list some of the disadvantages of this approach,
including debugging difficulties and complications for real-time applications. They argue
that future embedded systems should support precise exceptions in order to have a “clean”
programming model. The problem with this perspective is that precise exceptions can lead
to unacceptable amounts of overhead from various sources. Due to the difficulties with
handling synchronous exceptions, and the problems in some systems with asynchronous ex-
ceptions, it is worthwhile to consider the use of software restart markers in VLIW designs.

5.2 Issues with Software Restart Markers in VLIW Archi-

tectures

Chapter 4 showed how software restart markers could be used in vector architectures to
substantially reduce exception management overhead. VLIW machines share some similar-
ities with vector processors: both types of designs rely heavily on compile-time information
to exploit parallelism and simplify hardware complexity; both types of designs excel at
accelerating loops; and both types of designs tend to have large amounts of architectural
state. At first glance, software restart markers might seem to be even more of a natural fit
for VLIW architectures than for vector architectures, as a VLIW compiler’s greater amount
of control over the execution schedule would appear to mesh well with an exception model
that also depends on the compiler. However, there are certain characteristics of VLIW ma-
chines which somewhat reduce the benefits of software restart markers seen in Chapter 4.
This section discusses those issues.

A notable difference between vector and VLIW processors that affects the applicable
software restart markers usage model is the fact that a vector unit is typically a coprocessor,
while a VLIW design is often the main processor in the system. A vector machine normally
has a scalar control processor that is used to handle non-vectorized code, making it a natural
fit for the black box usage model: the control processor can support precise exceptions for
scalar code, while all vectorized code is placed within restart regions. As a result, the entire
vector register file can be treated as temporary state. It is also possible for a VLIW design
to serve as a coprocessor, in which case the black box model could be applied. However,
the fact that VLIW architectures exploit ILP—which can be targeted throughout the entire
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program, albeit with varying degrees of success—and vector architectures exploit DLP—
which is primarily targeted in loops within leaf functions—makes it more likely for a VLIW
design to be used as a main processor. In these situations, the black box usage model
cannot be employed, meaning that the VLIW registers cannot be completely mapped to
temporary state.

In a system with a single main processor, that processor is typically responsible for
executing the various parts of the program that cannot be easily accelerated, or if there
are no coprocessors, the main processor simply executes the entire program. This means
that VLIW architectures are often used to execute portions of the program with little or
no parallelism, such as control-intensive SPECint-style code. This type of code is likely to
contain many non-idempotent updates. Thus, if software restart markers are to serve as the
only exception model in a VLIW machine, there are two options that can be considered.
One approach is to always try to create large restart regions using the techniques described
in Chapter 4, such as copying memory arrays. However, a key reason why those techniques
work in vector designs is that the speedup of vector execution often far exceeds any perfor-
mance degradation from restart region formation. By contrast, when a VLIW architecture
executes regions of code with little parallelism, there would probably be little performance
gain and significant overhead from inserting software restart markers. A second approach
is to simply have small restart regions when executing non-parallel code—so execution be-
comes primarily sequential and serial—and to use large restart regions where there is ample
parallelism. This solution seems reasonable: since a lack of parallelism already keeps the
processor from achieving a high level of performance, the overhead of small restart regions
should not degrade performance much further. The overhead could be limited in archi-
tectures that support software speculation, as the compiler can enlarge restart regions by
speculating non-idempotent operations and placing the actual exception checks in separate
regions. This technique would be similar to the work with sentinel scheduling [MCH+92],
and might make the complete usage model of software restart markers more appealing.
However, in VLIW architectures without speculation, the potential performance degrada-
tion caused by small restart regions may prove to be unacceptable to many designers, even
when executing code that has little inherent parallelism.

Despite the issues with software restart markers in VLIW architectures, there are still
benefits to be gained from using this exception handling approach. The next section dis-
cusses how the partial usage model of software restart markers can be applied to VLIW
designs.

5.3 Handling Exceptions in Software-Pipelined Loops

When a VLIW compiler schedules code, it specifies a maximum latency for each operation,
and it is the hardware’s responsibility to handle situations when that latency is exceeded.
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For example, if the compiler schedules a load operation with the assumption that the value
will come from the L1 cache, and there is an L1 cache miss, the hardware has to stall the
pipeline until the load value is returned. However, this restriction does not account for
the possibility of values being produced sooner than the compiler’s assumed latency—e.g.
a value predicted to come from the L2 cache might actually be present in the L1 cache.
Early values can be an issue depending on whether the compiler uses an equals (EQ) or
less-than-or-equals (LEQ) scheduling model [FFY05]. In the EQ model, a value will not be
written early; the hardware will enforce the compiler’s specified latency for each operation.
In the LEQ model, operations can complete at any time up to the compiler’s specified
latency. Scheduling under the LEQ model is similar to typical scheduling for a sequential
architecture, in that two values with overlapping lifetimes—i.e. the time from a value’s
definition to its last use—cannot be mapped to the same register. Figure 5-2 is an example
of the LEQ model. In that figure, two registers, r1 and r2, are used to pass values between
operations. By contrast, Figure 5-3 illustrates how the EQ scheduling model can be used to
reduce register pressure. In Figure 5-3, only the r1 register is used to pass values between
operations. The reduction in register usage is possible because each operation writes its
result to r1 exactly at the compiler’s specified time: the first load updates r1 in the cycle
that the first multiply is issued, and the multiply obtains the value of r1 in that cycle;
the second load then updates r1 in the next cycle, and so on. In a sense, the lifetime of
a register under the EQ scheduling model actually begins when the value is produced, not
when the operation that produces the value is issued. This enables more efficient register
allocation.

a[0] = b[0] * c;
a[1] = e[0] * f;

sw r1,4(a)

sw r1,(a)

mult r1,r1,f

mult r1,r1,c

lw r1,(e)

lw r1,(b)

StoreLoadInt3Int2Int1

time

Figure 5-3: A code segment that is mapped to a VLIW architecture with an EQ schedul-
ing model. Load and multiply operations have a two-cycle latency. The arrows between
operations indicate the flow of data and also indicate exactly when each result is produced.

However, exception handling is complicated by using the EQ model. Suppose a timer
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interrupt occurs after the first multiply is issued in Figure 5-3. If instruction issue is halted
and all in-flight instructions are allowed to complete, the value that will end up in r1 when
the interrupt is handled will be the result of the first multiply. If the process then resumes
execution from the instruction containing the second multiply operation, the value of r1

will be incorrect: while it should contain the result of the second load, it actually contains
the result of the first multiply operation. One approach to resolve this issue is to simply
disable all exceptions when processing long-latency operations under the EQ scheduling
model. However, this solution can result in long periods of time without exceptions being
enabled, particularly when dealing with loops.

A common technique to statically exploit ILP is to software pipeline loops [Cha81] so
that multiple iterations will have their execution overlapped. There are a variety of methods
to implement software pipelining [AJLA95], with modulo scheduling [RG81] probably being
the most popular approach. While there has been a great deal of research in the field of
software pipelining, and it can be very effective at accelerating loops, the fact that it causes
multiple iterations to be in-flight simultaneously is problematic for VLIW architectures
that use the EQ scheduling model. Consider the example shown in Figure 5-4. The C code
is similar to the previous examples shown in this chapter, except now the statements are
placed within a loop. A kernel executes the majority of the loop iterations, while a prologue
is used to set up the software pipeline and an epilogue is used to exit the pipeline. The two
load operations from a single iteration target the same register; similarly, the two multiply
operations from a single iteration also target the same register. The problem of exception
handling now lasts throughout the duration of the software-pipelined loop. The result of
each instance of a load or multiply operation in a particular kernel iteration is supposed to
be used by an operation that will be issued in the subsequent kernel iteration. Thus, if an
exception is handled during the kernel, and in-flight instructions are allowed to drain, r1
and r2 will have incorrect values when the process resumes.

The Texas Instruments C6x architecture uses the EQ scheduling model, which is referred
to as multiple assignment [SL99]. It deals with the exception handling problem by simply
disabling exceptions during long-latency operations, including during software-pipelined
loops. In order to bound the response time for interrupts under this scheme, the compiler
has to set up the code so that the software pipeline periodically drains and the system can
handle any interrupts. A similar approach devised by Texas Instruments [SS01] improves
interrupt response time by setting up special code sections used to drain the pipeline as soon
as an interrupt is detected, as opposed to waiting for a predetermined number of iterations
to be executed before draining the pipeline and checking for interrupts. This solution
effectively reduces the response time for an interrupt to the time required to execute a
single loop iteration, but it does not enable support for synchronous exceptions within the
loop. Modulo schedule buffers [MH01] are used in an alternative hardware-based approach
that reduces interrupt response latency to the time for a single iteration, but again this work
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for (i=0;i<n;i++) {
a[2*i] = b[i]*c;
a[2*i+1] = e[i]*f;

}

time

sw r2,-4(a)

sw r2,(a)

sw r2,-4(a)mult r2,r1,f

sw r2,(a)mult r2,r1,c

sw r2,-4(a)lw r1,(e)mult r2,r1,fadd e,e,4brlc loop

sw r2,(a)lw r1,(b)mult r2,r1,cadd a,a,8add b,b,4

lw r1,(e)mult r2,r1,fadd e,e,4

lw r1,(b)mult r2,r1,cadd b,b,4

lw r1,(e)add e,e,4

lw r1,(b)move esc, 2sub lc, i, 1add b,b,4

StoreLoadInt3Int2Int1

loop:

prologue

epilogue

kernel

Figure 5-4: A software-pipelined loop in a VLIW architecture with an EQ scheduling model.
Load and multiply operations have a two-cycle latency, while integer ALU operations have a
single-cycle latency. Operations corresponding to a particular iteration have the same color.
A modified version of the loop support in the Cydra 5 [DHB89] is used in this example. A
special loop counter register, lc, holds the value of the number of uncompleted iterations.
The epilogue stage counter (esc) register holds the value of the number of iterations that
need to be executed in the epilogue. The brlc operation branches to the specified address
if the loop counter is greater than the epilogue stage counter esc, and it also decrements
the loop counter by 1. Assume that i is always greater than or equal to 3 in this example.
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does not allow synchronous exceptions. Finally, replay buffers [Rud97] do allow synchronous
exceptions, but increase hardware complexity.

Software restart markers can be used to enable both asynchronous and synchronous
exception handling within a software-pipelined loop under the EQ scheduling model. By
simply placing the loop within a restart region, the problems discussed above are avoided.
In the event of an exception, there is no issue of performing incorrect register updates, since
the loop will be restarted from a “safe” point. The analysis discussed in Chapter 4 can
also be used for VLIW architectures to form restart regions. For example, the counted loop
optimization can be used with the loop in Figure 5-4. All that is needed is code before the
software-pipelined loop to preserve the induction variable values, and a recovery block to
restart the software pipeline from the earliest uncompleted loop iteration in the event of an
exception. Figure 5-5 shows these two code blocks. The pre-pipeline code that is inserted
before the prologue preserves the original values of the induction variables. The fixup code
that is branched to after handling an exception will adjust the induction variables by using
the value contained in the lc register, which decreases from the trip count of the loop to 0.
The brlc operation at the end of each loop iteration decrements the value of lc; thus, it is
similar to the commitbar loop instruction from Section 4.4.2.

The loop in Figure 5-4 is idempotent, which makes it simple to form restart regions. As
stated earlier, if this criterion is not satisfied, then the techniques described in Chapter 4
could be used to make the loop idempotent. However, an interesting option to consider is
placing a restart region around a non-idempotent loop without performing any transforma-
tions such as copying memory arrays. This idea is possible for two reasons. First, a VLIW
instruction contains multiple operations, so the brlc operation—which serves as a type
of commit barrier—can issue simultaneously with other operations. Thus, the “barrier”
instruction can perform other useful work besides simply switching to a new restart region.
Second, in the EQ model, the compiler has complete control over the execution schedule, so
any non-idempotent updates will occur according to the compiler’s specified latency. These
two characteristics make it possible for the compiler to bundle a non-idempotent operation
in the same instruction as the commit barrier for a restart region. Having the barrier in-
struction perform a non-idempotent update is not prohibited by the software restart markers
model, as the only requirement for a barrier is that if it completes, the current restart region
is ended. In fact, previous work on software restart markers [Ham01, AHKW02] adopted
the approach of always attaching a barrier to an existing non-idempotent instruction in the
program, rather than inserting a new instruction.

To illustrate how the same technique can be applied to VLIW architectures, consider
the loop in Figure 5-6, which is a slightly modified version of the loop in Figure 5-4. In
the new example, the second loop statement modifies e[i], which is also used to provide
an input value. Despite the fact that this statement makes the loop non-idempotent, the
store operation is scheduled in the same cycle as the brlc operation for the corresponding
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time

will finish the 
software pipeline.

otherwise execute 
a special code 
segment that

Then if lc is 
greater than esc, 
jump to loop;

Execute the 
instructions from 
the prologue.

add e,r5,r1add b,r4,r1add a,r3,r2

sll r2,r1,3sll r1,r1,2

sub r1,i,lc

.

.

.

lc or esc registers
prologue no 
longer contains 
updates to the

begin restart 
region at 
prologue

sub i, i, 1move esc, 2sub lc,i,1

move r5,emove r4,bmove r3,a

StoreLoadInt3Int2Int1

pre_pipeline:

fixup_code:

Figure 5-5: The pre-pipeline and fixup code needed to implement the counted loop opti-
mization for the example of Figure 5-4. The pre-pipeline code makes copies of the induction
variables and also relocates the initializations of the lc and esc registers to before the restart
region, in case an exception occurs during the prologue. The value of i is also decremented
by 1 to ensure the pointers are correctly updated in the fixup code. The fixup code restores
the pointer values and restarts the software pipeline. Depending on the value of lc, the
fixup code will either return to the loop kernel or clean up the software pipeline so that it
completes successfully.
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iteration, which means that the update of e[i] will only occur if the loop counter is also
updated. Thus, the non-idempotent update will never be re-executed. Another requirement
for correctness is that the store to e[i] is guaranteed to execute at some point in the loop.
As long as stores are allowed to update memory once they are issued, then even if an
exception occurs in the cycle after the brlc operation completes, e[i] will still receive the
correct value. Although it is unlikely that all non-idempotent loops can be handled in this
manner, the example shows an alternative method to use software restart markers without
copying array values.

for (i=0;i<n;i++) {
a[2*i] = b[i]*c;
e[i] = e[i]*f;

}

time

sw r2,-8(e)

sw r2,(a)

sw r2,-8(e)mult r2,r1,f

sw r2,(a)mult r2,r1,c

sw r2,-8(e)lw r1,(e)mult r2,r1,fadd e,e,4brlc loop

sw r2,(a)lw r1,(b)mult r2,r1,cadd a,a,8add b,b,4

lw r1,(e)mult r2,r1,fadd e,e,4

lw r1,(b)mult r2,r1,cadd b,b,4

lw r1,(e)add e,e,4

lw r1,(b)add b,b,4

StoreLoadInt3Int2Int1

loop:

prologue

epilogue

kernel

Figure 5-6: The loop of Figure 5-4 slightly modified to contain a non-idempotent update.
The initializations of lc and esc now occur before the prologue and are not shown.

Although in the above examples, software restart markers are only used in part of the
code—i.e. during the execution of software-pipelined loops—they provide a substantial
benefit by allowing the compiler to reduce register pressure with the EQ scheduling model
while still supporting both asynchronous and synchronous exceptions. The next section
shows how the benefits can be increased by using temporary state.

5.4 Temporary State in VLIW Architectures

In the example in Figure 5-4, r1 and r2 are used to hold temporary values being passed
between operations. Since these values are only used once, and restart regions allow them
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to be recreated in the event of an exception, it would be ideal if the values did not have
to be mapped to registers at all. In fact, in an actual pipeline, the values would typically
be read from the bypass network. If the architecture exposed the inputs to the ALU, the
compiler could explicitly target them for short-lived values, avoiding the need to use the
register file. This approach could allow the amount of architectural state in the system
to be significantly reduced; for example, a general-purpose or rotating register file in a
VLIW design could contain fewer registers without harming performance. Figure 5-7 shows
how the values previously mapped to r1 and r2 are now mapped to the ALU inputs.
While the given example only eliminates the use of two registers, more complex loops could
obtain a significant benefit from exposing this temporary state. This technique would
probably not require any additional bits for encoding, as there is often wasted space in a
VLIW instruction; alternatively, the revised architectural specification could simply use the
defunct encodings for the registers which have been removed to represent the ALU inputs.
One disadvantage of this scheme is that a register will have to be used for a value which
is needed by multiple operations, as the operation that produces the value can only target
one ALU input. An alternative approach is to add a small number of accumulators in
the pipeline which can be read by multiple operations. The compiler can then map short-
lived values to these accumulators without having to preserve their state in the event of an
exception.

An interesting point to note is that the concept of temporary state can be used in
certain cases even in processors that do not employ the software restart markers model.
For example, as stated earlier, existing VLIW designs that use the EQ scheduling model
typically do not handle synchronous exceptions during the execution of a software-pipelined
loop, and only handle asynchronous exceptions after the software pipeline is drained. This
means that in those systems, an exception will only be handled at the boundary between
loop iterations; thus, any temporary values which are only used within a single iteration
will not be live once the exception is handled. The result of this observation is that it is
safe for the compiler to explicitly target ALU inputs as in Figure 5-7, even without the use
of software restart markers, as long as the produced values are not live across iterations.
Therefore, even if a particular VLIW design does not need to support features such as
demand paging, it is worth considering the use of the EQ scheduling model in conjunction
with the concept of temporary state to potentially reduce the number of architectural
registers in the system.

The idea of targeting ALU inputs or simply avoiding register file accesses has been
explored in previous work. Energy-exposed architectures [Ham01, AHKW02] use software
restart markers to expose pipeline bypass latches, but this work focuses on reducing energy
consumption in a simple in-order pipeline, while the point of this thesis section is to show
how the amount of architectural state in a VLIW design can be reduced. Instruction level
distributed processing [KS02c] uses accumulators to hold short-lived values, but accumulator
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for (i=0;i<n;i++) {
a[2*i] = b[i]*c;
a[2*i+1] = e[i]*f;

}

time

sw rt,-4(a)

sw rt,(a)

sw rt,-4(a)
mult
s/rt,rs,f

sw rt,(a)
mult
s/rt,rs,c

sw rt,-4(a)lw i3/rs,(e)
mult
s/rt,rs,f

add e,e,4brlc loop

sw rt,(a)lw i3/rs,(b)
mult
s/rt,rs,c

add a,a,8add b,b,4

lw i3/rs,(e)
mult
s/rt,rs,f

add e,e,4

lw i3/rs,(b)
mult
s/rt,rs,c

add b,b,4

lw i3/rs,(e)add e,e,4

lw i3/rs,(b)add b,b,4

StoreLoadInt3Int2Int1

loop:

prologue

epilogue

kernel

Figure 5-7: The software-pipelined loop of Figure 5-4 is modified so that temporary values
are explicitly mapped to ALU inputs instead of the register file. Similar to the MIPS
architecture, rs corresponds to the ALU input that holds an instruction’s first encoded
source operand, while rt corresponds to the ALU input that holds an instruction’s second
encoded source operand. In a sw instruction, the store-data register is actually the second
encoded source operand, which is why rt is used for the stores in the example.
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values have to be buffered, while software restart markers enable the targeting of ALU
inputs without any buffering. Sami et al. [SSS+02] discuss a design for embedded VLIW
architectures in which short-lived values that can be exclusively provided by the bypass
network will not be written back to the register file. However, their technique relies on
modifying the pipeline logic, and if it is detected that an instruction will cause an exception,
all previously issued instructions must write their values to the register file even if those
values are short-lived. Static strands [SWL05] are chains of dependent instructions that are
created at compile-time, avoiding the need to map temporary values to registers. However,
each strand has to be treated as an atomic unit, so a strand cannot contain an instruction
which might cause a synchronous exception. Also, since each instruction in a chain is
scheduled immediately after the instruction on which it depends, this can lead to delays if
there are long-latency instructions in the chain. By contrast, as shown in the example of
Figure 5-7, the concept of temporary state can be used while still allowing the compiler to
break apart dependence chains during scheduling.

