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Abstract

We introduce a fast and accurate technique for initializ-
ing the directory and cache state of a multiprocessor sys-
tem based on a novel software structure called the mem-
ory timestamp record (MTR). The MTR is a versatile, com-
pressed snapshot of memory reference patterns which can
be rapidly updated during fast-forwarded simulation, or
stored as part of a checkpoint. We evaluate MTR us-
ing a full-system simulation of a directory-based cache-
coherent multiprocessor running a range of multithreaded
workloads. Both MTR and a multiprocessor version of func-
tional fast-forwarding (FFW) make similar performance es-
timates, usually within 15% of our detailed model. In addi-
tion to other benefits, we show that MTR has up to a 1.45×
speedup over FFW, and a 7.7× speedup over our detailed
baseline.

1 Introduction

Computer architects rely heavily on simulators to evalu-
ate, refine, and validate new designs before implementation.
However, simulation time continues to increase as microar-
chitectures become more complex and multicore designs
become more common. The intricate timing-dependent be-
havior of these machines cannot be accurately captured with
trace-driven simulation, thus more expensive execution-
driven simulation is typically used.

To reduce simulation time, overall behavior can be esti-
mated using short samples taken from a complete applica-
tion run. Many published architecture studies have oblivi-
ously chosen a single sample, either taken from the begin-
ning or after some fixed number of instructions into the run.
But applications generally contain multiple phases of exe-
cution with varying properties and much better character-
ization is possible by using multiple sample points spread
throughout a run [5, 11, 21, 27]. Two alternative sampling

∗This work was partly funded by the DARPA HPCS/IBM PERCS
project, NSF CAREER Award CCR-0093354, and an Intel Fellowship.

implementations are commonly used with execution-driven
simulators: (1) Fast-forwarding uses a fast functional simu-
lator to update the architectural state (registers and memory)
in between sampling points, then switches to a slower de-
tailed simulator to accurately model the microarchitecture
during the measurement samples. (2) Checkpointing initial-
izes the detailed simulator at each sampling point using a
saved copy of the architectural state. Checkpoints can be
created using functional simulation or by interrupting exe-
cution of the application on a real machine.

The performance of modern microprocessors is greatly
dependent on large quantities of microarchitectural state,
such as branch predictors and caches, which must be initial-
ized correctly at each sample point to avoid large systematic
errors. Two common approaches to initialize this state are:
1) detailed warming, where the detailed model is run for a
period before measurements are taken to warm up caches
and predictors, and 2) functional warming where important
microarchitectural state is updated while fast-forwarding
and then used to initialize the detailed simulator [27]. Mi-
croarchitectural state is less amenable to checkpointing, as
it is often the microarchitecture that is varied across exper-
iments. Some industry development groups report detailed
warming runs require up to two weeks when starting from
stored architectural checkpoints. Modern directory-based,
cache-coherent multiprocessors have an even larger quan-
tity of microarchitectural state, including the directory and
multiple large caches. The long histories of these structures
makes detailed warming impractical, and even functional
warming has significant overhead when maintaining coher-
ent caches.

In this paper, we present a fast and accurate technique for
initializing the directory and cache state of a multiprocessor
system based on a novel software structure called the mem-
ory timestamp record (MTR). The MTR is a versatile, com-
pressed snapshot of memory reference patterns which can
be rapidly updated during fast-forwarding, or stored as part
of a checkpoint. During fast-forwarding, instead of main-
taining the directory and cache state for functional warm-
ing, the MTR simply records the time of every processor’s



last access to every memory block. This bookkeeping adds
little overhead to functional simulation, yet the MTR can
quickly and accurately reconstruct cache and directory state
largely independent of size, organization, or protocol. We
show that MTR achieves an average speedup of 1.19-1.45
over conventional fast-forwarding with functional warming
(FFW) for a single cache configuration. Additional speedup
is possible when multiple different cache organizations are
reconstructed at each sample point. We show we can sim-
ulate around several different configurations using MTR in
the same time as one run with FFW. Finally, both MTR up-
dates and MTR cache reconstruction are highly paralleliz-
able, thus easily supporting parallel-hosted simulation.

2 MTR Design

This section describes the conceptual structure of the
MTR and how it accomplishes the dual goals of fast update
and versatile reconstruction.
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Figure 1. A simple SMP model.

To illustrate the operation of MTR, we use the simple
symmetric multiprocessor model shown in Figure 1 as our
simulation target. Every processor has a local L1 cache,
each having the same cache parameters (e.g. size, associa-
tivity) and using an LRU replacement policy. The memory
uses a centralized full-map bit-vector directory and the MSI
write-back invalidation protocol to support sequential con-
sistency. The directory is always notified when dirty blocks
are written back, whereas clean blocks may be silently
evicted without informing the directory. A single block size
is used for both caches and memory. Alternative cache or-
ganizations, coherence, and eviction policies are explored
in Section 3.