5.5 Summary

This chapter presented a brief overview of VLIW architectures, which are primarily used
in embedded systems. Typically, these VLIW machines do not support features such as
demand paging and sometimes disable exception handling altogether for certain sections
of code. Software restart markers would seem to be a natural fit for VLIW architectures,
which rely heavily on the compiler. However, the fact that a VLIW processor is often the
main processor in the system makes it more appropriate to employ the partial usage model
of software restart markers, in which restart regions are formed around software-pipelined
loops. This approach can enable support for both synchronous and asynchronous exceptions
even when using the EQ scheduling model. Additionally, the notion of temporary state can
be used to expose the inputs to the ALU, reducing the amount of architectural state needed
to achieve a given level of performance.
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Chapter 6

Software Restart Markers in

Multithreaded Architectures

This chapter shows how the complete usage model of software restart markers can be applied
to multithreaded architectures. I first present a brief overview of multithreading, and then
illustrate how the concept of temporary state can be used to support a greater number of
active threads.

6.1 Multithreaded Architecture Background

A multithreaded architecture exploits thread-level parallelism by enabling multiple threads
to be active simultaneously. This can be accomplished by allowing more than one thread
to execute in the same cycle using independent resources (i.e. multiple cores or multiple
pipelines within a core), or by interleaving the execution of threads in different cycles on
the same pipeline. Multithreading can help to alleviate the performance impact of stalls
caused by long-latency instructions. A potential drawback of interleaving multiple threads
is that the execution time for a single thread may be lengthened; this is a case of favoring
throughput over per-thread latency.

There are several different types of designs for multithreaded architectures. Fine-grained
multithreading can switch to a new thread after each instruction; examples of this ap-
proach include the Denelcor HEP [Smi81], the Horizon processor [TS88], and the Tera
Multithreaded Architecture [ACC+90]. Coarse-grained multithreading executes a thread
until some long-latency event occurs, such as an L2 cache miss; the MIT Alewife ma-
chine [ABC+95] and the IBM PowerPC RS64 IV processor [BEKK00] use this approach.
Simultaneous multithreading (SMT) [TEL95] allows instructions from multiple threads to
issue in the same cycle; this technique is incorporated in Intel’s Pentium 4 (where it is
referred to as Hyper-Threading) [MBH+02] and IBM’s POWER5 [SKT+05]. All of these
forms of multithreading are surveyed in greater detail by Ungerer, Robič and Šilc [URv03],
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who label them as types of explicit multithreading, where each thread is user-defined. The
authors contrast this category with implicit multithreading, in which a processor executes
speculative threads generated from a single program. Proposals that use thread-level spec-
ulation include single-program speculative multithreading [DOOB95], multiscalar proces-
sors [SBV95], and the superthreaded processor architecture [THA+99].

As mentioned earlier, multithreaded architectures often focus more on increasing through-
put rather than reducing per-thread latency. If there are a sufficient number of active
threads in the system to utilize the processor resources, employing a complex out-of-order
superscalar design in an attempt to improve ILP might not be worth the associated draw-
backs, particularly for certain application domains with little ILP, such as server programs.
For example, Sun’s Niagara processor [KAO05], which is designed for server systems, con-
tains eight single-issue in-order pipelines, each of which supports four threads. Even for
simultaneous multithreading, which is typically associated with complex superscalars, pre-
vious work has shown that using in-order pipelines in a system with four threads can
approach the performance of using out-of-order execution [HS99]. In general, in-order ex-
ecution for multithreaded processors is more energy-efficient than out-of-order execution
while often sacrificing little in terms of performance.

Chapter 2 showed that implementing precise exceptions is straightforward in simple in-
order pipelines, and does not require excessive buffering of values. Thus, there would seem
to be little opportunity to apply software restart markers to multithreading architectures:
in-order execution is often the preferred approach in multithreading processors, simplifying
precise exception support; and even multithreaded processors that execute instructions out-
of-order likely have existing structures such as reorder buffers which can also be used to
implement precise exceptions. However, one characteristic common to all multithreaded
architectures is that they have a much greater amount of architectural state than a typical
sequential architecture. Each thread needs its own user state, including general-purpose
registers, as shown in Figure 6-1. A system that supports a large number of threads may
enable greater throughput, but this advantage comes at the cost of the area required for
the threads’ state. Additionally, the amount of individual state for each thread can have
a significant effect on context switch overhead depending on the type of multithreading
design that is used. These issues point to the idea of using temporary state to reduce the
per-thread resource requirements.

6.2 Temporary State in Multithreaded Architectures

Just as in Section 5.4, temporary state can be used for short-lived values instead of archi-
tectural registers. Consider the C code statements in Figure 6-2(a), which are mapped to a
single thread in a multithreaded architecture (which could use coarse-grained, simultaneous,
or speculative multithreading). Figure 6-2(b) shows the assembly code for these statements,
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PC,
GPRs,

etc.

Thread 1

PC,
GPRs,

etc.

Thread 2

PC,
GPRs,

etc.

Thread 3

PC,
GPRs,

etc.

Thread 4

…

Figure 6-1: In a multithreaded design, each thread has its own architectural state.

compiled for a single-issue in-order pipeline that implements the precise exception model.
Figure 6-2(c) shows the assembly code for the same segment, but compiled for a system
that uses software restart markers. As in Section 5.4, ALU inputs are explicitly targeted
by the compiler in this example, avoiding the use of the r2 register.

The example of temporary state for VLIW architectures focused on exposing the ALU
inputs to reduce the number of architectural registers required to achieve a certain level
of single-thread performance, potentially enabling a reduction in the size of the register
file. Since multithreaded architectures focus more on improving throughput rather than de-
creasing per-thread latency, a more natural application of temporary state to multithreaded
designs is to use the architectural register reduction to increase the number of threads in
a system with a fixed number of physical registers. Suppose that the code segment from
Figure 6-2(a) was a single iteration from the loop shown in Figure 6-3(a). If this loop is
mapped to a multithreaded architecture that enables a loop to be parallelized by having
each thread execute an iteration, the resulting code might look like Figure 6-3(b). Multiple
threads are spawned so that iterations can execute in parallel. The induction variable i

can then be updated at the join point (not shown in the figure). Figure 6-3(b) shows 16
simultaneously active threads. If the threads share a set of physical registers, then reducing
the per-thread physical register requirements can allow more threads to be spawned. For
example, suppose there are 64 total physical registers in the system, with 32 of those regis-
ters restricted to hold global shared values such as constants or pointers, and the other 32
registers usable by individual threads to hold private values. The total number of simul-
taneously active threads is then determined by the number of private registers required by
each thread. In Figure 6-3(b), the a, b, and c pointers will be mapped to shared registers,
while the values held in r1 and r2 are private to each thread. Thus, each thread requires 2
private registers, which limits the total number of threads to 16. When temporary state is
used in Figure 6-3(c), each thread only needs a single private register, enabling 32 threads
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a[0] = a[0] + b[0];

c[0] = c[0] << 1;

i++;

sw r1, (c)

add i, i, 1

sll r1, r1, 1

lw r1, (c)

sw r1, (a)

add r1, r1, r2

lw r2, (b)

lw r1, (a)

sw.bar rt, (c)

add.bar i, i, 1

sll rt, rs, 1

lw rs, (c)

sw.bar rt, (a)

add rt, r1, rt

lw rt, (b)

lw r1, (a)

(a) (b) (c)

Figure 6-2: (a) A C code fragment that is to be compiled for a single-issue in-order MIPS
processor. (b) Assembly code for the fragment when using the precise exception model. (c)
Assembly code for the fragment when using software restart markers. Short-lived values
are explicitly mapped to the ALU inputs rs and rt. The last instruction in each restart
region serves as a commit barrier.
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to be active simultaneously. Even if the processor has fewer than 32 pipelines and threads
have to share execution resources, a greater number of threads can help to hide stalls due
to events such as cache misses.

for (i = 0; i < n; i++) {

a[i] = a[i] + b[i];

c[i] = c[i] << 1;

}

Thread 1

sw r1, (c)

sll r1, r1, 1

lw r1, (c)

sw r1, (a)

add r1, r1, r2

lw r2, (b)

lw r1, (a)

(a)

(b)

(c)

Thread 2

sw r1, 4(c)

sll r1, r1, 1

lw r1, 4(c)

sw r1, 4(a)

add r1, r1, r2

lw r2, 4(b)

lw r1, 4(a)

Thread 3

sw r1, 8(c)

sll r1, r1, 1

lw r1, 8(c)

sw r1, 8(a)

add r1, r1, r2

lw r2, 8(b)

lw r1, 8(a)

Thread 16

sw r1, 60(c)

sll r1, r1, 1

lw r1, 60(c)

sw r1, 60(a)

add r1, r1, r2

lw r2, 60(b)

lw r1, 60(a)

…

Thread 1

sw.bar rt, (c)

sll rt, rs, 1

lw rs, (c)

sw.bar rt, (a)

add rt, r1, rt

lw rt, (b)

lw r1, (a)

Thread 2

sw.bar rt, 4(c)

sll rt, rs, 1

lw rs, 4(c)

sw.bar rt, 4(a)

add rt, r1, rt

lw rt, 4(b)

lw r1, 4(a)

Thread 3

sw.bar rt, 8(c)

sll rt, rs, 1

lw rs, 8(c)

sw.bar rt, 8(a)

add rt, r1, rt

lw rt, 8(b)

lw r1, 8(a)

Thread 32

sw.bar rt, 124(c)

sll rt, rs, 1

lw rs, 124(c)

sw.bar rt, 124(a)

add rt, r1, rt

lw rt, 124(b)

lw r1, 124(a)

…

Figure 6-3: (a) A C loop that is mapped to a multithreaded architecture, with each thread
executing an iteration. (b) Assembly code for each thread under the precise exception
model. Each thread requires two private registers, r1 and r2. (c) Assembly code for each
thread under the software restart markers model. Each thread only requires one private
register, enabling a greater number of threads.

Note that the combination of restart regions and multithreading can create an inter-
action with the L2 cache design and replacement policy when using coarse-grained multi-
threading. To guarantee forward progress, there needs to be some mechanism to ensure that
all of the cache lines accessed by a thread in a particular region can coexist in the L2 cache
simultaneously (i.e. they map to different sets or ways within a set), and also to prevent
other threads’ memory accesses from causing those lines to continually be evicted. Another
point of interest is that the complete usage model of software restart markers is adopted
throughout the program, so many of the restart regions may be small. This issue is not a
concern for single-issue in-order pipelines, as it would not be possible to exploit ILP even
in larger regions. The use of small restart regions also limits the re-execution overhead in
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the event of an exception, although since simple pipelines do not employ techniques seen in
superscalar or vector designs to hide memory access latency, cache misses would probably
have a far greater effect on performance than the need to occasionally re-execute a few
instructions. The complete usage model discussed here is the same as the one described in
the work on energy-exposed architectures [Ham01, AHKW02].

The idea of using variable-size hardware contexts for each thread has been explored
in other work. Register relocation [WW93] allows a physical register file to be flexibly
partitioned into variable-size contexts. The compiler allocates registers for each thread
and provides information to the processor about the total number of registers used by each
thread; a special hardware register holds a relocation mask which then provides each thread’s
offset into the physical register file. The named-state register file [ND95] is an associative
register file that serves as a cache for thread contexts. Live variables are brought into the
register file as needed, and can be placed anywhere within the structure. Thus, threads
with large numbers of active variables will be allocated a greater fraction of the physical
register resources than threads with only a few live variables. Mini-threads [REL03] are
used to increase the number of supported threads in an SMT design without increasing the
size of the physical register file. Each hardware context can be partitioned among multiple
mini-threads—e.g. if a regular context has 32 architectural registers, then 10 architectural
registers can be allocated to one mini-thread while 22 architectural registers can be allocated
to a second mini-thread with greater register pressure. The authors’ initial evaluation of
the technique restricts the partitioning so that each context is statically partitioned in half
between two-mini-threads, but this is not a general requirement. The use of mini-threads
can potentially increase per-thread latency due to the fewer registers, but can also increase
thread-level parallelism. Rodrigues et al. [RMKU04] also discuss the sharing of a register
context between very fine grained threads, or “threadlets.” Software restart markers can
be used in conjunction with the above techniques to further reduce the per-thread register
requirements.

It is also interesting to consider the potential application of temporary state to multi-
threaded architectures with fixed-size contexts for each thread. As with a VLIW architec-
ture, a possible approach is to try to decrease the total number of registers in the system by
reducing the per-thread architectural register usage (and maintaining a constant number
of threads). However, the actual magnitude of this reduction is questionable. Section 5.4
targets a VLIW design, in which there may be multiple pipelines and the compiler has com-
plete control over the execution schedule, so even long-latency operations can target ALU
inputs. By contrast, this section considers a single pipeline for each thread in which each
instruction will overwrite the ALU inputs as it enters the execution stage (although read
caching [Ham01, AHKW02] allows an instruction to avoid overwriting an ALU input if the
previous instruction shares the same source operand). Thus, only short-lived values that
are part of an unbroken dependence chain will be mapped to temporary state. As shown
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in Figure 6-2(b), even under the precise exception model the register allocator can simply
reuse the same architectural registers for short-lived values. If the default configuration
with the precise exception model uses 32 architectural registers for each thread, then the
explicit targeting of ALU inputs might eliminate the need for one or two of those registers
without requiring the remaining registers to be re-allocated. Additionally, any benefit is
reduced by the fact that each thread requires a restart PC, although the use of registers
to hold restart addresses can be avoided by storing the addresses in memory. Thus, using
software restart markers in multithreaded architectures with fixed-size contexts may not
provide any significant advantage over the precise exception model.

6.3 Summary

This chapter considered the issue of exception handling in multithreaded architectures. It
is often more cost-effective for a multithreaded design to use simple pipelines and focus
on exploiting thread-level parallelism rather than using the complex ILP-enhancing out-
of-order execution techniques found in modern superscalar processors. Simple in-order
pipelines make it straightforward to implement precise exceptions; however, they do not
address the issue of the number of registers required by each thread. Software restart
markers can be used to map short-lived values to temporary state, which can enable a
greater number of active threads in the system.
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Chapter 7

Software Restart Marker Compiler

Implementation for Vector-Thread

Architectures

As stated in the introduction, this thesis was motivated by a desire to create a low-overhead
exception model for explicitly parallel architectures, and software restart markers are the
basis of that model. Chapters 4, 5, and 6 discussed conceptual software restart marker
designs for vector, VLIW, and multithreaded architectures. In the following two chap-
ters, I present an actual implementation of software restart markers within the context of
vector-thread (VT) architectures [KBH+04a, KBH+04b], specifically using the Scale VT ar-
chitecture as a target platform. Scale simultaneously exploits multiple forms of parallelism,
enabling it to target a wide variety of applications. It incorporates several features that
are used to achieve a high level of performance in an energy-efficient manner. However,
these same features also make it difficult to implement conventional exception handling
approaches. Scale supports a large number of in-flight operations, contains a significant
amount of architectural state, and exposes many pipeline details to the compiler. All of
these characteristics introduce a substantial amount of overhead for the exception handling
mechanisms discussed in Chapter 2. By using software restart markers as a low-overhead
exception model, it becomes possible to retain the advantages of Scale with respect to per-
formance, energy consumption, and area while still enabling support for features such as
demand-paged virtual memory.

This chapter focuses on the compiler implementation of software restart markers for the
Scale design. I first present an overview of the general vector-thread architectural paradigm
as well as the Scale vector-thread architecture, and then I discuss the characteristics of Scale
that make precise exception support impractical. Next, I describe the compiler analysis used
to form restart regions for vector-style Scale code. Finally, I discuss how software restart
markers can be used with threaded code in Scale.
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7.1 Vector-Thread Architecture Background

Vector-thread architectures unify the vector and multithreaded execution models. This
paradigm enables the efficient exploitation of multiple forms of parallelism within a single
design. In this section, I present a brief overview of the vector-thread architectural paradigm
and the Scale VT architecture.

7.1.1 Vector-Thread Architectural Paradigm

In the VT architectural model, a control processor interacts with a vector of virtual proces-
sors. Each virtual processor (VP) is a thread that contains a set of registers and execution
resources. VPs execute RISC-like instructions that are grouped into atomic instruction
blocks (AIBs). The control processor can vector-fetch an AIB that will be executed by all
of the VPs in parallel, thus exploiting data-level parallelism (DLP). The control processor
can also execute vector-load and vector-store commands to transfer blocks of data between
VPs and memory. Each VP can also direct its own control flow with a thread-fetch of the
next AIB, thus enabling thread-level parallelism (TLP). A VP thread halts and returns
control to the control processor after executing an AIB that does not issue a thread-fetch
instruction. The execution of vector-fetched AIBs and vector memory commands can be
freely intermingled with the execution of thread-fetched AIBs, allowing DLP and TLP to
be exploited simultaneously within the architecture. The VPs are also connected by a uni-
directional ring, the cross-VP network, which allows each VP to send values to its neighbor.

7.1.2 The Scale Vector-Thread Architecture

The Scale VT architecture is the first instantiation of the vector-thread architectural paradigm.
The Scale processor prototype [Kra07] is a low-power, high-performance design for embed-
ded systems, and it demonstrates that the VT paradigm is well-suited for this processor
domain. Figure 7-1(a) is a simplified high-level diagram of the Scale microarchitecture.
Scale contains a scalar MIPS-based control processor and a vector-thread unit (VTU) with
four parallel lanes. Virtual processors are striped across the physical lanes and are time-
multiplexed within each lane to share the physical execution resources. The example con-
figuration presented in Figure 7-1(a) has a vector length of 16, but Scale can support up
to 128 VPs. A special vector memory unit (VMU) handles vector-load and vector-store
commands.

Figure 7-1(b) is a more detailed view of one lane, showing how it is actually parti-
tioned into four heterogeneous clusters to support instruction-level parallelism (ILP). All
clusters can handle standard integer ALU instructions. Additionally, cluster 0 supports
VP memory operations, cluster 1 supports VP fetch instructions, and cluster 3 supports
integer multiply and divide. Clustering is exposed to the compiler, which is responsible for
partitioning VP instructions between the clusters. Scale makes extensive use of decoupling
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to tolerate latencies, so different clusters within a lane can be executing code for different
VPs simultaneously. There are four separate cross-VP networks in Scale, connecting sibling
clusters in different lanes, and these networks contain queues to provide decoupling between
neighboring VPs.
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Figure 7-1: (a) High-level overview of Scale microarchitecture. For simplicity, certain details
are omitted, such as the use of clustering. (b) Expanded diagram of the clusters within a
single lane.

A VP’s general registers in each cluster are either private—if they are only used by that
VP—or shared—if they are used by other VPs. The shared registers can be used to hold
constants set by the control processor, or to hold temporary values within the execution
of a single AIB (the execution of each AIB is atomic with respect to other AIBs, but VPs
can interleave execution at AIB boundaries), or to implement efficient reduction operations
across VPs. Although not shown in Figure 7-1(b), cluster 0 also contains a separate set
of store-data registers which are similar to private registers but are only used for holding
values to be stored to memory. Additionally, each ALU’s input operands are exposed as
programmer-visible chain registers, which are used to avoid accessing the register files for
short-lived values to reduce energy. The use of chain registers and shared registers also
reduces the per-VP register requirements. For example, as shown in Figure 7-1(b), cluster
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2 does not use the physical register file; this could be due to the fact that instructions
on that cluster only use chain registers for their computations. By contrast, cluster 3
uses all available physical registers. The maximum length of the virtual processor vector
is dependent on the cluster with the highest per-VP physical register requirements, as
discussed in the next section. In Figure 7-1(b), cluster 3 determines the maximum vector
length. An important Scale code optimization is to try to use the chain registers and shared
registers in each cluster to reduce private register usage, hence allowing increased vector
length and potentially greater performance.

7.1.3 Scale Code Example

The typical programming model for a VT architecture is to map loops to the virtual pro-
cessor vector, with each VP executing an iteration. Figure 7-2 shows a simple vectorizable
loop, in which it is assumed that the input and output arrays are guaranteed to be disjoint.
The Scale code for this function is shown in Figure 7-3. The code contains both control
processor instructions as well as VP instructions, which are delimited by .aib begin/.aib
end directives. The control processor is responsible for issuing a vcfgvl configuration com-
mand to specify the number of private and shared registers used in each cluster, which
determines the maximum vector length, vlmax. Note that for the purposes of the config-
uration, the number of private registers listed for cluster 0—which also supports memory
operations—is the larger of the number of private registers used and the number of store-
data registers used. To determine vlmax, first the following expression is computed for each
cluster: b(32−#shared regs)/#private regsc, where 32 is the number of physical registers
in each Scale cluster. The minimum value of that expression across all clusters (which is
the number of VPs supported in a single lane) is then multiplied by the number of lanes
to obtain vlmax. In Figure 7-3, the register requirements of cluster 3 determine vlmax:
(b(32− 1)/1c)× 4 = 124. If a configuration command does not use any private registers,
the maximum vector length is set to 128.

The vcfgvl command in the example causes the active vector length, vl, to be written
to the t0 register. The active vector length is the minimum of vlmax and the value of a0,
which holds the number of loop iterations to be executed. Since the multiply coefficient is
a constant value, the control processor writes it into a shared register on cluster 3. It then
uses strip mining to launch multiple loop iterations simultaneously. In each strip-mined loop
iteration, the control processor sets the vector length, and then performs two vector loads
(with an auto increment addressing mode) to obtain the inputs. The actual computation is
performed by vector-fetching the AIB, causing the VPs to execute the multiply-add sequence
on the input elements. Each VP places its result in a store-data register, which is used by
the auto-incrementing vector store. The strip-mined loop continues until all elements have
been processed.

Note that the given code example is very similar to what might be generated for a
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void mult_add(int len, int *in1, int *in2, int *out) {

int i;

for (i = 0; i < len; i++)

out[i] = COEFF*in1[i] + in2[i];

}

Figure 7-2: C code for mult add function.

mult_add: #a0=len, a1=in1, a2=in2, a3=out

# vcfgvl command below configures the number of private and

# shared registers for each cluster to determine vlmax; the

# command also sets both the active vector length (vl) and

# the t0 register to the minimum of a0 and vlmax

# configuration format: c0:p,s c1:p,s c2:p,s c3:p,s

vcfgvl t0, a0,            1,0,   0,0,   1,0,   1,1

sll t0, t0, 2         # input/output stride

vwrsh COEFF, c3/sr0     # write constant to shared reg

stripmineloop:

setvl t1, a0            # (vl, t1) = min(a0, vlmax)

vlwai a1, t0, c3/pr0    # vector-load in1, inc ptr

vlwai a2, t0, c2/pr0    # vector-load in2, inc ptr

vf scale_add_aib # vector-fetch AIB

vswai a3, t0, c0/sd0    # vector-store out, inc ptr

subu a0, t1            # decrement counter

bnez a0, stripmineloop # loop until done

vsync # allow VPs to finish

jr ra # return

scale_add_aib:

.aib begin

c3      mult.lo pr0, sr0      -> c2/cr0   # mult in1 by COEFF

c2      addu cr0, pr0      -> c0/sd0   # add to in2

.aib end

Figure 7-3: Scale code for mult add function.
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traditional vector architecture. A key difference is that VP instructions are grouped within
an AIB that the control processor issues in one vector-fetch instruction, whereas a traditional
vector machine would issue separate vector-multiply and vector-add instructions. The use of
AIBs improves locality over conventional vector designs. Additional architectural features
not illustrated by the code example—such as the ability for each VP to fetch its own
instructions—enable the compiler to map certain types of loops to Scale that would be
difficult to handle in standard vectorizing compilers. Appendix A presents more detail
about how the compiler targets the various features of Scale. However, the similarity of
the mult add example to conventional vectorized code is sufficient to point to the idea that
the black box usage model of software restart markers could be adapted to Scale. Before
examining the implementation of software restart markers in Scale, I first consider the
feasibility of a precise exception approach for this architecture.

7.2 Issues with Precise Exception Handling in Scale

Chapter 4 illustrated the fact that precise exceptions are costly to implement in traditional
vector architectures because of the buffering required for in-flight instructions as well as the
substantial context switch overhead. This section demonstrates the fact that precise excep-
tion support would be even more expensive in Scale due to the features of the architecture.
One problem with employing the precise exception model in Scale is the use of AIBs. AIBs
improve locality, but they also make it more difficult to implement exceptions precisely. The
straightforward approach for precise exceptions would be to enforce the requirement that
if an exception occurs within an AIB, none of the instructions within that AIB will have
updated architectural state when the exception is handled. This model is somewhat similar
to handling exceptions precisely at the instruction level in a vector architecture rather than
the operation level; however, a key difference is that an AIB can contain many independent
operations. A single Scale vector-fetch VTU command might correspond to over 100 vector
instructions in a conventional vector machine. The potentially large number of operations
in an AIB complicates the precise handling of synchronous VP exceptions—e.g. debugging
a single operation within an AIB would be difficult. An additional problem is the ability
of VPs to fetch their own AIBs, meaning that a vector-fetch instruction could trigger a
chain of thread-fetches that might differ from VP to VP, possibly causing thousands of VP
instructions to be spawned by a single VTU command, which would severely strain a precise
exception implementation.

The fact that Scale makes extensive use of decoupled execution only compounds the
problem. The control processor will run ahead of the VTU, queuing up multiple vector-fetch
and vector-memory commands. Since the VTU clusters are decoupled from one another, VP
instructions from different AIBs can execute simultaneously. A single vector-fetched AIB
can potentially write to every physical register in the VTU. A precise exception approach
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such as the reorder buffer scheme would need to buffer all of those results, essentially
requiring a copy of the physical register file for every in-flight AIB. In the Scale processor
prototype, which only contains architectural registers and no additional physical registers,
26% of the VTU area is occupied by register files [Kra07]. Although the chip uses standard
cells for the register files, and custom layout would reduce the area, a precise exception
implementation would still be very costly. Supporting a single in-flight AIB precisely would
require a doubling of the register file area; decoupled execution results in many in-flight
AIBs, incurring an impractical amount of area overhead. Even if an approach such as
checkpointing is used so that a copy of the register file is not required for each AIB, multiple
copies would still be needed and would be unreasonably expensive to implement.

Given the above problems with handling exceptions at the granularity of an AIB, an
alternative approach would be to treat each VP as an independent processor in the system
and to handle exceptions at the granularity of an individual VP instruction within an AIB.
The exception handler would thus need the ability to restart a VP from an instruction inside
an AIB instead of at an AIB boundary. However, there is no existing method in Scale to
jump into the middle of an AIB; in fact, there is not even a notion of a program counter
associated with VP execution, which would make it difficult to determine which instruction
in an AIB caused an exception. Even if it was possible to pinpoint a faulting instruction
within an AIB and then restart from it after handling an exception, this approach conflicts
with the vector-thread programming model that an AIB should be executed atomically.
Another complication is Scale’s use of chain registers: since a VP instruction might read or
write one or more ALU inputs, handling exceptions at the granularity of a VP instruction
means that the chain register contents have to be preserved across an exception. Adding
access paths to save and restore the chain registers would increase the complexity of the
design.

The problem with preserving chain registers points to another issue with precise excep-
tions in Scale: the use of cross-VP communication. Since the cross-VP network is used
to handle loop-carried dependences, the typical usage for cross-VP transfers is to have the
control processor inject initial pre-loop values before entering the loop and retrieve the final
post-loop values after exiting the loop. During the actual execution of the loop, the VPs
will pass values to their neighbors using the cross-VP queues between the lanes, without
any intervention from the control processor. However, a precise exception implementation
would have to buffer the values as they are propagated between VPs, and in the event of
an exception some method of restoring the cross-VP queues to a precise state would be
needed. The fact that multiple AIBs may be active simultaneously—each of which might
employ cross-VP communication—increases the overhead involved in tracking the contents
of the network. Since cross-VP values are live across AIB boundaries, the need to buffer the
values applies regardless of the granularity of exception handling—i.e. it does not matter
whether exceptions are precise at the AIB level or VP instruction level.
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The above issues illustrate the fact that precise exception support would be impractical
in the current Scale design. However, by using software restart markers and treating the
vector-thread unit as a black box, all of the troublesome architectural features can simply
be ignored. The actual compiler implementation of this usage model is considered in the
next section.

7.3 Scale Software Restart Marker Compiler Analysis for

Vector-Style Code

Chapter 4 presented a high-level description of techniques that could be used to generate
restart regions for vectorized code. In that chapter, the vector unit was treated as a black
box. The same approach can be used for Scale’s vector-thread unit when dealing with
vector-style code. This section discusses the compiler analysis required to implement the
techniques described in Sections 4.2–4.4. Those techniques were divided into three cate-
gories: basic restart region formation, livelock avoidance for software-managed TLBs, and
performance optimizations. Before considering the compiler modifications needed for each
of the categories, I first present a brief overview of the Scale compiler infrastructure,1 as
some of the analysis used to determine whether to parallelize code is re-used when inserting
software restart markers. I then discuss the additional changes that are required for the
three categories of techniques listed above. Although I have actually implemented many
of these changes in the Scale compiler, there were some issues encountered when trying to
implement certain techniques, such as copying overwritten input memory arrays, and I also
discuss those problems in this section.

7.3.1 Parallelization in the Scale Compiler

A key part of this thesis work was the implementation of the Scale compiler infrastructure
used to parallelize code. Figure 7-4 is a simplified version of the Scale compiler flow that
omits many of the details irrelevant to software restart markers. The infrastructure ties
together three existing compilers: SUIF [WFW+94], Trimaran [CGH+05], and GCC [gcc].
The SUIF front end accepts C source code and performs a memory dependence analysis that
will be used during parallelization. The Trimaran back end maps loops to the vector-thread
unit and also inserts software restart markers around the parallelized code. The fact that
Trimaran uses region-based compilation [HHR95] facilitates the creation of restart regions.
Finally, the GCC cross compiler tool chain produces the final executable.

The Scale compiler takes advantage of many of the features of the architecture, and
is able to parallelize straightforward DOALL loops as well as loops that typically pose
difficulties for traditional vectorizing compilers, such as loops with internal control flow,

1All references to the “Scale compiler” in this thesis refer to the compiler for the Scale architecture, not
the Scale compiler [sca] for the TRIPS architecture.
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SUIF Front End: Performs
memory dependence analysis
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Trimaran Back End: Parallelizes code
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code and links object files

Binary Executable

Figure 7-4: Simplified version of the Scale compiler flow.

loops with cross-iteration dependences, and outer loops. A more detailed description and
evaluation of the Scale compiler infrastructure is presented in Appendix A, which shows
how the compiler actually maps code to the vector-thread unit, and also demonstrates
how the compiler exploits architectural features such as chain registers that are facilitated
by the use of software restart markers. Besides showing that it is feasible to compile for
Scale, Appendix A also supports the claim made in the introduction to this thesis that
explicitly parallel architectures will likely become more widespread in the future. Although
the Scale compiler is relatively early in its development, it still achieves significant speedups
over scalar code running on a single-issue processor. In certain cases, the Scale compiler
speedups exceed the speedups that would have been possible on an ideal multiprocessor
with an infinite number of processing elements and support for thread-level speculation.
While the topic of Scale compilation is an interesting subject on its own merits, for the
purpose of restart region formation, the important aspect of the compiler is the analysis
that is conducted when determining whether to parallelize code.

Since the Scale compiler currently only targets loops for parallelization, it has to deter-
mine if loop iterations can be executed in parallel. This requirement motivated the use of
SUIF as the front end so that I could take advantage of its dependence library to conduct
an accurate memory dependence analysis. Another reason for using SUIF was the fact that
I had full access to the source code, which enabled me to add support for the restrict

keyword, which indicates that the object pointed to by a particular pointer will not be
accessed by any other pointer. The use of restrict was necessitated by the fact that all
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of the benchmarks evaluated in this thesis are written in C, and the use of pointers creates
an aliasing problem—if the compiler cannot determine whether two pointers are aliased,
it has to conservatively assume that they point to the same object, possibly preventing
parallelization. Since alias analysis is a complicated topic beyond the scope of this thesis, I
employed the restrict keyword to avoid this issue.

The results of the memory dependence analysis are merged with a separate register de-
pendence analysis in the Trimaran back end during the parallelization phase. The compiler
can handle DOALL loops as well as DOACROSS loops for which all cross-iteration depen-
dences have a distance of 1; however, it does not currently handle loops with data-dependent
exit conditions—i.e. “while” loops. To determine what type of loop is being processed, the
compiler performs induction variable recognition. If the only dependences between loop it-
erations correspond to induction variables, then the compiler is dealing with a DOALL loop.
In this case, induction variables are the only register variables that are live upon loop entry
and also overwritten within the loop. (The same statement is not necessarily true for mem-
ory variables, as will be discussed shortly.) Similarly, when dealing with a DOACROSS
loop, there are additional (non-induction) variables that introduce dependences between
loop iterations, and the compiler has to be able to map these variables to Scale’s cross-VP
network in order to successfully parallelize the code. In the DOACROSS case, both the
cross-VP register variables and the induction variables are live upon loop entry and also
overwritten within the loop. Thus, although the analysis used for parallelization focuses on
dependences between loop iterations, it also implicitly discovers the register variables that
are live when entering the loop and overwritten during execution of the loop. For reasons
described in the next section, compiler-generated restart regions in this thesis are limited
to the granularity of a loop, meaning that the dependence analysis finds the overwritten
register inputs to a restart region—an essential component of creating idempotent regions
of code.

However, the results of the dependence analysis do not necessarily reflect whether mem-
ory variables that are live upon loop entry are overwritten within the loop. For example,
the multiply 2 function in Figure 7-5 takes an input array, multiplies each element by 2, and
stores the results back into the same array. Each loop iteration contains a load and store of
the same memory element, and there is a dependence between each load/store pair. Since
the dependence is contained within a single iteration, the loop is a DOALL loop, and the
only values live between iterations are induction variables. However, the input array is live
upon loop entry and also modified within the loop. The dependence graph does not reflect
this fact since a different element of the array is accessed within each iteration; by contrast,
a register is a single value, so if a register is modified in one loop iteration, the same register
will be modified in the next iteration (assuming no internal control flow), forming a depen-
dence. Thus, the dependence analysis used for parallelization provides information about
which register inputs to the loop are overwritten, but not about which memory inputs are
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overwritten. This lack of information causes problems for the restart region analysis, as will
be covered in Section 7.3.2.

void multiply_2(char *in, size_t n)

{

int i;

for (i = 0; i < n; i++)

in[i] = in[i] * 2;

}

Figure 7-5: C multiply 2 function.

Although some of the parallelization analysis can be re-used when inserting software
restart markers in order to determine which register inputs to a loop are overwritten, the
actual register analysis required for restart region formation by itself is less restrictive.
When forming restart regions, the compiler only needs to know which loop inputs are
written at least once within the loop. It does not need to know whether a variable is an
induction variable or whether a loop-carried dependence can be mapped to the cross-VP
network. This additional information is only required so that the compiler can determine
if it is safe to parallelize the code. However, as the following sections demonstrate, there
is some information required for software restart marker insertion that is not needed for
parallelization.

7.3.2 Basic Restart Region Analysis

The fundamental approach to successfully generating restart regions is to ensure that the
inputs to the region are preserved. There are two kinds of inputs to consider: register inputs
and memory inputs.

Preserving Overwritten Register Inputs

As discussed in Chapter 4, functions with no overwritten input memory arrays can be made
idempotent by simply ensuring that the input register arguments are not overwritten. The
initial compiler implementation of software restart markers described in [HA06] for scalar
code used a separate pass to create simple restart regions at the granularity of a function by
preserving the input registers. After I added support to the compiler to parallelize code for
Scale, I made two changes to this approach. First, since the Scale compiler only parallelizes
loops, not straight-line code, the maximum granularity of a restart region is now a loop
instead of a function. Limiting regions to the level of a loop helps to reduce potential
re-execution overhead in complex functions, simplifies livelock analysis when dealing with
software-managed TLBs, and allows the same compiler code to be used for both the basic
restart region approach and the counted loop optimization. Second, rather than keeping
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software restart marker insertion as a separate pass, I was able to integrate the analysis
into the compiler pass that actually parallelizes code, avoiding duplication of effort.

The basic approach to preserving overwritten register inputs is to detect the values that
are live upon entering a region, determine whether they are modified within the region,
and to make copies of any registers that are modified. As indicated in the previous section,
for a DOALL loop all registers that are live upon loop entry and that are modified within
the loop must contain induction variables. Thus, if the compiler parallelizes a particular
DOALL loop, it then uses Trimaran’s existing analysis to detect induction variables and
copy those values to working registers in a special preloop block. The compiler also changes
the parallelized loop to use the working registers for all instructions that read or write the
induction variables. Figure 7-6 revisits the memcpy example from Chapter 4 and shows the
output of the compiler when it generates restart regions in Scale code for this function. A
special restart on instruction replaces the previous begin restart region pseudocode that
indicates the start of a new restart region. This instruction uses a PC-relative offset to
determine the address to be placed in the restart PC—in this example, the address of
the instruction immediately following restart on is the restart address in the event of an
exception. The vcfgvl VTU configuration command is part of the restart region so that if
a context switch occurs, the VTU will be properly reconfigured when the process resumes
execution. The restart off instruction in the postloop block indicates that the processor
should revert to conventional precise exception semantics. Since the control processor is
decoupled from the VTU, the compiler has to ensure that the processor does not issue the
restart off instruction and then run ahead issuing additional instructions outside of the
restart region. Thus, the compiler also inserts a vsync instruction before the restart off

instruction so that the control processor will stall until the VTU is idle.

Note that the registers a0, a1, and a2 are no longer used in the execution of the loop
in Figure 7-6. In fact, these registers are not used again in the rest of the function. Thus,
from the standpoint of the compiler, the a0, a1, and a2 registers are dead once the move

instructions are issued to copy the induction variables. As a result, the register alloca-
tor by default will map each pair of original/backup virtual registers to the same physical
register—e.g. instead of allocating the unique physical registers t3 and a0 to the corre-
sponding virtual registers, the compiler will allocate a0 to both virtual registers, leading to a
move, a0, a0 instruction. To prevent this problem, the compiler currently uses Trimaran’s
EL OPER LIVEOUT DEST flag, which indicates that an operation writes a register which
is live at the exit of the enclosing procedure. It searches through the procedure for instruc-
tions that write registers which hold the original input values for the restart region and
marks them with the flag—in the example of Figure 7-6, the compiler will mark instruc-
tions which write a0, a1, and a2. While the assembly code segment in the figure does not
show any writes to these registers, the Trimaran intermediate representation contains MOVE
instructions that copy the values of the function parameters (treated as pseudo registers)
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restart_on preloop # Begin the restart region and place

# preloop address into restart PC

preloop:  li t0, 128                      # Set up maximum vector length

move t3, a0 # Copy the induction variables

move t2, a1

move t1, a2

vcfgvl s0, t0, 1,0,1,0,0,0,0,0  # Configure the VTU: c0 and c1

# each have 1 private register

loop:     setvl t0, t1                    # Set vector length

vlb t2, c1/pr0                  # Load input vector

vf memcpy_aib # Store data has to be in sd regs

vsb t3, c0/sd0                  # Copy the data to output vector

subu t1, t1, t0                 # Decrement the number of bytes remaining

addu t2, t2, t0                 # Increment the input base register

addu t3, t3, t0                 # Increment the output base register

bnez t1, loop                   # Is loop done?

postloop: vsync # Stall until VTU is idle

restart_off # End the restart region

done:     jr ra # Return from function

memcpy_aib:

.aib begin

c1 copy pr0      -> c0/sd0

.aib end

Figure 7-6: Compiler-generated Scale code segment for the memcpy function, somewhat
modified for clarity. The restart on/restart off instructions delimit a baseline restart
region without any performance optimizations. The highlighted instructions are inserted to
form the restart region.
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into the corresponding argument registers. These MOVE instructions are marked with the
EL OPER LIVEOUT DEST flag.