Block n

Block 2
Block 1

Physical Memory Space

Read Vector 1 2 3 p

Last Writer’s ID
Last Writer’s Timestamp

MTR Entry

(Timestamps)

Figure 2. A Memory Timestamp Record.

2.1 MTR Structure

During fast-forwarding, MTR reduces the amount of
work per memory access to a simple and fast table update,

deferring cache state reconstruction until the transition into
detailed mode. The key observation is that directory and
cache state can be reconstructed if, for each memory block,
we know about each processor’s latest accesses and the rela-
tive order of these accesses across processors. During MTR
fast-forwarding, each simulated processor reads and writes
a shared “magic memory” for instant resolution of loads and
stores. We also capture the most recent memory accesses
using the MTR structure shown in Figure 2. The MTR has
an entry for every memory block. Each block’s entry con-
tains an array of read timestamps, one per processor, indi-
cating the last time each processor read the block. Addi-
tional fields record the ID of the last processor to modify
the block and the timestamp of the write. Each timestamp
reflects the cycle in which the memory request was issued.

2.2 Fast-Forwarding Phase

During fast-forwarding, whenever any processor issues
a read or write request, the MTR is updated using the algo-
rithm shown in Figure 3. A read request for block address
issued by processor cpu will record the current timestamp
in the corresponding read timestamp. A subsequent read of
the same block by the same processor will overwrite the pre-
vious read’s timestamp. A write request updates the MTR
entry’s writer ID and timestamp. We also execute UPDATE

during detailed simulation to keep the MTR consistent with
directory and cache state at all times, avoiding a costly syn-
chronization after every detailed period. The lightweight
MTR update has little effect on detailed simulation speed.

Update(time, address, isStore, cpu) {
MTR[address].readers[cpu] = time
if(isStore) {

MTR[address].writer = cpu
MTR[address].writetime = time

}
}

Figure 3. MTR updates during fast-forwarding.

2.3 Cache Reconstruction

At each detailed sampling point, the cache and directory
state must be quickly reconstructed. Cache reconstruction
is split into two phases. First, we filter the latest memory
accesses recorded in the MTR to determine the subset that
are still cached based on cache size and associativity. Sec-
ond, we examine cross-processor interactions to determine
which of the cached blocks should still be valid and/or dirty,
according to the cache protocol.

To determine the cached subset, we observe that for
k-way set-associative caches, an LRU policy dictates that
only the last k accessed blocks remain cached in each set.
To compare memory accesses that map to the same cache
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Figure 4. A Cache Set Record (CSR) entry.

set, we reorganize the information in the MTR into a sep-
arate structure called the cache set record (CSR), shown in
Figure 4. The CSR contains an entry for each set in ev-
ery cache, holding a timestamp-sorted list of the k most
recent memory accesses to that set. Figure 5 describes
how to fill the CSR by sorting all the memory accesses
mapping to the same cache set. To avoid inserting both
a read and write timestamp for the same block into the
CSR entry, the routine checks if a processor was the last
writer. Note that in COALESCECACHEBLOCKS, we in-
sert all memory accesses into the CSR, whether they are
valid or not. Although some of these cached blocks may
be invalidated later by the cache protocol, they were valid
when brought into the cache and potentially caused evic-
tions. As described below, we only examine memory blocks
that have been accessed, so the runtime of this procedure is
O(touched lines× NUMCPUS × k).

In the second phase, we step through the CSR to de-
termine the valid and dirty bits of these cached blocks us-
ing the algorithm FIXUPCACHES shown in Figure 6. The
state of a cached block is dependent on other processors’
accesses to the same block, so we need to refer back to
the corresponding MTR entry to determine when it was
last read and written. A cached block can only be valid
if it was cached upon or after the last write. A modi-
fied cached block only remains dirty if no other proces-
sors have read the data since the modification, otherwise
it would have been downgraded to shared status by the sub-
sequent read request. To check for such downgrades, we
use the simple ISCLEANSHARED test shown in Figure 6.
This results is a worst case runtime for FIXUPCACHES of
O(single cache size× NUMCPUS2).

CoalesceCacheblocks(CSR, MTR) {
for each entry, i, in MTR {

set = i.address >> SETSHIFT
for(p = 1 to NUMCPUS) {

if(i.readtime[p] is valid and p != writer)
Insert(CSR[set][p], i.tag, i.readtime[p])

}
if(i.writetime is valid)

Insert(CSR[set][writer], i.tag,
MAX(i.readtime[writer], i.writetime))

} }

Figure 5. Building the CSR from the MTR.

IsCleanShared(MTRentry i) {
if(i.writetime is valid) {

for(p = 1 to NUMCPUS) {
if(i.writer != p and readtime[p] > i.writetime)

return true
}
return false

}
else

return true
}

FixupCaches(CSR, MTR) {
for each cached block b in CSR {
lastwriter = MTR[b.address].writer
lastwritetime = MTR[b.address].writetime
if(b.timestamp < lastwritetime) {

b.valid = false /* invalidated read */
b.dirty = false

}
else {

b.valid = true
if(IsCleanShared(MTR[b.address])

b.dirty = false /* downgraded write
or cached read */

else
b.dirty = true /* cached write */

}}}

Figure 6. Reconstruct cache valid and dirty bits by
examining cross-processor interactions.