When I initially implemented this approach, the baseline Trimaran compiler did not
actually account for the EL OPER LIVEOUT DEST flag during register allocation, so the
allocator would still assign the same physical registers for the original induction variables
and the copied values. I modified Trimaran’s liveness analyzer so that it would keep track of
every value that is marked by the flag and treat it as live throughout the entire procedure.
These changes were made before I actually developed the Scale compiler infrastructure that
could parallelize code. Now that the infrastructure is actually in place, an issue with using
the EL OPER LIVEOUT DEST flag has been made apparent: extending the lifetimes
of registers throughout the entire procedure can significantly increase register pressure in
functions that have multiple loops which are parallelized. An approach that only extends
register lifetimes throughout the basic blocks of a restart region would be more appropriate
to reduce the possibility of generating extra spill code.

The memcpy example is a case of a DOALL loop in which all overwritten register inputs
to the loop are induction variables. A parallelized loop that overwrites register inputs
which are not induction variables must be a DOACROSS loop that maps these loop-carried
dependences to the cross-VP network. The Scale compiler keeps a separate structure that
tracks these values; when creating restart regions, it uses this structure to make copies of the
original values before entering the restart region, and to use those copies in the parallelized
code, similar to the DOALL scenario above.

Handling Overwritten Input Memory Arrays

Chapter 4 considered different options for dealing with overwritten input memory arrays,
and concluded that making a copy of the array elements would probably be the preferred
approach. In the course of attempting to implement this technique, I encountered two
complications which can be overcome, but are not actually addressed in the compiler imple-
mentation. Within the overall compiler development effort, dealing with overwritten input
arrays was a lower priority than other techniques such as the counted loop optimization
due to the fact that many of the benchmarks that have been mapped to Scale use disjoint
input and output arrays; in fact, this characteristic is true of all of the benchmarks that
the Scale compiler has been able to successfully handle for the evaluation.

The first complication when dealing with overwritten input arrays is the issue of deter-
mining when an array is overwritten. While it may seem simple to detect this scenario, the
fact that software restart markers are inserted in the compiler back end makes the process
more difficult. For example, consider again the multiply 2 function in Figure 7-5. Although
the load and store operations in each iteration access the same memory element, when the
compiler processes the C code for this function, it creates two different base registers—one
for the load and one for the store—and assigns the same value to each register. During the
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actual formation of restart regions, the compiler examines the load and store instructions
and sees unique base registers, so it assumes that the memory arrays being accessed are
different. One way to deal with this problem is to search through the entire procedure for
the initialization of each base register, and to determine whether different registers actually
correspond to the same array. An issue with this approach is that for complex memory
access patterns, it could be difficult to make this determination. A more appropriate so-
lution would be to modify the front end to annotate load and store instructions with the
corresponding array names from the source code. SUIF already contains a special array
class that can be used to retrieve this information.

Note that detecting whether two instructions access the same array is also required for
the technique of array renaming [AK01]. This technique is used to copy particular elements
of an array to temporary storage in order to remove false dependences. Array renaming
requires the compiler to determine whether two different accesses are to the same memory
element. While this capability would be useful when inserting software restart markers,
the compiler can also adopt a more conservative approach of always making a copy of the
modified input array even if the modified elements are different than those that are read.
The latter approach decreases the amount of analysis required at the possible expense of
making unnecessary copies.

Aside from the issue of detecting accesses to the same array, a second complication is
determining the actual size of the array to be copied. In Figure 7-5, n is the size of the
in array, but the compiler does not have this information and has to analyze the memory
accesses to determine the array bounds. For the multiply 2 function, this analysis is
straightforward: unit-stride accesses are used for in, so the compiler can determine that
the size of the array is equal to the number of loop iterations. The same approach can
be used for any innermost loop that contains strided memory accesses, and in fact, the
Scale compiler currently implements these calculations when conducting livelock analysis,
as described in the next section. However, outer loop parallelization can make the array
size computation more complex when dealing with memory accesses within inner loops.
Although determining array sizes in the compiler back end is still feasible for outer loops, it
would probably be more appropriate to use the high-level information in the front end and
attach the size information as annotations. Indexed memory accesses pose an additional
difficulty since the compiler can no longer use a stride computation to determine the array
bounds. One solution might be to have the compiler insert code that performs a run time
check of the index vector values and keeps track of the minimum and maximum indices that
will be accessed. Another solution is to use a programmer directive to specify the size of
the array.

133



7.3.3 Livelock Analysis for Software-Managed TLBs

Chapter 4 discussed the issues with using a software-managed TLB in a vector processor,
and the same issues exist for Scale. For these reasons, hardware-managed TLBs are a natural
design choice for vector and vector-thread architectures. The Scale processor prototype does
not have any TLB, but there is no architectural constraint that would prevent future vector-
thread implementations from incorporating a hardware-managed TLB. However, in order to
provide a sufficient test of the software restart markers model, the evaluation in Chapter 8
adds a software-managed TLB to the Scale simulation infrastructure, so I modified the
compiler to generate code for this design. As stated previously, a software-managed TLB
introduces the possibility of livelock, so the compiler has to prevent this problem from
occurring when generating restart regions.

In order to avoid livelock, the compiler has to ensure that the total number of pages
accessed within each restart region does not exceed the number of entries in the TLB that
can be used by the program being compiled. Thus, the Scale compiler allows the user to
specify both the page size and the number of available TLB entries, with the default values
being the ones used in the evaluation in the next chapter. The user can also indicate if
the compiler is targeting a system with a software-managed TLB. The processor might
have separate TLBs for instruction and data, but currently the compiler assumes a unified
structure, which is safe as long as each TLB in a split-TLB system has the number of
available entries used in the compiler’s analysis.

The compiler’s livelock avoidance algorithm is outlined in Figure 7-7. Since the compiler
needs to compute an upper bound on how many distinct pages are accessed in each loop iter-
ation, the algorithm cannot be used for loops with indexed memory accesses. The algorithm
is also currently restricted to innermost loops. The compiler first determines a safe upper
bound for the total number of pages that can be accessed by memory instructions without
incurring livelock. Since a unified TLB is assumed, the compiler estimates the number of
entries needed to map the pages containing the loop instructions. The actual instructions in
the intermediate representation will be converted to one or more assembly instructions. Ad-
ditionally, Scale VP assembly instructions are converted into multiple primitive operations,
or primops, which are used in the binary executable. Thus, the number of IR instructions
is multiplied by an expansion factor—currently set at 10—to overestimate the final number
of loop instructions in the binary. This result is then multiplied by the number of bytes
in each instruction—an instruction is 4 bytes in Scale—and the total product is divided by
the page size to obtain the amount of space (in pages) occupied by binary instructions. The
division operation may have a remainder, so the quotient is incremented by 1. Depending
on the alignment of the start of the block of instructions in memory, an extra page might be
required—e.g. in a system with 4 KB pages, a contiguous 6 KB block (one-and-a-half pages
worth of data) could be spread across three different pages. This possibility is accounted
for by the alignment factor, which also accounts for the fact that the initial address of each
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data access in the loop might not be aligned to the start of a page.
In step 2 of the algorithm, the compiler makes a conservative estimate of the total

number of pages corresponding to data accesses in a single loop iteration. Since the value
of vlmax is not determined until the VTU register configuration is known later in the
compilation process, the compiler assumes in this step that vlmax is set to 1. It also
assumes that each memory instruction accesses a unique page, for the reason specified
in Section 7.3.2, although additional analysis could lift this restriction. The number of
pages that correspond to a single iteration is therefore the summation of each memory
instruction’s stride value in bytes divided by the page size. The stride value is used to
represent the spacing between each memory element, which comes into play when the real
value of vlmax is used.

The maximum number of iterations in a restart region when vlmax is 1 is the result of
step 1 divided by the result of step 2—this computation is performed in step 3. In step 4,
an instruction is inserted after the vcfgvl configuration command to divide the result of
step 3 by the actual value of vlmax, obtaining the final result for the maximum number of
iterations in a single restart region. Step 5 then modifies the loop to restrict the number of
iterations in a region to be this value.

1. Calculate a safe upper bound on the total number of pages that can be mapped by the TLB for data 
accesses: ubdata = num_tlb_entries – ubinst – alignment_factor

a. ubinst = [(num_loop_instructions)* (expansion_factor)*(bytes_per_instruction) / page_size] + 1 

b. alignment_factor = num_mem_instructions + 1

2. Estimate the total number of pages (possibly fractional) corresponding to data accesses in a single 
loop iteration, assuming that vlmax is 1:                                                        
num_pages_per_iteration = (∑mem_instruction_stridesbytes) / page_size

3. Obtain the value for the maximum number of iterations when vlmax is 1:                          
max_iterations_single_vp = ubdata / num_pages_per_iteration

4. Insert an instruction in the compiler-generated code to compute the maximum number of iterations 
for the actual vlmax that is set by the vcfgvl instruction:                                            
max_iterations = max_iterations_single_vp / vcfgvl_dest_reg

5. Modify the loop so that only max_iterations loop iterations will be executed in a restart region

Figure 7-7: The algorithm used to avoid livelock when compiling for a processor with a
software-managed TLB.

Figure 7-8 shows the changes that are made to the code in Figure 7-6 to avoid livelock.
The code is generated for the evaluation setup used in Chapter 8: 4 KB pages and 248
TLB entries available for user-level memory accesses. The upper bound on the number of
pages for instructions is 1, and the alignment factor is 3, so the result of step 1 is 244. The
vector-load and vector-store instructions in the loop operate on byte elements and are unit-
strided, so the sum of their equivalent byte strides is 2, and the result of step 2 is 2/4096.
The maximum number of iterations when vlmax is 1 is therefore 499,712. Note that the
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modified restart region now contains three branches. The first branch at the end of the loop
body is used to determine whether the loop has completed. The second branch is used to
determine whether the restart region has completed, while the third (unconditional) branch
is used to begin a new restart region. An optimization could be employed to remove one
of the two additional branches if the iteration counter for the restart region is restricted to
always be less than or equal to the total number of iterations remaining in the loop.

restart: restart_on preloop # Begin the restart region and place preloop address into restart PC

preloop:  li t0, 128                      # Set up maximum vector length

move t3, a0                     # Copy the induction variables

move t2, a1

move t1, a2

vcfgvl s0, t0, 1,0,1,0,0,0,0,0  # Configure the VTU: c0 and c1 each have 1 private register

li t4, 499712 # Get maximum number of iterations for vlmax=1

div t4, t4, s0 # Get maximum number of iterations for actual vlmax

loop:     setvl t0, t1                    # Set vector length

vlb t2, c1/pr0                  # Load input vector

vf memcpy_aib # Store data has to be in sd regs

vsb t3, c0/sd0                  # Copy the data to output vector

subu t1, t1, t0                 # Decrement the number of bytes remaining

addu t2, t2, t0                 # Increment the input base register

addu t3, t3, t0                 # Increment the output base register

beqz t1, postloop # Is loop done?

livelock: subu t4, t4, 1 # Decrement iteration counter for restart region

bnez t4, loop # Have maximum number of iterations been processed?

vsync # Stall until VTU is idle

restart_off # End the restart region

move a0, t3 # Update induction variables

move a1, t2

move a2, t1

j restart

postloop: vsync                           # Stall until VTU is idle

restart_off                     # End the restart region

done:     jr ra # Return from function

memcpy_aib:

.aib begin

c1 copy pr0      -> c0/sd0

.aib end

Figure 7-8: Scale code for the memcpy function when creating restart regions with a software-
managed TLB. The modifications necessary to avoid livelock are highlighted.

7.3.4 Analysis for Performance Optimizations

Section 4.4 discussed two optimizations to reduce the performance overhead of software
restart markers: prefetching entries for a software-managed TLB; and the counted loop
optimization. This section presents a brief description of the compiler analysis necessary
to implement these optimizations, which builds on the compiler modifications that have
already been described.
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Implementing the Prefetching Optimization

The analysis used to avoid livelock can also be used to implement the prefetching optimiza-
tion for software-managed TLBs. The compiler calculates the upper bound on the total
number of pages that will be accessed in the restart region by each memory instruction
within the loop. It then sets up a prefetching loop for each memory instruction to obtain
all of the page mappings in advance before entering the restart region. Each prefetching
loop uses a special TLB prefetch instruction that has the same format as load instructions.
This prefetch instruction triggers a TLB access for the specified memory address, but does
not actually make a memory request. Alternatively, a standard load instruction could be
used to prefetch a mapping, but that approach could introduce additional stall cycles if the
load triggers a cache miss.

A problem with the current prefetching implementation is that the size of each array is
unknown, so a prefetch instruction could access a protected memory page past the bounds
of the arrays. To solve this problem, the prefetch instruction is marked as speculative so
that it will not cause an exception if the process accesses a page outside of its protection
domain.

Implementing the Counted Loop Optimization

The counted loop optimization from Section 4.4.2 is used to restart after an exception
from the earliest uncompleted loop iteration. The optimization can be used if the only
variables live upon loop entry and modified within the loop are induction variables; as
mentioned in Section 7.3.2, these conditions must already be satisfied to parallelize DOALL
loops in the Scale compiler, simplifying the analysis required. The restart region formation
for this optimization is similar to the basic software restart markers model in that the
initial induction variable values are copied to working registers, and the working registers
are used throughout the loop. However, for the counted loop optimization, the copies are
performed before the restart region rather than at the beginning of the region. Additionally,
the loop iteration counter—which is implemented as a special control register in Scale—is
initialized to 0 before entering the region. The restart on instruction specifies the address
of the beginning of the fixup code block, which retrieves the value of the loop iteration
counter, applies the loop induction operations a corresponding number of times to the
original induction variable values, and jumps back to the beginning of the restart region.
Finally, the commitbar loop instruction is added at the end of the loop body.

7.4 Software Restart Markers in Scale Threaded Code

Vector-thread architectures have the ability to use a free-running threads execution model,
which is useful to exploit TLP in the absence of structured loop-level parallelism. Each
VP thread executes independently, using atomic memory operations to obtain tasks from
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a shared work queue. Since the Scale compiler does not currently generate threaded code,
software restart markers have not been implemented for this execution model. However,
this section presents a brief proposal for a future implementation.

The unstructured nature of the free-running threads approach makes a black box usage
model inappropriate: the control processor no longer manages the execution of the VPs as a
group, and individual VPs will normally perform many non-idempotent updates. Chapter 6
showed how software restart markers could be adapted to multithreaded architectures. A
similar design can be used for Scale threaded code by having each VP employ the complete
usage model of software restart markers. Since AIBs are atomic blocks of instructions, the
smallest granularity of a restart region should be an AIB. Ideally, restart regions could
be larger than AIBs, although this may not actually provide much benefit as an AIB can
contain on the order of 100 VP instructions, and a non-idempotent update will likely occur
before the end of an AIB is reached.

Figure 7-9 shows a thread-fetched AIB that is part of code executed under the free-
running threads model. A VP loads a value, increments it, and stores the result to the
same memory element. It also increments a second value and fetches the next AIB to be
executed. In order to place this code inside a restart region, a necessary requirement is to
store the restart address somewhere. VPs have no existing notion of a program counter,
but if the address of the first AIB in a restart region is kept in a register, a VP can begin
fetching from this address after an exception. One approach is to reserve one of the VP’s
general registers to serve as the restart PC. In Figure 7-10, c1/pr0 acts as the restart PC
that will be updated at the beginning of a new restart region. In the example, each fetch

instruction that writes c1/pr0 will end the current restart region and begin a new region.
Thus, a region is formed around the aib1 AIB. This model also permits a region to contain
multiple AIBs: only the last AIB will update c1/pr0. However, the region in Figure 7-10
is not yet idempotent, as the store instruction overwrites an input value to the AIB, and
the second addu instruction on cluster 2 also performs a non-idempotent update.

aib1: 

.aib begin

c0 lw 0(pr0)      -> c3/cr0            # Load a value

c3 addu cr0, 1    -> c0/sd0            # Increment the value

c0 sw sd0, 0(pr0)                      # Store the updated result

c2 addu pr0, 1    -> c2/pr0            # Increment another value

c1 la aib2        -> c1/cr0            # Get new AIB address

c1 fetch cr0                           # Fetch new AIB

.aib end

Figure 7-9: Thread-fetched AIB under the free-running threads model.
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aib0:

.

.

c1 la aib1        -> c1/cr0            # Get new AIB address

c1 fetch cr0      -> c1/pr0            # Fetch new AIB, update restart PC

.aib end

aib1:  # New restart region

.aib begin

c0 lw 0(pr0)      -> c3/cr0            # Load a value

c3 addu cr0, 1    -> c0/sd0            # Increment the value

c0 sw sd0, 0(pr0)                      # Store the updated result

c2 addu pr0, 1    -> c2/pr0            # Increment another value

c1 la aib2        -> c1/cr0            # Get new AIB address

c1 fetch cr0      -> c1/pr0            # Fetch new AIB, update restart PC

.aib end

Figure 7-10: Free-running threads code that uses c1/pr0 as the restart PC.

Figure 7-11 shows modified code in which the restart regions are now idempotent. The
original non-idempotent updates are now placed in a new AIB. Note that the self-dependent
addu from Figure 7-10 has been split into two different instructions: an add that targets a
different register, and a copy of the value into the original register. This modified example
is idempotent as written assuming that instructions execute in program order. However,
Scale’s decoupled execution permits instructions from different AIBs to be executing si-
multaneously. For example, if cluster 1 is running ahead of the other clusters, the fetch

instruction in the aib1 AIB might execute and update the restart PC before the lw instruc-
tion has a chance to execute. If the lw instruction then causes a page fault, c1/pr0 will
incorrectly have aib1a as the restart address instead of aib1. To address the decoupling
issue, the compiler can simply have the last instruction for each cluster in a restart region
send its result to cluster 1, as that forces the fetch instruction to wait until all clusters have
finished executing their instructions. Figure 7-12 shows the final code with restart regions.
In the aib1 AIB, the instructions on clusters 0, 2, and 3 now write the c1/cr0 register.
These writes must occur before the la instruction on cluster 1 can target cr0, so the fetch
of the next AIB will only execute once all of the AIB instructions have completed. Since
the store instruction in the aib1a AIB does not write a value, a dummy li instruction is
inserted to synchronize the execution of cluster 0 with cluster 1.

In the event of a restartable exception such as a software-managed TLB miss, the control
processor can handle the exception and restart the faulting VP from the address contained
in c1/pr0. Alternatively, if the overhead of determining which VP caused the exception is
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aib0:

.

.

c1 la aib1        -> c1/cr0            # Get new AIB address

c1 fetch cr0      -> c1/pr0            # Fetch new AIB, update restart PC

.aib end

aib1:  # New restart region

.aib begin

c0 lw 0(pr0)      -> c3/cr0            # Load a value

c3 addu cr0, 1    -> c0/sd0            # Increment the value

c2 addu pr0, 1    -> c2/pr1            # Increment another value

c1 la aib1a       -> c1/cr0            # Get new AIB address

c1 fetch cr0      -> c1/pr0            # Fetch new AIB, update restart PC

.aib end

aib1a: # New restart region

.aib begin

c0 sw sd0, 0(pr0)                      # Store the updated result

c2 copy pr1       -> c2/pr0            # Copy the incremented value

c1 la aib2        -> c1/cr0            # Get new AIB address

c1 fetch cr0      -> c1/pr0            # Fetch new AIB, update restart PC

.aib end

Figure 7-11: Free-running threads code that sets up idempotent restart regions.
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aib0:

.

.

c1 la aib1        -> c1/cr0            # Get new AIB address

c1 fetch cr0      -> c1/pr0            # Fetch new AIB, update restart PC

.aib end

aib1:  # New restart region

.aib begin

c0 lw 0(pr0)      -> c3/cr0, c1/cr0    # Load a value, sync with c1

c3 addu cr0, 1    -> c0/sd0, c1/cr0    # Increment the value, sync with c1

c2 addu pr0, 1    -> c2/pr1, c1/cr0    # Increment another value, sync with c1

c1 la aib1a       -> c1/cr0            # Get new AIB address

c1 fetch cr0      -> c1/pr0            # Fetch new AIB, update restart PC

.aib end

aib1a: # New restart region

.aib begin

c0 sw sd0, 0(pr0)                      # Store the updated result

c0 li 0           -> c1/cr0            # Dummy synchronization instruction

c2 copy pr1       -> c2/pr0, c1/cr0    # Copy the incremented value, sync with c1

c1 la aib2        -> c1/cr0            # Get new AIB address

c1 fetch cr0      -> c1/pr0            # Fetch new AIB, update restart PC

.aib end

Figure 7-12: Free-running threads code that sets up idempotent restart regions and accounts
for decoupled execution.
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too great, the control processor can kill all of the VPs and then restart them after handing
the exception. If a swappable exception such as a page fault occurs, a context switch will
be performed, so each VP’s register state needs to be saved. When the process resumes, the
VPs can be restarted from the addresses held in their restart PCs. The use of chain registers
in each cluster can reduce the amount of per-VP architectural register state that has to be
preserved across an exception. Not only can this alleviate context switch overhead, similarly
to the VLIW design of Chapter 5, but it can also increase the number of free-running threads
in the system, similarly to the multithreaded design of Chapter 6.

7.5 Summary

This chapter described the Scale vector-thread architecture, which simultaneously exploits
multiple forms of parallelism. It would be very difficult to implement precise exceptions in
Scale due to its architectural features such as the cross-VP network, but the black box usage
model of software restart markers can be used in vector-style code to avoid these issues.
I presented a Scale compiler implementation of software restart markers that preserves
overwritten register inputs, avoids livelock for software-managed TLBs, and implements
the prefetching and counted loop optimizations. Additionally, I discussed how software
restart markers could be implemented in threaded code for Scale.
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Chapter 8

Performance Overhead Evaluation

In this chapter, I evaluate the performance overhead of using software restart markers to
implement virtual memory in Scale. I first describe the evaluation methodology and then
present results which show that the performance reduction due to software restart markers
is small.

8.1 Methodology

I evaluate the use of software restart markers in benchmarks from the EEMBC embedded
benchmark suite [eem]. Table 8.1 contains descriptions of the benchmarks and the speedups
of the handwritten parallelized code—without any use of software restart markers or virtual
memory support—over the baseline scalar code. The table shows that Scale provides sub-
stantial performance improvements over an idealized single-issue processor. These speedups
are included to show that the overhead of software restart markers is measured relative to a
high-performance design. Also, the speedups demonstrate that even if using software restart
markers causes a substantial performance degradation, the resulting slower parallelized code
will still typically be an improvement over scalar code—e.g. a 90% performance reduction
in parallelized viterbi will still be faster than the scalar version. I use handwritten code for
the evaluation rather than compiler-generated code because the Scale compiler is relatively
new—I spent about six months developing the infrastructure necessary to map code to the
vector-thread unit—and thus it can only handle a limited number of benchmarks. Addi-
tionally, the immaturity of the compiler infrastructure also means that there is a substantial
gap in performance between compiler-generated code and handwritten code, as discussed
in Appendix A. Since a higher level of performance produces a larger overhead when using
software restart markers, I attempt to create a worst-case scenario by manually inserting
software restart markers into handwritten code, using the same techniques described in
Chapter 7.

The code is evaluated on the Scale microarchitectural simulator, which includes detailed
models of the VTU, but uses a single-instruction-per-cycle latency for the control processor.
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Parallelized
Benchmark Data Set Description Code Speedup
autocor data3 Fixed-point autocorrelation 40.0
conven data3 Convolutional encoder 941.4
fbital pent Bit allocation for DSL modems 48.2
fft data 3 Fast Fourier transform 17.7
fir - Finite impulse response filter 114.1
hpg - High pass grey-scale filter 50.2
rgbcmy - RGB to CMYK color conversion 23.7
rgbyiq - RGB to YIQ color conversion 39.9
rotate medium Binary image 90 degree rotation 11.0
viterbi data 4 Viterbi decoder 10.3

Table 8.1: Benchmark descriptions and speedups of handwritten parallelized code over the
baseline scalar code.

The default simulation setup uses a VTU with four lanes and four clusters in each lane.
Each cluster contains 32 physical registers. The 32 KB L1 unified cache is 32-way set-
associative with 32-byte lines, and L1 cache hits have a two-cycle latency. The L1 cache is
backed by a magic main memory with a minimum latency of 35 cycles.

When an exception is handled, a vkill instruction is executed that kills all previously
issued VTU commands and resets the VTU to an idle state after responses have been
received for all outstanding load requests. The only exceptions that are generated in this
evaluation are software-managed TLB misses. I do not model page faults, as the purpose
of this work is to measure the overhead involved in allowing a machine to handle page
faults rather than in the speed impact of the page faults themselves. While an actual Scale
implementation would typically use a hardware page table walker, a software-managed
TLB provides a worst-case scenario and allows the software restart markers model to be
sufficiently tested. To provide a basis for comparison, I also approximate the performance
overhead when using a system with a hardware-managed TLB. Each page has a fixed size
of 4 KB. It would be more practical to permit larger page sizes in a vector-thread processor,
but small pages increase the number of TLB misses, providing a more pessimistic evaluation
of software restart markers. I use the standard MIPS page table structure, and model the
2 MB virtually-addressed linear user page table as well as the 2 KB physically-addressed
root-level page table.

Since the maximum vector length is 128 for the default Scale configuration, the TLB for
VTU memory accesses has to contain at least 128 entries to avoid livelock in a system that
handles TLB refills in software. Additionally, a sufficient extra number of TLB entries are
required for AIB cache refills, control processor instruction accesses, and control processor
data accesses. Thus, the total number of TLB entries in the system has to be greater than
128. However, simply using a large unified TLB by itself—e.g. with 256 entries—is impracti-
cal because up to 10 cache requests can be generated in each cycle. The Tarantula extension
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to the Alpha architecture [EAE+02] deals with a large number of simultaneous requests by
using a parallel array of TLBs, one for each lane. While this simplifies the hardware, it
can lead to duplicate mappings for vector memory accesses with small strides. Addition-
ally, the exception handler for Tarantula is complicated by the fact that it has to refill the
correct TLB within the array in the event of a TLB miss. Austin and Sohi [AS96] explore
the use of an interleaved TLB, and also introduce the concepts of piggyback ports—which
allow simultaneous requests for the same virtual page number to be satisfied by a single
access—and pretranslation—which avoids TLB accesses for pointer references that access
the same page. However, these techniques do not help when dealing with vector memory
accesses in which each element is located on a different page. The approach employed by
the evaluation in this thesis is to use a micro-TLB [CBJ92], which contains a small number
of entries and is refilled in hardware by the larger unified TLB. If a TLB miss occurs in the
unified TLB, then the missing entry can be refilled by software or by hardware. Other de-
signs that have used the micro-TLB approach include the MIPS R4000 processor [MWV92]
and the VIRAM-1 processor [Koz02]. For Scale, the micro-TLB contains 10 entries and can
accept up to 4 translation requests in each cycle. Blocked requesters are forced to retry
in the next cycle. The micro-TLB is backed by a single-ported unified TLB that is shared
between the control processor and the VTU. The unified TLB contains 256 entries, 8 of
which are “wired entries” reserved for root-level page table entries and kernel mappings.
Both the micro-TLB and unified TLB are written in FIFO order to avoid livelock. Note
that the use of a FIFO scheme means that the TLBs are not fully-associative; instead, the
TLBs are structured like reorder buffers, simplifying hardware complexity.

8.2 Results

This section presents the performance reduction due to using software restart markers to
support virtual memory. I first consider the worst-case scenario of using software to refill the
256-entry unified TLB. I then evaluate the more practical scenario of hardware TLB refill.
Finally, I briefly discuss the results within a larger context and provide a comparison to the
performance overhead that might be observed with a precise exception implementation.

8.2.1 Software-Managed TLB Evaluation

Figure 8-1 shows the reduction in performance for the parallelized code when using software
restart markers in a system that refills the unified TLB in software, and when all bench-
marks are run for 100 iterations. Benchmarks are weighted equally to compute an average.
The performance overhead includes three components: the cost of handling TLB misses;
the overhead introduced by the extra instructions used to create the restart regions; and
the cost of re-executing instructions if an exception occurs in the middle of a restart region.
Although I do not have detailed breakdowns of each overhead component, I present some
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intuition about dominant components later in this section. Results are presented for three
different schemes: the original software restart marker design, with an average performance
reduction of 8.8%; the same design with prefetching of TLB entries enabled, with an av-
erage performance reduction of 3.9%; and the counted loop optimization, with an average
performance reduction of 4.1%. Prefetching loops were only added to benchmarks that are
likely to access multiple pages of data. These are the image-processing programs in this
workload: hpg, rgbcmy, rgbyiq, and rotate. For the remaining benchmarks, the baseline
restart marker scheme was used even when prefetching was enabled. This technique of
selective prefetching could be implemented in the compiler by using profiling. The counted
loop optimization was implemented for every benchmark in which it could be supported.
The only exceptions were fbital, fir, and viterbi. Both fbital and fir contain data-
dependent updates of variables that are live upon loop entry, preventing the use of the
counted loop optimization, while the viterbi benchmark switches the roles of the input
and output buffers in each loop iteration. For these benchmarks, I reverted to the baseline
restart marker scheme when obtaining the “Count” data in Figure 8-1.

I initially presented results for software restart marker performance overhead in [HA06],
using many of the same benchmarks. (I incorporate two new benchmarks—fbital and
fir—in this thesis evaluation, but do not use the dither benchmark, as there was an er-
ror when executing my manually created version of the counted loop optimization that I
was not able to debug in time for the publication of this thesis.) In my previous work, I
targeted an older version of the Scale architecture and also executed benchmarks using a
simulator with a less realistic TLB model (which did not account for the potentially large
number of simultaneous memory accesses) as well as a single-cycle magic memory model.
While the use of the most recent version of the Scale architecture and a more accurate
TLB model have some impact on the results in this thesis, it is mainly the more accu-
rate modeling of memory access latency that leads to several significant differences with
the data in [HA06]. For example, Figure 8-1 shows a large performance reduction for the
fft benchmark. This degradation is due to the fact that two of the restart regions for
that program are contained within a loop, and a command has to be inserted at the end
of each region to synchronize the control processor and the VTU. The fact that memory
accesses no longer complete in a single cycle substantially increases the amount of synchro-
nization time. Similarly, in [HA06], the use of a commitbar loop instruction (referred to
in that work as an excepbar loop instruction) negatively affected performance, as each
instance of the command occupied an issue slot in the VTU that could be used by an-
other instruction. While this observation still holds true for some of the benchmarks in this
thesis evaluation—such as rotate—for certain benchmarks with smaller datasets—notably
autocor and conven—the insertion of the commitbar loop instruction in each loop itera-
tion actually improves performance, apart from any consideration of virtual memory. When
using a real cache model, the commitbar loop changes the timing of memory accesses, and
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for these particular benchmarks, the different timing provides a greater benefit than the
negative impact caused by an additional VTU command. Thus, for autocor and conven,
the performance degradation for the counted loop optimization is smaller than the other
restart marker schemes.
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Figure 8-1: Total performance reduction in parallelized code due to using software restart
markers to implement virtual memory in Scale when using a software-managed TLB. Three
schemes are shown—the original restart marker design, restart markers with prefetching
enabled (which only changes the image-processing benchmarks hpg, rgbcmy, rgbyiq, and
rotate), and restart markers using the counted loop optimization. For the fbital, fir,
and viterbi benchmarks, the original restart marker design is used in place of the counted
loop optimization. All benchmarks are run for 100 iterations.

All of the datasets in this evaluation can be completely mapped by the TLB—the largest
input dataset is about 200 KB. Thus, after the first iteration of a benchmark is executed,
there will be no further TLB misses, and executing subsequent iterations will amortize
any performance overhead seen in the first iteration from restarting at the beginning of
a region. This effect is similar to warming up a cache that is large enough to hold the
working set of a program. However, it masks the relative merit of each of the performance
optimizations, and the results shown in Figure 8-1 mainly reflect the overhead component
introduced by the extra instructions used to create restart regions. To address this issue,

147



Figure 8-2 presents the performance overhead for the three different schemes when each
benchmark is only run for one iteration. For the image-processing benchmarks, particularly
rgbcmy and rgbyiq, the default datasets require a large number of TLB entries in order
to be fully mapped. Thus, there is a significant performance overhead when using the
original software restart marker design, as the multiple exceptions within each region cause
the re-execution of a great deal of work. The average overhead for the original scheme is
34.4%. Using prefetching in conjunction with the original restart marker design produced
the best results, with an average overhead of 3.3%. (The overhead is smaller than when
running the benchmarks for 100 iterations because executing additional iterations allows
the cache to warm up, improving baseline performance, while the overhead of the prefetch
instructions remains relatively constant in each iteration.) The counted loop optimization
did not perform as well as expected—with an average overhead of 11.5%—in part due to
the fact that there is a significant latency in the Scale system between the TLB check for a
memory operation and the time that the operation is retired. Thus, if multiple iterations
of a loop are active at the same time, and a TLB miss occurs for the latest iteration, the
exception is immediately handled, and all of the earlier work is discarded. However, for the
image-processing benchmarks, which have larger datasets, the counted loop optimization
typically provides a significant advantage over the original restart marker design. The one
exception is rgbhpg, which processes an array a column at a time. As a result, there can be
accesses to several different pages in a given loop iteration, or spread across a few iterations,
leading to a great deal of re-executed work.

It should be noted that the prefetching scheme produces code that is tied to a particular
hardware implementation—if the actual TLB size is less than that used by the compiler
in its analysis, then the prefetch code will livelock. Thus, the counted loop optimization
is more suitable for producing code that is compatible with a variety of implementations.
Additionally, prefetching does not account for the possibility of other types of exceptions
occurring within a restart region. I placed each prefetching loop before the entry to the main
loop, outside of any restart regions. As a result, if a context switch occurs within a restart
region and the TLB entries are flushed, when the process resumes, the performance will be
similar to that of the original design. It is possible to place a prefetching loop inside of a
restart region, but this can introduce additional overhead if the entire region is contained
within a loop and is executed multiple times, or if an exception occurs that does not cause
a context switch, as the prefetching loop will be executed unnecessarily upon each restart.

8.2.2 Hardware-Managed TLB Evaluation

As stated previously, using hardware to refill the TLB is an appropriate design choice for
vector-thread architectures, as a TLB miss will not cause an exception, but will instead
just introduce an extra delay for the corresponding memory access. I did not have time
to implement an accurate hardware page table walker in the Scale simulator, and so I
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Figure 8-2: Total performance reduction in parallelized code due to using software restart
markers to implement virtual memory in Scale when using a software-managed TLB and
all benchmarks are run for 1 iteration.

approximate the impact of using a hardware-managed unified TLB by adding a fixed latency
to the total cycle count in the event of a TLB miss. The software handler for TLB misses
used in the previous section can refill the TLB in fewer than 10 cycles if there is no cache
miss or TLB miss for the corresponding virtually-addressed page table entry. If a cache
miss occurs but there is no TLB miss for the page table entry, the handler will take nearly
50 cycles to refill the TLB. If the page table access triggers a TLB miss, then the root-
level page table has to be accessed, and the total TLB refill latency can exceed 100 cycles.
However, this last scenario rarely occurs. Thus, in order to set up a reasonable worst-case
scenario for using a hardware-managed TLB, I set the hardware refill latency to a fixed
value of 50 cycles.

Figure 8-3 shows the performance overhead that is incurred when hardware is used to
refill the unified TLB and each benchmark is run for a single iteration. Since prefetching is
only useful for software-managed TLBs, that scheme is not shown in the figure. However, I
do present results for the counted loop optimization, as that approach can reduce the amount
of repeated work in the event of a context switch. The original restart marker design incurs
an average overhead of 3.1%, which is largely attributable to the synchronization commands
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in the fft benchmark. The counted loop optimization incurs a greater average overhead of
4.0%, as the extra instructions used in implementing the counted loop optimization for the
rotate benchmark causes a significant degradation.
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Figure 8-3: Total performance reduction in parallelized code due to using software restart
markers to implement virtual memory in Scale when using a hardware-managed TLB and
all benchmarks are run for 1 iteration.

8.2.3 Discussion

It is interesting to note that the average performance overhead shown in Figure 8-2 when
using the prefetching optimization with a software-managed TLB is only slightly larger
than the overhead shown in Figure 8-3 when using the original restart marker design with a
hardware-managed TLB. Prefetching can be very effective in avoiding performance degra-
dation. However, it does have the issues mentioned earlier in this chapter; also, software-
managed TLBs introduce the general concern with livelock that has been discussed in
previous chapters.

Although there are several cases in which there is a large performance reduction due
to using software restart markers to implement virtual memory, recall that the substan-
tial speedups achieved by the baseline parallelized code mean that even the parallelized
benchmarks with restart regions will still typically be much faster than the corresponding
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scalar code. However, the issue with the synchronization overhead in the fft benchmark
does indicate that research into alternative methods of terminating restart regions could be
beneficial.

As a basis for comparison, the CODE microarchitecture [KP03] supports virtual memory
in a vector machine, but by using a clustered vector register file with register renaming.
The performance of CODE is evaluated across a workload containing many of the same
benchmarks used in this evaluation. There is an average performance reduction of 5% when
supporting precise exceptions on the default CODE configuration with 8 vector registers
per cluster. This overhead is strictly due to the register pressure from implementing register
renaming—the cost of handling TLB misses is not considered. By contrast, the software
restart markers model requires no additional registers or store buffering, making it more
scalable to future processor generations that will have larger numbers of simultaneous in-
flight operations.

8.3 Summary

This chapter evaluated the use of software restart markers in the Scale vector-thread archi-
tecture, using worst-case scenarios to obtain the results. Overall, the performance overhead
of software restart markers is acceptably small in light of the benefits that they provide.
Even when using a software-managed TLB—which would be unlikely in an actual Scale
system—software restart markers only degrade performance of highly optimized code by
an average of about 4% when using either prefetching or the counted loop optimization
and running benchmarks for 100 iterations. Prefetching is also able to tolerate TLB misses
when executing benchmarks for a single iteration, with an average performance reduction of
less than 4%. Finally, when using a hardware-managed TLB and running benchmarks for a
single iteration, the average performance reduction with the original restart marker design
is about 3%, while the average reduction with the counted loop optimization is about 4%.
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Chapter 9

Conclusions and Future Work

An exception handling mechanism is an essential part of any computer system. Exceptions
are used to indicate errors, to permit user interaction with the program, and to implement
features such as virtual memory. There have been relatively few exception handling tech-
niques that have gained mainstream acceptance, and these have been primarily used for
sequential architectures in general-purpose systems. However, with the recent shift toward
parallel computing and the blurring of the boundaries between processor domains, a fresh
look at existing methods of dealing with exceptions is warranted.

Exception handling approaches are typically judged according to whether they adhere
to the precise exception model. While precise exceptions provide many benefits—including
a simple interface to the exception handler and the ability to support accurate debugging—
they also require instructions to be committed to architectural state in program order. This
restriction can lead to substantial exception management overhead with respect to processor
area, energy consumption, and performance. Additionally, the precise exception model does
not adapt well to explicitly parallel architectures, in which the overhead of handling context
switches can be substantial. These sources of overhead provided the motivation for this
thesis work.

9.1 Summary of Contributions

This thesis investigated an alternative to the precise exception model in the form of software
restart markers, which use compile-time information to reduce the overhead of exception
management. To lay the foundation for developing a new exception model, I introduced
several axes of classification for exception handling mechanisms and showed that—contrary
to what is often stated—certain important features such as virtual memory do not actually
require precise exception support. I then showed how the software restart markers model
could be used to enable these features by having the compiler delimit regions of idempotent
code. In the event of an exception, the process will restart from the head of the region.
These restart regions provide two main advantages: they permit out-of-order commit within
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a region, eliminating the need to buffer values; and they introduce the notion of temporary
state, which does not have to be preserved across an exception.

I demonstrated the generality of software restart markers by presenting designs for
vector, VLIW, and multithreaded architectures. In vector processors, the use of restart
regions avoids the need to buffer large numbers of in-flight instructions and also permits the
entire vector register file to be mapped to temporary state. VLIW architectures that use the
EQ scheduling model can take advantage of software restart markers to enable exceptions
within software-pipelined loops, and also to reduce the number of architectural registers
needed in the system. Multithreaded architectures can use the concept of temporary state
to reduce register pressure, potentially enabling a greater number of threads.

To evaluate the feasibility of using software restart markers as well as the performance
overhead that they incur, I implemented this model in the Scale vector-thread architecture. I
used the Trimaran compiler infrastructure to generate the restart regions and to implement
optimizations to reduce the number of re-executed instructions. Using software restart
markers for vector-style code in Scale resulted in a performance degradation of less than
4%. I also showed how software restart markers could be used for threaded code in Scale.

Since a primary motivation for this thesis was the belief that explicitly parallel ar-
chitectures would become more prevalent in the future, I demonstrated the performance-
enhancing potential of using parallel designs in mainstream systems by developing a com-
piler infrastructure for Scale. Vector-thread architectures are designed to exploit multiple
forms of parallelism simultaneously; this thesis demonstrated the ability of a compiler to
actually take advantage of those architectural features. The Scale compiler is able to paral-
lelize simple DOALL loops, as well as code that causes problem for established vectorizing
compilers, such as loops with complex internal control flow or cross-iteration dependences.
In certain instances, the speedups of compiler-generated code running on Scale exceeded the
speedups that would have been possible on an ideal multiprocessor that supported thread-
level speculation. Given the fact that the compiler development is still in its initial stages
and there are obvious areas in which it can be improved, these results attest to the potential
of using explicitly parallel architectures.

9.2 Future Work

While this thesis touched on several different areas, there are many opportunities for future
work.

Improved Handling of Memory Dependences

The current Scale compiler implementation of software restart markers is unable to generate
restart regions for cases where input memory values are overwritten and the stride for the
corresponding memory operations cannot be properly determined, as it then has no way
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of knowing what size to use when creating a backup memory array. Future work could
incorporate additional front end analysis so that the total amount of memory accessed by
a loop can be calculated.

Additional Applications

The evaluation of the performance overhead of software restart markers included several
benchmarks, but was restricted by the fact that the Scale compiler can currently only handle
a small number of EEMBC codes. Although there is a larger set of available hand-coded
benchmarks, these are primarily smaller kernels within the embedded application domain.
Generating restart regions in additional applications would permit a more comprehensive
evaluation.

Varying Restart Region Sizes

Related to the previous point, the fact that the evaluation used small embedded kernels
meant that the maximum restart region size was somewhat limited compared to what
might be observed in larger applications. The implementation of restart regions in the
baseline model for both compiler-generated and handwritten code made regions as large as
possible, subject to the constraints of livelock. In a system with a hardware-managed TLB,
restart regions could encompass millions of instructions, drastically increasing re-execution
overhead in the event of an exception. If the counted loop optimization is not possible,
then compiler analyses should be implemented to strip mine restart regions, aiming for a
compromise between permitting parallel execution by increasing region size and avoiding
re-execution overhead by decreasing region size.

Hybrid Hardware-Software Approach

Software restart markers avoid the hardware overhead associated with precise exceptions,
but this advantage comes at the cost of flexibility: only instructions from one restart re-
gion at a time are executed, so in segments of code with small regions, performance could
be degraded. An alternative approach would be to take an existing hardware-based ex-
ception handling mechanism and incorporate compile-time information to reduce exception
management overhead. For example, software restart markers are somewhat like hardware
checkpoints in a checkpoint repair scheme, but with a key difference being that only one
checkpoint is active at a time in the former approach. One possibility would be to target a
superscalar processor with a hardware checkpointing scheme and use compiler annotations
so that the processor would only checkpoint live architectural registers. Alternatively, the
architecture could be modified so that it has a handful of checkpoint registers—e.g. out of
32 architectural registers, 8 are checkpointed—and all other registers are treated as tem-
porary state that can only be live between checkpoints. This technique would reduce the
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overhead of each checkpoint while still enabling a more flexible exception handling approach
than software restart markers.

Evaluating Software Restart Markers in Multiprocessors

The focus of this thesis was on exception handling for a single core. In a multiproces-
sor system, the use of software restart markers can change the memory consistency model.
Although I suggested a possible solution—add barriers around memory operations that com-
municate between threads—a possible area for future work would be to actually implement
this technique and evaluate its impact.

Scale Compiler Development

The primary topic of this thesis was exception handling using software restart markers, but
a key aspect of this work was the development of the Scale compiler infrastructure. As I
pointed out previously, Scale compilation is a worthy topic on its own, and there are many
areas in which the current compiler can be improved.

9.3 Concluding Remarks

This thesis has presented software restart markers as an alternative to the precise exception
model for explicitly parallel architectures. Software restart markers are able to reduce the
exception management overhead associated with precise exception implementations. I have
shown that using software restart markers can provide multiple benefits while incurring
little performance degradation. Hopefully this work will serve to spark additional research
into the frequently neglected area of exception handling.
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Appendix A

Compiling for Vector-Thread

Architectures

This appendix provides an overview of the compiler infrastructure for Scale that was devel-
oped as part of this thesis work. A substantial portion of this appendix is also presented
elsewhere [HA08]. As discussed in Section 7.3, the compiler analysis used to create restart
regions builds on the analysis used when parallelizing Scale code. While this appendix
provides additional details about the parallelization process, it also serves another purpose.
In the introduction to this thesis, I listed the shift to explicitly parallel computing as a key
motivating factor for investigating alternatives to the precise exception model. The bulk
of this thesis has been devoted to showing how software restart markers can be used to
cheaply handle exceptions in explicitly parallel architectures. However, there are other im-
portant requirements that a new processor design should satisfy to facilitate its widespread
adoption: it should enable a high level of performance; it should be energy-efficient; and it
should be a good compilation target. If a design does not have these characteristics, it will
probably find limited success, and the particular approach it uses to handle exceptions is not
likely to have a significant effect on its longevity. Chapter 8 presented data indicating that
the performance degradation caused by software restart markers in the Scale architecture
is small. Krashinsky [Kra07] shows that Scale is also a high-performance, energy-efficient
design for the embedded processor domain. This appendix addresses the final requirement
listed above: whether Scale is a suitable compilation target. It presents results showing
that the compiler can exploit parallelism in a variety of programs, even in code that would
not typically be parallelizable by compilers for traditional architectures such as vector or
VLIW.
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A.1 Scale Compiler Overview

This section presents an overview of the Scale compiler infrastructure. Figure A-1 shows the
compiler flow used for this work. The SUIF front end parses a C source code file and converts
it into the SUIF intermediate representation (IR). The compiler then performs memory de-
pendence analysis, annotating the IR with dependence information that will be later used
by Trimaran. The SUIF IR is then fed into a SUIF-to-Trimaran converter [LRA05], which
outputs the program in Trimaran’s intermediate representation. Trimaran performs clas-
sical optimizations including common subexpression elimination, copy propagation, loop-
invariant code motion, and dead code elimination. The output of the optimization phase
is then sent to the scalar-to-VP code transformation phase, which attempts to map code
to the vector-thread unit. If VP instructions are generated, then software restart markers
will also be inserted, as discussed in Chapter 7. After the transformation phase, cluster
assignment is performed, and then the first (prepass) instruction scheduling phase occurs.
Prepass instruction scheduling is followed by register allocation and a second (postpass)
instruction scheduling phase, after which AIBs are formed for the VP code. Once AIB
formation occurs, the compiler then searches for opportunities to replace occurrences of
general registers with chain registers. Finally, Trimaran generates assembly code, and this
is processed by the GCC cross-compiler to create the final binary executable.

SUIF Front End

C Source Code

Memory Dependence
Analysis

SUIF-to-Trimaran
Conversion

Classical
Optimizations

Scalar-to-VP Code
Transformation

Prepass Instruction
Scheduling

Register Allocation

Postpass Instruction
Scheduling

Cluster Assignment

AIB Formation

Chain Register
Insertion

Assembly Code
Generation

GCC Cross
Compilation

Binary Executable

SUIF

Trimaran

GCC

Figure A-1: Scale compiler flow. The legend indicates which compiler infrastructure is used
for a particular phase.

The issue of compiling for Scale is a worthwhile topic in its own right, apart from any
consideration of software restart markers. However, to keep this appendix within the over-
all scope of the thesis and prevent it from becoming too broad, I avoid delving too deeply
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into the details of the Scale compiler. Instead, I discuss certain key compiler phases, with
particular emphases on how the compiler maps code to the vector-thread unit and on how
it targets certain architectural features that would pose difficulties for a precise exception
implementation, including the cross-VP network, chain registers, and decoupled execution.
It should be noted that during the development of the Scale compiler infrastructure, I pri-
oritized the addition of support for various Scale features such as cross-VP communication
over the attempt to improve performance by modifying certain phases such as cluster as-
signment and instruction scheduling. As a result, I ended up employing simple heuristics in
those phases, leaving substantial room for improvement in future work. The primary pur-
pose of this section is not to introduce novel analyses or performance-enhancing techniques,
but rather to show the feasibility of compiling for the Scale architecture and to describe the
current snapshot of the compilation infrastructure.

A.1.1 Memory Dependence Analysis

A key motivating factor for using SUIF as the front end is its dependence library, as an
accurate dependence graph is important in order to determine what parallelism can be
exploited in the program. I use the library to annotate memory operations with direction
vectors indicating the existence of dependences. A special direction type is used for cross-
iteration dependences with a distance of 1, as these can be mapped to transfers on the
cross-VP network.

The dependence analysis is potentially complicated by the fact that Scale was designed
for embedded systems, which typically run programs written in C. The use of pointers in C
programs creates an aliasing problem, in which the compiler cannot determine whether two
different pointers will access the same memory location, and hence must make an extremely
conservative assumption of dependences, resulting in little or no exploitable parallelism. To
help with this problem, I extended the SUIF front end to support the restrict keyword,
which indicates that the object pointed to by a particular pointer will not be accessed by any
other pointer. While this solution requires the programmer to manually add the restrict

keyword to the function prototype, it is no more onerous than the use of programmer-
inserted OpenMP directives when parallelizing code in other systems. Alias analysis is a
complex topic that falls outside of the scope of this work. However, it is also an orthogonal
problem to the actual generation of code for Scale, and thus existing alias analysis techniques
can be incorporated into the Scale compiler in the future.

A.1.2 Scalar-to-VP Code Transformation

In this phase, the compiler attempts to map parallel sections of code to the vector-thread
unit. If it successfully generates VP code, then it can also insert software restart markers
as covered in Chapter 7. However, throughout this appendix, all code is compiled without
software restart markers being inserted in order to emphasize Scale-specific compilation
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issues apart from exception handling. Since VT architectures excel at exploiting loop-level
parallelism, the compiler currently only focuses on transforming loops, which frequently
dominate execution time in the types of applications considered in this work. The compiler
uses Trimaran’s existing infrastructure to detect all of the loop nests in the function under
consideration. It then processes each loop nest in an attempt to find a loop that can be
transformed. If a loop is successfully transformed, then its loop nest will not be modified
any further—e.g. if the innermost loop in a nest is parallelized, none of the outer loops will
be processed by this phase.

To illustrate the details of this compiler phase, I will show how the function in Figure A-
2 is transformed. This example contains a loop nest that also has internal control flow. The
inner loop has a loop-carried dependence due to the accumulation. Figure A-3 shows the
scalar code that is the input to the transformation phase on the left. The parallelized output
code of the transformation phase is shown on the right. The following sections describe how
the transformation actually occurs.

void example(unsigned int len, unsigned short * restrict in,

unsigned char * restrict mask, unsigned int * restrict out) {

unsigned int i, j, accum;

for (i = 0; i < len; i++) {

accum = out[i];

for (j = 0; j < len-i; j++)

accum += (in[j]*in[j+i]) >> 1;

if (mask[i] == 0)

accum >>= 1;

out[i] = accum;

}

}

Figure A-2: C code example used to illustrate how the compiler works.

Code Transformation Overview

As stated in Section 7.1.3, the typical approach to parallelize loops for VT architectures is
to strip mine the loop so that the control processor launches a group of VPs simultaneously,
with each VP executing a single loop iteration. In this transformation phase, the basic
blocks in the loop will be mapped to a combination of VTU commands (including any
vector memory instructions), vector-fetched VP code, thread-fetched VP code, and scalar
instructions—e.g. to process induction variables. The mapping used for a particular basic
block depends on its type. Any given loop can be decomposed into basic blocks that can
be grouped into four different categories, with the groups potentially overlapping so that
a single block may be placed in multiple categories. First, there is a header block at the
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2: move r2, in # in[0]
sll r3, i, 1
add r4, r3, in # in[0+i]
li j, 0

3: lhu r5, r2 # in[j]
lhu r6, r4 # in[j+i]
mult r7, r5, r6
sra r8, r7, 1
add accum, accum, r8
add r2, r2, 2 # inc ptr
add r4, r4, 2 # inc ptr
add j, j, 1
slt r9, j, r0
bnez r9, 3

4: lbu r10, mask # mask[i]
bnez r10, 6

5: sra accum, accum, 1

6: sw accum, out
add mask, mask, 1
add out, out, 4
add i, i, 1
slt r11, i, len
bnez r11, 1

1: lw accum, out # out[i]
sub r0, len, i
slt r1, r0, 1
bnez r1, 4

Loop Entry

Loop Exit

2:    vmove v5, s1 # in[0]
vsll v6, v1, 1
vadd v7, v6, s1 #in[0+i]
vli v8, 0 # initialize j
fetch 3

3:    vplhu v9, v5 # in[j]
vplhu v10, v7 # in[j+i]
vmult v11, v9, v10
vsra v12, v11, 1
vadd v3, v3, v12
vadd v5, v5, 2 # inc ptr
vadd v7, v7, 2 # inc ptr
vadd v8, v8, 1
vslt p, v8, v4
psel.fetch 4, 3

4:    vplbu v13, v2 # mask[i]
vseq p, v13, 0
(p)fetch 5

5:    vsra v3, v3, 1

6:    vmove sd0, v3
vsw sd0, out
add mask, mask, r15
sll, r16, r15, 2
add out, out, r16
add i, i, r15
sub r12, r12, r15
slt r11, i, len
bnez r11, 1

1: setvl r15, r12
# Get each VP’s iteration
# number and mask address
vwrsh s2, i

vadd v1, s2, v0
vwrsh s3, mask

vadd v2, s3, v0
vlw v3, out # out[i]

vsub v4, s0, v1 # len-i
vslt p, v4, 1
psel.fetch 2, 4

Loop Entry

Loop Exit

0: move r12, len
vcfgvl r13, 128, 0,0,0,0,0,0,0,0
vwrsh s0, len
vwrsh s1, in
la r14, vp_numbers
vlb v0, r14 # get VP numbers

Header Block → Vector-fetched VP 
code, VTU commands, scalar 

instructions

Internal Loop 
Blocks → Thread-
fetched VP code

Preloop Block: VTU commands, scalar 
instructions

Back Edge/Exit Block →
Vector-fetched VP code, VTU 
commands, scalar instructions

Scalar Code Before 
Transformation Phase

Parallelized Code After 
Transformation Phase

Figure A-3: The control flow graph on the left contains the scalar code that is the input
to the transformation compiler phase. On the right is the parallelized output of the phase.
All register numbers are virtual. The type of register depends on the prefix in front of
the number: “r”=scalar; “v”=private VP; “s”=shared VP; “sd”=store-data VP. Certain
scalar registers are referred to by their variable names for clarity. Highlighted instructions
in the parallelized code are inserted by the transformation phase, as opposed to simply
being converted from a scalar instruction. VP instructions that will be grouped into AIBs
are indented to differentiate them from scalar instructions and VTU commands executed
on the control processor. 161



beginning of the loop. For the outer loop in Figure A-3, the header block is block 1. There
may also be a group of blocks that have a back edge to the header block. In Figure A-3,
block 6 is the single back edge block for the outer loop. Additionally, there may be a group
of blocks that have a control-flow edge exiting the loop—block 6 is also an exit block for
the outer loop. The final group consists of any remaining blocks in the loop that do not
fall into the first three categories. This group consists of blocks 2, 3, 4, and 5 for the
outer loop in Figure A-3. An innermost loop with no conditionals has a single basic block,
which is the header block, a back edge block, and an exit block—this is block 3 for the
inner loop in Figure A-3. Although Trimaran can handle more complex loop structures,
I impose the restriction that a loop can only have a single back edge block and a single
exit block, and that those blocks must be the same. The reason for this requirement is
so that when VPs direct their own control flow by executing fetch instructions, they will
always transfer control back to the control processor at the same point in the program—in
the example, this point is block 6. Otherwise, it would not be possible for the control
processor to manage the VPs as a group. For example, suppose there was an additional
back edge block 7 in Figure A-3, and block 5 could branch to either block 6 or block 7. If
block 7 performed different induction variable updates than block 6, then in order for the
strip-mined loop to work correctly, the control processor would have to know for each VP
whether control was transferred back to block 6 or block 7 so that the induction variables
could be correctly updated. This information would be difficult to obtain, so the simple
solution is to restrict the number of back edge and exit blocks. In practice, this restriction
did not cause a problem, as the codes targeted in this work were automatically mapped by
the compiler to have a single back edge/exit block.

Another restriction on the compiler is that loops with data-dependent exit conditions—
i.e. “while” loops—are not currently handled. One approach to deal with these loops is to
speculatively execute iterations and to later nullify the effects of any VPs that should not
have been launched. Future work will explore compilation of this type of code.

Figure A-3 contains annotations between the scalar code and parallelized code describing
the type of mapping that occurs. In the Scale compilation model, the header block and
back edge block are transformed to a combination of vector-fetched VP code for non-memory
operations, VTU commands including vector memory instructions, and scalar instructions
to handle any induction operations as well as the spawning of new VPs. Since the control
flow for the remaining loop blocks may differ from iteration to iteration, it is dependent on
data that will be unique to a particular VP. Thus, those blocks are transformed to thread-
fetched VP code, and each memory instruction is transformed to a VP memory operation
within the appropriate block. A VP will continue to direct its own control flow until it
executes a block that does not issue a thread-fetch instruction—in Figure A-3, block 5 is
a thread-fetched block that does not issue another thread-fetch instruction. At this point,
the VP will halt and return control to the control processor at the back edge/exit block.
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As seen in Figure A-1, the actual formation of AIBs takes place in a later phase of the
compiler, when the directives to delimit the beginning and end of each AIB are inserted.
This ordering means that the compiler actually interacts with VP code at the level of a basic
block. Only later, when the AIBs are actually formed, is a basic block’s VP code in the
intermediate representation divided into one or more AIBs, as described in Section A.1.5.
The motivation for this phase ordering is twofold. First, since there is a size limit for AIBs
(32 instructions per cluster for Scale), if the AIB boundaries were created before register
allocation, there would be a potential for spill code insertion to cause the limit to be
violated. Second, delimiting AIBs before instruction scheduling would impose restrictions
on the scheduler, as all VP instructions in an AIB would have to be moved as a group
relative to any instructions outside the AIB. These restrictions could hinder performance—
for example, as discussed in Section A.1.4, when processing several vector loads, it can
be desirable to have each load immediately followed by any dependent VP computation.
To avoid complicating the scheduling of VP instructions relative to non-VP instructions
such as vector loads, the intermediate representation supports arbitrary intermingling of
both types of instructions within a basic block. The assembly code generator handles the
actual separation of VP instructions into a distinct section of the file. For each AIB that is
relocated into its own section from the header block or back edge/exit block, the assembly
code generator also inserts a vector-fetch instruction in its original location.

Loop Selection

In traditional vectorizing compilers, selecting which loop in a nest should be vectorized
typically depends on factors such as the structure of memory accesses or the loop trip
count—which requires profiling to estimate dynamically determined trip counts. This pro-
cess can be quite complicated [AK01], and is not covered within the scope of this thesis.
Rather than attempting to account for various loop-specific factors, the compiler currently
uses a simple heuristic of first working from the innermost to the outermost loop in the nest,
searching for a DOALL loop that can be transformed. It attempts to transform innermost
loops first because the control processor is more efficient than virtual processors at han-
dling branches. If no DOALL loops in a nest can be mapped to the vector-thread unit, then
the compiler processes the loop nest again, attempting to map loop-carried dependences to
the cross-VP network. Cross-VP communication is primarily designed to be used within a
vector-fetched AIB, so the compiler first determines if the innermost loop has no internal
control flow and if it can be transformed using cross-VP transfers. If that is not possible,
the compiler restricts the vector length to equal the number of independent VPs, and again
works from the innermost loop in the nest to the outermost loop. The number of indepen-
dent VPs is the maximum number of VPs that can execute in parallel without having to
be time-multiplexed. In the Scale implementation, this value is the number of lanes. Since
using independent VPs removes the possibility a VP will be time multiplexed on a lane, it
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also removes the possibility of deadlock when using arbitrary cross-VP communication.

It should be noted that reduction operations can be handled on Scale by using the
standard parallelization technique of computing partial results on each lane (in a shared
register) and then merging the results during a final execution phase. However, I have
not yet added compiler support for this approach, so currently the compiler treats all
loop-carried dependences in the same manner when selecting which loop to transform. In
Figure A-3, the inner loop contains a loop-carried dependence on accum, so the compiler
will first consider the outer loop to see if it can be parallelized.

Loop Transformation

To determine if a loop can be transformed, the compiler employs a modified version of the
approach used for vector architectures by Allen and Kennedy [AK01]. The compiler first
conducts a dependence analysis. Since a loop may contain internal control flow, the compiler
processes each possible control flow path through the loop and updates the dependence
graph accordingly. The SUIF-generated direction vectors for memory dependences are used
to provide additional information such as potential cross-VP transfers. Once the dependence
graph is constructed, the compiler uses Tarjan’s algorithm to identify strongly connected
components [Tar72]. If there are any dependence cycles that occur in the loop currently
being considered, it will not be transformed unless the cycle involves register dependences
contained within an inner loop (as those will be local to each VP), or unless cross-VP
communication is possible. Another requirement is that all memory operations that will
potentially be transformed to vector memory instructions—i.e. those in the loop’s header
block or back edge block—must have a statically determinable stride value.

If the compiler determines that a loop meets the requirements for transformation, it
sets up the code necessary for the scalar processor to control the execution of the loop.
It creates a special preloop basic block that contains the configuration command for the
VTU. This is block 0 in Figure A-3’s parallelized code. The command is updated after
the chain register insertion phase with the actual configuration identifying the number of
registers required in each cluster. The preloop block also sets up loop-invariant values,
including constants, registers that are never written, and AIB addresses needed by VP
fetch instructions. All of these values are written into shared registers using the vwrsh

command. (For clarity, Figure A-3 shows fetch instructions using the block labels rather
than actual registers.) Besides the performance benefit of avoiding the computation of these
values in each iteration, mapping the values to shared registers that can be used by multiple
VPs also reduces the per-VP physical register requirements.

Another function of the preloop block is to load each VP’s number—found within a
special data block containing the numbers 0 through 127—into a private register if necessary.
This loading occurs if an induction variable will be used in an internal loop block, and each
VP has to compute the value of that variable. For example, the value of mask[i] is loaded
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in block 4 of Figure A-3. Since block 4 is an internal loop block, a VP load instruction
will be used, and the address register v2 has to be set up by the control processor. The
initialization of v2 is performed in block 1 of each strip-mined loop iteration by having each
VP take the baseline value of the mask address for that iteration—i.e. the value needed by
VP 0—and adding its own VP number.

Block 1 also contains the setvl command to set the vector length in each strip-mined
iteration. The induction operations for the loop (found in block 6) are updated so that the
induction value is multiplied by the vector length. Note that the loop counter increments
from 0 to the trip count len. However, decrementing from len to 0 would be more appropri-
ate when using the setvl instruction, which takes the number of iterations remaining as its
source operand. In the example, the compiler adds another variable r12 which decrements
to 0, while keeping the separate counter i which increments to len. While this approach is
simple, optimized code would merge the two variables.

There is generally a one-to-one mapping between scalar instructions and VP instructions,
so transforming the code is mostly straightforward. Note that most of the opcode names in
the parallelized code are the same as their scalar counterparts with a “v” added as a prefix
to indicate a vector instruction. VP memory instructions have a “vp” prefix to distinguish
them from vector memory commands. Branches are somewhat different for VPs than for
a typical scalar processor. When a VP finishes executing a block of code, it will terminate
unless it fetches another block. There is no notion of “falling through” to the next block
of code. Thus, in block 2, an explicit fetch instruction is added to fetch block 3. In
block 5, since there is no fetch instruction, the thread will terminate and control returns
to the control processor. To conditionally fetch a block, the predicate register has to be
used. Each VP has a single private predicate register that can be used for control flow and
for if-conversion [AKPW83]. Block 1 shows how a scalar conditional branch instruction is
converted to a psel.fetch instruction which selects between two different blocks to fetch.
In block 4, if the predicate is false, no fetch will occur and the VP will terminate.

Register values that are live within a single iteration are unique to each VP, so they are
mapped to private registers. Cross-VP values are mapped to a “dummy” register file, and
are later converted to prevVP/nextVP names in the assembly code that correspond to the
queues between each lane. The reason for using registers for these values is to ensure that the
compiler can easily track the dependences between receive/send operation pairs. Figure A-4
illustrates the use of cross-VP transfers by parallelizing the inner loop of Figure A-2 instead
of the outer loop. The x1 cross-VP “register” is used to hold the value of accum as it is
passed from VP to VP. When generating code with cross-VP transfers, the compiler also sets
up xvppush VTU commands in the preloop block for the control processor to push initial
cross-VP values into the queue, and creates a postloop block containing xvppop commands
that pop final cross-VP values from the queue after the loop ends.
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3: lhu r5, r2 # in[j]
lhu r6, r4 # in[j+i]
mult r7, r5, r6
sra r8, r7, 1
add accum, accum, r8
add r2, r2, 2 # inc ptr
add r4, r4, 2 # inc ptr
add j, j, 1
slt r9, j, r0
bnez r9, 3

Loop Exit

3a: sub r12, len, i
vcfgvl r13, 128, 0,0,0,0,0,0,0,0
xvppush accum, x1

3: setvl r14, r12
vlhu v9, r2 # in[j]
vlhu v10, r4 # in[j+i]

vmult v11, v9, v10
vsra v12, v11, 1
vadd x1, x1, v12

sll r15, r14, 1
add r2, r2, r15 # inc ptr
add r4, r4, r15 # inc ptr
add j, j, r14
sub r12, r12, r14
slt r9, j, r0
bnez r9, 3

3b: xvppop accum, x1

Loop Exit

Header/Back Edge/Exit 
Block → Vector-fetched 

VP code, VTU 
commands, scalar 

instructions

Postloop Block: VTU 
commands

Scalar Code Before 
Transformation Phase

Parallelized Code After 
Transformation Phase

Loop Entry Loop Entry

Preloop Block: VTU 
commands, scalar instructions

Figure A-4: The inner loop of Figure A-2 is parallelized in this example. Since the loop
contains a single basic block, vector-fetched VP code and vector memory instructions are
used throughout the parallelized loop. The “x” register prefix in the parallelized code
indicates a value that will be mapped to the cross-VP network. The vadd instruction in
block 3 obtains a value from the previous VP and writes its result to the next VP; the use
of x1 will be later replaced by prevVP/nextVP names.
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A.1.3 Cluster Assignment

The compiler is responsible for assigning each VP instruction to a particular cluster. It
uses a modified version of the clustering approach described in [CFM03], which targets a
typical VLIW architecture and tries to balance work among the clusters while still avoiding
inter-cluster moves along the critical path. For a VLIW compiler, the focus is on improv-
ing ILP for a single thread. By contrast, Scale also exploits DLP and TLP, and although
reducing per-thread latency is important in the compiler, it is typically more important to
focus on the other forms of parallelism to improve processor throughput—thus reducing the
overall latency of the program. Since the vector length depends on the cluster with the
most severe register requirements, the Scale compiler prioritizes achieving a more balanced
partitioning of instructions between clusters over minimizing the per-thread latency. Even
when inter-cluster communication is required, the fact that Scale VP instructions are con-
verted into implementation-specific micro-operations, or micro-ops, helps to alleviate any
communication overhead. Micro-ops allow the compiler to target multiple clusters with a
single VP instruction, avoiding the need to insert an explicit copy operation for each inter-
cluster transfer. As part of the cluster assignment phase, the compiler modifies the VP
instructions to write multiple destinations when necessary.

Additionally, to enhance decoupling—which also serves to hide latency—the compiler
attempts to generate acyclic dataflow between the clusters, as a specific cluster’s operations
within an AIB have to be executed as an atomic group for each VP. The compiler also tries
to place long-latency operations on clusters separate from the instructions which depend
on the results. This is intended to take advantage of the decoupling between clusters. For
example, if a multiply feeds an add within a single AIB, placing the multiply and add on
separate clusters will allow the multiply latency to be hidden by the interleaved execution
of independent VPs.

Balancing all of these constraints effectively is a difficult challenge, so to avoid spending
a great deal of time focusing on optimizing the cluster assignment phase, I use simple
heuristics during clustering. For example, to reduce the possibility of acyclic dataflow,
the compiler biases the initial cluster assignment as well as the desirability metrics in an
attempt to have cluster dataflow move in a single direction. Similarly, if a block contains
a long-latency instruction such as a multiply, which executes on cluster 3, the compiler
tries to avoid mapping any non-multiplication instructions to cluster 3 so that the cluster’s
execution resources can be fully devoted to processing long-latency instructions for each
VP. While the approach of using simple heuristics can be beneficial for various codes, it
also leaves significant room for improvement.

Figure A-5 compares the baseline cluster assignment method—i.e. the approach dis-
cussed in [CFM03]—with the modified clustering that accounts for the Scale-specific con-
straints described above. The first five instructions in each block are on the critical path.
As shown in Figure A-5(a), the default cluster assignment keeps the dependence chain for
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the vmult instruction grouped together on cluster 3 to avoid inter-cluster moves which could
lengthen the critical path. Additionally, the pointer increments are also mapped to cluster
3, leading to an imbalanced assignment. Figure A-5(b) shows how Scale-specific clustering
affects the assignment. The dependence chain for the vmult instruction is now broken apart
so that the following vsra and vadd instructions are mapped to cluster 2; this assignment
is designed to permit cluster 3 to be solely devoted to processing multiply instructions.
However, all of the remaining vadd instructions and the vslt instruction are also mapped
to cluster 2. There are two primary reasons for this imbalanced assignment. First, cluster
2 is the only cluster that does not execute any long-latency instructions (cluster 0 executes
memory instructions, cluster 1 executes thread-fetch instructions which take multiple cycles
to complete, and cluster 3 executes multiply/divide instructions); as a result, the current set
of heuristics tends to be biased toward placing single-cycle latency instructions on cluster
2. Second, the compiler’s heuristic that attempts to avoid acyclic dataflow is somewhat
simplistic. As it tests different cluster assignments, it tries to anticipate the possibility of a
later iteration of the clustering algorithm reassigning an instruction and introducing a cycle,
so it tends to pack instructions on one side of the cluster structure (i.e. toward cluster 3),
and then forces any reassignments to move instructions in a single direction (i.e. toward
cluster 0). While this approach can be effective at times, it sometimes fails to redistribute
the instructions in a balanced manner. Improving the cluster assignment phase of the Scale
compiler is an important component of future work.

3:    c0 vplhu (v5) -> c3/v9 # in[j]
c0 vplhu (v7) -> c3/v10 # in[j+i]
c3 vmult v9, v10 -> c3/v11
c3 vsra v11, 1 -> c3/v12
c3 vadd v3, v12 -> c3/v3
c3 vadd v14, 2 -> c3/v14, c0/v5 # inc ptr
c3 vadd v15, 2 -> c3/v15, c0/v7 # inc ptr
c1 vadd v8, 1 -> c1/v8 # inc j
c1 vslt v8, v4 -> c1/p # j < len-i?
c1 psel.fetch 4, 3

3:    c0 vplhu (v5) -> c3/v9 # in[j]
c0 vplhu (v7) -> c3/v10 # in[j+i]
c3 vmult v9, v10 -> c2/v11
c2 vsra v11, 1 -> c2/v12
c2 vadd v3, v12 -> c2/v3
c2 vadd v14, 2 -> c2/v14, c0/v5 # inc ptr
c2 vadd v15, 2 -> c2/v15, c0/v7 # inc ptr
c2 vadd v8, 1 -> c2/v8 # inc j
c2 vslt v8, v4 -> c1/p # j < len-i?
c1 psel.fetch 4, 3

(a) (b)

Figure A-5: (a) Baseline cluster assignment for block 3 of the parallelized code in Figure A-
3. No Scale-specific optimizations are performed. The code format has been changed to
resemble the final Scale assembly code, as this makes it easier to represent the targeting
of multiple destinations. For example, cluster 3 is used to increment the pointer value
contained in c0/v5; it does this by keeping its own copy of the register in c3/v14 and incre-
menting both registers. (b) Cluster assignment for block 3 with Scale-specific optimizations
enabled.

A.1.4 Instruction Scheduling

Typical instruction scheduling approaches try to reduce the critical path length of the
section of code being analyzed. This frequently leads to long-latency instructions being
scheduled early, while short-latency dependent instructions are scheduled later. As a result,
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register lifetimes are often lengthened by the scheduler, leading to increased register usage.
By contrast, the primary goal of Scale’s instruction scheduler is to minimize register usage
by scheduling dependence chains together. This is done for two reasons. First, by reducing
the number of registers used by each VP, the maximum vector length may increase, enabling
greater processor throughput. Second, scheduling dependence chains together makes it more
likely that the compiler will be able to explicitly target chain registers—the inputs to the
ALU—potentially further reducing the register usage for each VP and also enabling more
energy-efficient execution. As mentioned earlier, long-latency operations are usually placed
on a different cluster than any dependent instructions, so Scale’s use of decoupling helps to
hide the latency from targeting dependence chains in this phase.

I modified the traditional list scheduler used in Trimaran to attempt to group depen-
dence chains together, and if no chaining opportunities exist, to revert to its standard
approach. I also attempted to account for additional factors, such as the possibility that a
VP instruction may target multiple clusters, as then there may be multiple opportunities
to use chain registers. However, similarly to the cluster assignment phase, the compiler’s
scheduling heuristics sometimes fail to achieve their goals. An additional complication is
caused by the fact that my modifications are primarily restricted to the priority queue class
used to select the next instruction to schedule. The problem with this approach is that an
instruction can be selected from the priority queue later than another instruction and yet
have an earlier scheduling time, as Trimaran’s machine description encodes parallel execu-
tion resources in the processor. Thus, the desired dependence chains might be broken up,
depending on the actual scheduling times of particular instructions.

Figure A-6 presents a comparison of the standard Trimaran scheduling approach and
the Scale-specific attempt to schedule dependence chains together. In Figure A-6(a), which
shows the result of the default approach, the reason for Trimaran’s late scheduling of the
second load instruction is unclear: in the first prepass scheduling phase, the load is scheduled
earlier, but in the postpass phase the scheduling time is changed. Regardless, no particular
attempt is made to schedule dependence chains together. However, two chains are grouped
by default: the vadd/vslt pair near the top of the block; and the vmult/vsra/vadd trio
near the bottom of the block. Figure A-6(b) shows the result when the Scale-specific
optimizations are employed. As can be seen in the figure, only the vsra/vadd pair is
grouped together (although it is possible for instructions in a dependence chain to use chain
registers if they are separated by instructions on different clusters). When the instructions
are actually being scheduled, dependence chains are processed together—e.g. the two loads,
the multiply, the shift, and the dependent add are the first five instructions scheduled in
the prepass phase. However, once the scheduling times are actually assigned to all the
instructions, the ordering changes—e.g. the first vadd is independent of the first vplhu,
and is assigned the same scheduling time, so it is inserted between the loads. Addressing
this issue is deferred for future work.
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3:    c0 vplhu (v5) -> c3/v9 # in[j]
c2 vadd v8, 1 -> c2/v8 # inc j
c2 vslt v8, v4 -> c1/p # j < len-i?
c2 vadd v14, 2 -> c2/v14, c0/v5 # inc ptr
c0 vplhu (v7) -> c3/v10 # in[j+i]
c2 vadd v15, 2 -> c2/v15, c0/v7 # inc ptr
c3 vmult v9, v10 -> c2/v11
c2 vsra v11, 1 -> c2/v12
c2 vadd v3, v12 -> c2/v3
c1 psel.fetch 4, 3

3:    c0 vplhu (v5) -> c3/v9 # in[j]
c2 vadd v8, 1 -> c2/v8 # inc j
c0 vplhu (v7) -> c3/v10 # in[j+i]
c2 vslt v8, v4 -> c1/p # j < len-i?
c3 vmult v9, v10 -> c2/v11
c2 vadd v14, 2 -> c2/v14, c0/v5 # inc ptr
c2 vsra v11, 1 -> c2/v12
c2 vadd v3, v12 -> c2/v3
c2 vadd v15, 2 -> c2/v15, c0/v7 # inc ptr
c1 psel.fetch 4, 3

(a) (b)

Figure A-6: (a) Default output of Trimaran’s postpass scheduling phase for the code of
Figure A-5(b). No attempt is made to schedule dependence chains together. To simplify the
comparison between the two blocks of code which have different physical register allocations,
virtual register numbers are still used for instruction operands. (b) Output of the postpass
scheduling phase when the scheduler attempts to group dependence chains. The fact that
the scheduler modifications are restricted to Trimaran’s priority queue class can result in
some chains being broken up.

A.1.5 AIB Formation

In this phase, the compiler processes each basic block and inserts directives around VP
instructions that delimit the boundaries of AIBs. As mentioned previously, the actual
separation of AIBs into a separate section of the file takes place during assembly code
generation. There are several situations which will cause an AIB to be ended. First,
for each VP instruction the compiler generates the corresponding micro-ops to determine
whether the AIB size limit will be exceeded. If the size limit is reached, the AIB will be
ended. Another reason to end an AIB is if a control processor instruction is encountered
that has a dependence on one of the VP instructions in the current AIB. Finally, the end
of a basic block will also terminate an AIB.

Although there are advantages to forming AIBs later in the compilation process, one
problem caused by the current phase ordering is the possibility of creating cross-VP trans-
fers that are later determined to span more than one AIB. Cross-VP communication is
designed to be used primarily within a single vector-fetched AIB to avoid the possibility of
deadlock. When AIB formation occurs, if a vector-fetched AIB containing cross-VP trans-
fers is discovered to be too large, it is possible that a prevVP receive will be placed in a
different AIB than its corresponding nextVP send, possibly causing deadlock due to the
fact that VP execution is time-multiplexed across the lanes. Currently, this problem is not
an issue, as an AIB with reasonably balanced cluster assignment can hold on the order of
100 instructions, and since the compiler performs no loop unrolling or if-conversion, basic
blocks are typically not very large. However, if more aggressive compilation techniques are
employed, this phase ordering may have to be revisited.
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A.1.6 Chain Register Insertion

Once AIBs are formed, the compiler can map temporary values to chain registers, which
are only valid within an AIB. The use of chain registers can reduce the physical register file
resources required by each VP and thus potentially increase the vector length. To determine
which values can be mapped to chain registers, the compiler constructs the live ranges for
each register value, keeping a list of potential candidates. A value with a live range that
crosses an AIB boundary cannot be mapped to a chain register. Also, every operation
that executes on a particular cluster overwrites the values in that cluster’s chain registers.
If a potential chain register value would not be overwritten by another operation during
its lifetime, it will be mapped to a chain register. Figure A-7 illustrates the use of chain
registers.

Note that it is possible for VP register spill code to be generated when first running
register allocation. Performing chain register insertion during the initial allocation phase
could reduce register pressure and lessen the possibility of registers being spilled. However,
chain register insertion has to take place after AIB formation, and forming AIBs before
running the register allocator for the first time could create a problem if spill code causes
the AIB to overflow its size limit. An alternative strategy employed by the TRIPS compiler
is to form blocks before register allocation, but to use iterative block splitting if spill code
insertion causes a block size violation [SBG+06].

3:    AIB_BEGIN
c0 vplhu (pr0) -> c3/pr2 # in[j]
c2 vadd pr0, 1 -> c2/pr0 # inc j
c0 vplhu (pr1) -> c3/pr0 # in[j+i]
c2 vslt pr0, pr5 -> c1/p # j < len-i?
c3 vmult pr2, pr0 -> c2/pr4
c2 vadd pr1, 2 -> c2/pr1, c0/pr0 # inc ptr
c2 vsra pr4, 1 -> c2/pr4
c2 vadd pr3, pr4 -> c2/pr3
c2 vadd pr2, 2 -> c2/pr2, c0/pr1 # inc ptr
c1 psel.fetch 4, 3
AIB_END

3:    AIB_BEGIN
c0 vplhu (pr0) -> c3/cr0 # in[j]
c2 vadd pr0, 1 -> c2/pr0 # inc j
c0 vplhu (pr1) -> c3/cr1 # in[j+i]
c2 vslt pr0, pr5 -> c1/p # j < len-i?
c3 vmult cr0, cr1 -> c2/pr4
c2 vadd pr1, 2 -> c2/pr1, c0/pr0 # inc ptr
c2 vsra pr4, 1 -> c2/cr1
c2 vadd pr3, cr1 -> c2/pr3
c2 vadd pr2, 2 -> c2/pr2, c0/pr1 # inc ptr
c1 psel.fetch 4, 3
AIB_END

Figure A-7: On the left is the code of Figure A-6(b) after AIB formation, and using physical
register specifiers. On the right is the code after chain register insertion.

A.2 Compiler Evaluation

I evaluate the Scale compiler implementation by using benchmarks from the EEMBC bench-
mark suite. Table A.1 lists the benchmarks that the compiler is currently able to handle as
well as the types of loops that were parallelized during compilation; the actual benchmark
descriptions were previously provided in Table 8.1. The autocorrelation benchmark con-
tains a loop nest in which the inner loop has a cross-iteration dependence. By default, the
compiler parallelizes it using outer-loop vectorization (listed as autocor olv in the table).
However, for the sake of comparison, I also configured the compiler to parallelize the inner
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loop by using Scale’s cross-VP network (autocor xvp). Aside from inserting the restrict

keyword to indicate that pointers do not alias, the only other modifications to the source
code involved changing the loops for rgbcmy and rgbyiq to use array accesses instead of
pointer accesses. This is due to a temporary restriction that I imposed early in the compiler
development that an induction variable could only be updated once within a loop iteration,
as this simplified the computations of strides for vector memory accesses. Since rgbcmy

and rgbyiq contain pointer variables that are incremented multiple times within the loop,
that inhibits parallelization within the current compiler setup. Lifting that restriction in
future work will enable the compilation of code without having to make any pointer-to-array
conversions.

Since the compiler infrastructure is still early in its development, the total number of
EEMBC benchmarks that it can handle is somewhat small. The primary focus in this
work was on mapping the compiler’s intermediate representation to the vector-thread ar-
chitectural features, not on obtaining a vectorizable intermediate form from the original
source code. Incorporating more established front-end loop transformations would enable a
broader coverage of benchmarks. Also, the compiler currently has certain artificial restric-
tions in place that were inserted to ease the development and debugging process; lifting
those restrictions will enable the compiler to handle more programs. Despite the limited
number of benchmarks, a key point is that they represent a wide variety of loop types, in-
cluding loops that would be non-vectorizable without significant transformations. It should
be noted that I only include benchmarks that can be automatically parallelized, with the ex-
ceptions of the modifications discussed above. Previous work [KVN+06, IBE+07] has shown
the difficulties of automatically parallelizing EEMBC benchmarks, using Intel’s compiler in
an evaluation. The Intel compiler is unable to vectorize many of the innermost loops in
EEMBC benchmarks for various reasons (although the use of the restrict keyword would
likely help in certain cases). It can alternatively target outer loops, but this requires user
assistance, such as OpenMP directives. Although this is only a single example, it serves
to illustrate the point that the problems encountered in automatically parallelizing the
embedded benchmarks targeted in this work are not unique to the Scale compiler.

The compiler-generated code is evaluated on the most recent version of the Scale mi-
croarchitectural simulator, using the default four-lane configuration. Table A.1 contains the
speedups of the compiler-generated parallelized code that uses the VTU when compared
to the scalar code that only uses the control processor. The scalar code is generated using
the same compilation infrastructure described in Section A.1, but without performing any
scalar-to-VP code transformations. The fact that control processor pipeline hazards are
not modeled when simulating baseline scalar code provides a pessimistic evaluation of the
parallelized code speedups.

The smallest speedup is about 3× for fir. This benchmark contains a loop nest with
an inner loop that only consists of two accumulations. Since the compiler parallelizes the
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Per-Cycle Statistics
Loop Avg Vector Kernel Compute Load Store

Benchmark Type Length Speedup Ops Elms Elms
autocor olv DI 16.6 7.3 6.5 1.3 0.0
autocor xvp XI 60.6 10.1 2.7 1.8 0.0
fir XI 35.0 3.3 0.4 0.4 0.0
hpg DP 63.6 33.0 4.0 2.0 0.2
rgbcmy DC 20.0 7.2 2.9 0.5 0.7
rgbyiq DP 28.0 26.0 6.0 0.9 0.9

Table A.1: List of benchmarks and types of loops that were parallelized, average vector
length, speedups over scalar code, and the average numbers of VTU compute ops, load
elements, and store elements per cycle. The different loop types are taken from [KBH+04a]:
[DP] data-parallel loop with no control flow, [DC] data-parallel loop with conditional thread-
fetches, [XI] loop with cross-iteration dependences, [DI] data-parallel loop with inner loop.
For autocor, the data3 dataset was used.

inner loop using cross-VP transfers, there is not much computation to perform in parallel.
Additionally, two of the four VP instructions in the parallelized benchmark are long-latency
multiplies, further limiting the speedup. At the other extreme, hpg has a large speedup of
33×. However, there is one caveat with this result. In general, I observed that when gen-
erating scalar code, the compiler infrastructure used in this appendix (SUIF-to-Trimaran-
to-GCC) is competitive with the GCC-only approach used for the hand-coded benchmarks
described in Chapter 7, and in some instances is superior. However, for hpg, the Scale com-
piler generates code that contains a significant number of register spills, and this code is
slower by about a factor of 3 than using GCC alone. For the sake of consistency, I used the
same baseline compiler infrastructure for all benchmarks, but even when compared against
the faster GCC-generated scalar code, the compiler still achieves about an 11× speedup
for hpg. rgbyiq has a speedup of about 26× regardless of the baseline scalar code used.
This is a simple DOALL loop that the compiler can handle in a straightforward manner.
For autocor, the use of the cross-VP network produces a superior speedup to outer-loop
vectorization. This is not inherent to the program—for the hand-coded assembly, the outer-
loop vectorized version is superior—but is due to the fact that the compiler infrastructure
is still very inefficient when generating code with thread fetches. By contrast, the inner-
loop vectorized version of autocor that uses the cross-VP network only has a single basic
block to parallelize, which is simpler for the compiler to handle. As the compiler is further
developed and other optimizations such as if-conversion are integrated, the efficiency of
outer-loop vectorization should increase.

An interesting comparison can be made between the results for Scale and the limit study
on thread-level speculation conducted by Islam et al. [IBE+07]. TLS designs are somewhat
more flexible than Scale in the types of codes they can handle, as they typically have
hardware support to squash speculative threads that have violated dependences. The Scale
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compiler focuses on non-speculative execution and is therefore conservative in its approach
to handling dependences between threads. In [IBE+07], the speedup over a single-issue
scalar processor is computed for a variety of multicore TLS configurations. The benchmarks
consist of the EEMBC consumer and telecom suites, which includes autocor, hpg, rgbcmy,
and rgbyiq. For an ideal TLS machine with an infinite number of cores and zero thread-
management overhead, the speedups are approximately 5× for autocor, 19× for hpg, 14×
for rgbcmy, and 17× for rgbyiq. Note that for autocor and rgbyiq, the actual speedups
achieved by the Scale compiler using a realistic model for the vector-thread unit exceed
the upper bound on the TLS speedups. (I do not include hpg for the reason mentioned
earlier.) For a 16-core machine with no thread-management overhead (which matches the
issue capability of Scale’s VTU but is idealized with respect to latency), the speedups are
approximately 5× for autocor, 9× for hpg, 8× for rgbcmy, and 9× for rgbyiq. Obviously
the setup used for the Scale compiler evaluation is somewhat different; still, this comparison
attests to the performance improvements made possible by various Scale features, such as
vector memory instructions and decoupled execution. The last three columns of Table A.1
also indicate the effectiveness of Scale’s features, as they show that the total number of VTU
compute operations and memory elements processed per cycle is substantially less than the
number of operations per cycle that would be executed in an idealized 16-core machine.
The Scale chip prototype [Kra07] provides evidence that a 16-issue VT architecture has
much lower area and power consumption than a 16-core multiprocessor.

Figure A-8 shows how the optimizations performed in various compiler phases affect
the speedups. “No Opt” refers to simply performing the scalar-to-VP code transformation:
the clustering used is the approach described in [CFM03] with none of the Scale-specific
modifications described in Section A.1.3. The standard Trimaran list scheduler is used with
no attempt to schedule dependence chains together, and no chain registers are used. I then
enable the various optimizations to determine their impact. In certain cases, turning on
optimizations does not affect the average vector length, as shown in Figure A-9, and thus
performance is relatively unchanged. For some benchmarks, even when the vector length
is increased, it does not help performance. For example, although scheduling dependence
chains together doubles the vector length for fir, it does not increase resource utilization,
as the baseline code already spawns a sufficient number of VPs to maximize performance
for a particular cluster assignment.

Performing Scale-specific clustering provides significant benefits for some benchmarks,
and is inconsequential in others. As discussed in Section A.1.3, the set of heuristics used
in this phase leave significant room for improvement; as a result, the compiler sometimes
packed the majority of operations within a single cluster, thus inhibiting decoupling. Depen-
dence chain scheduling provides small benefits for rgbcmy and rgbyiq, but has a negative
impact on hpg in spite of the fact that it increases the average vector length. (I have not yet
pinpointed the reason for this decrease, although hpg has a more complex memory access
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pattern than the other benchmarks, so that could be a factor.) However, for the remaining
benchmarks, dependence chain scheduling had little effect, either due to no effect on the
vector length, or due to resource utilization already being maximized as mentioned above.
Chain register insertion also did not typically affect the vector length for the benchmarks
which were evaluated, resulting in little or no impact on performance. This lack of effective-
ness was due to the fact that for the codes under consideration, the use of chain registers did
not reduce the number of general registers needed for the “critical” cluster that determined
the vector length. However, as shown in Table A.2 there were multiple cases in which a
large percentage of VP register accesses were mapped to chain registers. Although chain
register insertion did not improve performance in this evaluation, it is still useful to save
energy. One interesting observation from Table A.2 is that chain register usage decreases for
rgbyiq when trying to schedule dependence chains together. Each iteration of the rgbyiq

loop loads the three elements of an input pixel, performs a set of conversions, and stores
three elements to the output array. Since each output element depends on all three input
elements, the dependence chains are interconnected. However, when the compiler attempts
to group dependence chains, each vector load is immediately followed by a snippet of de-
pendent computation that is placed in its own AIB. By contrast, the default scheduling
approach first issues all three vector-loads, and then issues a single AIB that contains all
of the dependent computation. Since chain registers cannot be live across AIB boundaries,
having a single large AIB turns out to be more effective for rgbyiq in terms of increas-
ing chain register usage. This observation points to the need to be more selective in the
instruction scheduling phase when targeting dependence chains. Another interesting statis-
tic is the decrease in chain register usage for hpg when Scale-specific clustering is turned
on (the “Full” set of optimizations) versus just enabling dependence chain scheduling and
chain register insertion. Overall, not only do cluster assignment and instruction scheduling
impact each other’s effectiveness, but they also impact the effectiveness of chain register
insertion. Future refinements to these phases should improve chain register usage, hopefully
leading to longer vector lengths and higher performance.

Figure A-10 provides a comparison between the speedups of the compiler-generated code
and the speedups of the handwritten assembly code. This comparison shows that there
is still significant room for improvement in the compiler infrastructure. The hand-coded
benchmarks have been highly optimized and take advantage of algorithmic transformations
as well as Scale features that the compiler does not yet support such as segment-strided
memory accesses. Further development of the compiler should narrow the performance
gap. Additionally, the algorithm changes used in the hand-coded benchmarks could also be
applied to the compiler’s input source code. However, for this particular evaluation I wanted
to minimize programmer intervention as much as possible, so I left the overall structure of
the source code unchanged.
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Figure A-8: Comparison of the various speedups of the compiler-generated code when
different optimizations are turned on. No Opt = No optimizations; Cluster Opt = Scale-
specific clustering; Sched Opt = Schedule dependence chains together; Chain Opt = Target
chain registers; Sched Chain Opt = Schedule dependence chains together and target chain
registers; Full Opt = Turn on all optimizations.

% Register Reads % Register Writes
Benchmark Chain Sched Chain Full Chain Sched Chain Full

autocor olv 10.5 10.5 15.8 16.6 16.6 24.9
autocor crossvp 33.4 33.4 33.3 49.9 49.9 49.9
fir 0.7 25.5 25.3 0.9 34.0 33.6
hpg 5.4 13.5 8.1 7.4 18.5 11.1
rgbcmy 0.0 0.0 0.0 0.0 0.0 0.0
rgbyiq 37.8 28.9 28.9 70.8 54.2 54.2

Table A.2: Percentage of VP register reads/writes that are mapped to chain registers when
enabling different compiler optimizations: “Chain” = only chain register insertion is enabled
with no Scale-specific clustering or scheduling; “Sched Chain” = both dependence chain
scheduling and chain register insertion are enabled; “Full” = all Scale-specific optimizations
are enabled.
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Figure A-9: Comparison of the average vector lengths when different optimizations are
turned on.

A.3 Related Work

The TRIPS architecture [SNL+03] can also exploit multiple forms of parallelism. However,
unlike Scale, which exploits DLP, TLP, and ILP simultaneously, TRIPS only targets one
form of parallelism at any given time and explicitly “morphs” between modes of execution.
Speculation is used to find parallelism. The TRIPS compiler focuses on forming blocks full
of useful instructions [SBG+06] and mapping instructions to ALUs [NKB+04, CCK+06].
The Scale compiler has somewhat different priorities, as it deals with issues more typically
encountered in vectorization, and it also focuses on non-speculative execution.

Stream processing [KDK+01] targets DLP by mapping computation kernels—typically
the body of a loop—to a Kernel Exection Unit (KEU), which is a co-processor that contains
clusters of ALUs. ILP can also be exploited within each kernel. While this approach
shares some similarities with Scale, there are some significant differences between the Scale
compiler and the stream processing compiler [DDM06]. The KEU can only communicate
with memory through a Stream Register File (SRF). A major job of the compiler is to
manage the utilization of the SRF. By contrast, this is much less of a concern for the Scale
compiler due to Scale’s cached shared memory model and decoupled cache refills [BKGA04].
Additionally, the stream processing compiler performs a binary search to determine the
best strip-size when strip mining, while this is not an issue for Scale. Finally, the stream
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Figure A-10: Comparison of the speedups of the compiler-generated code with all optimiza-
tions turned on and the hand-coded assembly.

processing compiler uses a standard list scheduling approach to reduce latency of a kernel,
while the Scale compiler focuses more on improving throughput as the Scale hardware
provides decoupling to tolerate latency.

Eichenberger et al. [EOO+05] describe the compiler for the Cell processor, which ex-
ploits multiple forms of parallelism. They provide multiple programming models for Cell
depending on how involved the programmer wants to be with the low-level details of the
architecture. The paper focuses on many issues which are not present in Scale: Cell uses
SIMD functional units for data-level parallelism, so alignment is a significant concern; the
Synergistic Processor Elements (SPEs) have local non-coherent memories, so the compiler
has to handle transfers between the system memory and the local memories using DMA
commands; the SPEs have no branch prediction and assume all branches to be not-taken,
so the compiler has to insert branch hints and schedule them appropriately. The Scale
compiler has different priorities due to the significantly different architecture.

The XIMD architecture [WS91] extends a VLIW architecture by providing an instruction
sequencer for each functional unit. This allows the XIMD to behave like a multithreaded
machine, while still retaining the ability to function like a VLIW. The compiler schedules
loops for the XIMD by using a technique called iteration mapping [NHS93], which attempts
to balance the exploitation of fine- and medium-grained parallelism in order to fully utilize

178



processor resources. Since Scale hardware time-multiplexes VP threads onto the physical
resources and makes extensive use of decoupling, there is less of a burden on the compiler to
fully utilize resources, although the cluster assignment phase can have a significant impact.

Microthreading [Jes01] shares some similarities with VT. A microthread executes a single
loop iteration and its execution can be interleaved with that of other microthreads sharing
the same physical resources. The compilation infrastructure required for microthreading is
discussed in [BBdG+06], although no actual compiler implementation is presented. It is the
compiler’s responsibility to insert swch commands to force a context switch after issuing
loads which could miss in the cache. This is done to prevent potential stalls. The Scale
compiler aims for a similar goal by attempting to place VP operations which depend on
loads on a different cluster than cluster 0, so that decoupling will be possible.

Multi-threaded vectorization [Chi91] tries to span the gap between vector and VLIW
machines in order to target code that would not be traditionally vectorizable. The compiler
starts with a schedule that has been software-pipelined and builds on that to determine the
issue time and issue period for each vectorized instruction. However, the compiler has to
know the functional unit latencies, and the work is restricted to a single vector lane.

Tian et al. [TBGG03] exploit parallelism at both the thread-level and instruction-level
on an Intel platform that supports Hyper-Threading Technology. The Intel compiler can
perform parallelization that is guided by OpenMP directives or pragmas. It also supports
automatic loop multithreading to exploit medium-grained parallelism. For automatic paral-
lelization, the compiler builds a loop hierarchy structure, performs data dependence analysis
to find loops without loop-carried dependences, and determines whether it will be profitable
to generate multithreaded code for the loop. The compiler can also perform “intra-register
vectorization” by generating SIMD instructions. This technique can be combined with the
above multithreading approaches. Scale’s advantages include the ability to handle loop-
carried dependences, and more efficient parallelization of loops, especially with respect to
vector memory operations and the spawning of threads.

Superword level parallelism (SLP) [LA00] can be used to improve performance in ma-
chines that support SIMD operations. Shin et al. [SHC05] discuss how SLP can be applied
even in the presence of control flow by using if-conversion. The disadvantage of this ap-
proach is that all possible control paths have to be executed. This is addressed with the
concept of generating branches-on-superword-condition-codes (BOSCCs) [SHC04, Shi07].
BOSCCs allow a vector instruction or group of vector instructions to be bypassed if the
guarding vector predicate contains all false values. Scale is more flexible in its handling
of control flow because each VP thread—which corresponds to a single superword element
in the BOSCC approach—can direct its own control flow without being tied to the other
threads.

The Daecomp compiler for decoupled access/execute processors [RF00] uses a five-step
process to partition instructions between the access and execute instruction streams. It
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attempts to avoid dependences that will reduce slip between the Access Processor and
Execute Processor—i.e. the more the Access Processor runs ahead, the more slip there is.
For example, it uses techniques like common sub-expression replication to avoid copies from
the Execute Processor to the Access Processor. This is a similar goal to the Scale compiler’s
clustering approach, which tries to avoid cyclic dataflow.

A.4 Summary

This appendix described the overall flow of the Scale compiler, showing how it mapped
loops to the architecture and how it attempted to take advantage of various Scale features
such as decoupled execution. The compiler can parallelize several types of loops, and is
able to achieve significant speedups over a single-issue scalar processor. Although there
are many improvements that can be made to the compiler infrastructure, this appendix
illustrated the feasibility of compiling for Scale and the performance benefits that can be
achieved by automatically parallelizing codes for vector-thread architectures. This eval-
uation serves to demonstrate the potential of using explicitly parallel architectures more
widely in mainstream computing.
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