2.4 Directory Reconstruction

MTR directory reconstruction is similar to cache recon-
struction, as shown in Figure 7. If a block is read but never
written, or read by another processor after the last write, the
block is shared. The sharers consist of the last writer (if any)
and all subsequent readers. Although some of these sharers
may have already evicted their clean copy of the block, they
remain in the sharing vector under the silent drop policy,
whereas the directory is always notified of dirty writebacks.
Thus, we must verify that a dirty copy is still in the cache
before marking it modified, otherwise it is invalid. All un-
requested blocks are invalid. This procedure’s worst case
runtime is O(touched lines× NUMCPUS2).

The reconstruction time would be extremely high if we
had to reconstruct the entire directory and cache state dur-
ing every transition from fast-forwarding to detailed mode.
Luckily, only a small subset of the memory locations and
cache entries are accessed in each fast-forwarding period, so
we only have to apply the reconstruction algorithms to this
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sequences of events that result in the MTR holding the same two timestamped accesses at time 1 and time 2.
These ambiguities require additional effort to resolve, though a quick heuristic is usually adequate.

CreateDirectoryFromMTR(directory, MTR) {
for each entry, i, in MTR {

address = addressOf(i)
directory[address].state = Invalid
if(isCleanShared(i)) {

directory[address].state = Shared
for(p = 1 to NUMCPUS) {
if(i.readtime[p] >= i.writetime)

directory[address].addSharer(p)
} }
else if(i.writetime is valid)

if(isValidInCSR(address, i.writer)) {
directory[address].state = Modified
directory[address].owner = i.writer

} } }

Figure 7. Reconstruct directory state in a system
with silent evictions.

subset. We add two levels of valid bits to the MTR, which
are updated during fast-forwarding to track which memory
regions and which blocks within these regions have been
touched. We can then quickly skip untouched MTR entries
during reconstruction. In addition, since we only examine
the most recent memory accesses, the CSR will only re-
flect the changed portion of the cache state and needs to
be merged with the cache state from the end of the last de-
tailed sample (which has become stale over the course of
fast simulation). During the merge, we must also update
the directory to reflect involuntary eviction of stale cache
entries.

2.5 Handling Ambiguous Cases

There are scenarios where the MTR timestamp informa-
tion is insufficient to distinguish between multiple differ-
ent directory and cache states. For example, consider Fig-
ure 8(a), where a processor writes then reads a block with-
out other processors’ interference. Given the write and read
timestamps, one can infer either of the following scenarios:
(1) the read request results in a cache hit and the data re-
mains modified, or (2) the data is evicted and written back
in between, so the read request brings the data back in a
clean shared state. Another ambiguous example is depicted
in Figure 8(b). From MTR reconstruction, we know that a
line is first written by processor p1 then read by processor

p2, and that the line has been evicted from p1’s cache. If
p1 evicts the block before p2 reads it, p1’s copy would have
been dirty, so p1 would have to write back the data. On the
other hand, if p1 evicts after p2’s read, p1’s block would
have already been downgraded to a clean shared status, so
it can be silently dropped. The directory would include p1
in the sharing vector in the first case, but not in the second.

These ambiguities arise because MTR only sees loads
and stores, not evictions. There are two approaches to re-
solving these ambiguities. The faster and less accurate ap-
proach is to always reconstruct the directory and cache state
to reflect the more probable scenario. In the first example
described above, we mark the block as M, assuming good
locality and no communication misses such that the data is
not evicted. In the second example, we leave p1 in the shar-
ing vector, assuming that the block remains in p1’s cache
long enough to be downgraded and written back before be-
ing evicted.

The more accurate approach distinguishes the ambigu-
ous scenarios by pinpointing eviction times, i.e. determin-
ing when an owner’s copy, installed at time1, is evicted be-
fore a later access, at time2, to the same memory block. A
block b is evicted from the set of a k-way associative cache
when the processor accesses k new blocks mapping to the
same set after it last accesses b. If we re-examine the MTR
and find at least k such accesses between time1 and time2,
b was definitely evicted in that period.

When the MTR entry contains fewer than k other ac-
cesses within the time frame, we cannot reach a conclu-
sion about the eviction time — there might have been
more memory accesses within that time frame that are not
recorded by the MTR. For example, a block cached before
time2 that causes block b to be evicted may have been ac-
cessed again after time2, so the previous access would have
been overwritten in the MTR. This special case of unresolv-
able ambiguity is the tradeoff for being able to maintain so
little state in the MTR. However, as we will show in Sec-
tion 4, the unresolved ambiguities are rare, and have little
effect on overall accuracy.

Figure 9 depicts another potentially ambiguous case
caused by unknown eviction times. Assume the caches in
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are recorded in the MTR as read-modify-write.
Assume a 4-way associative cache, and blocks
b1 − b5 map to the same set. We need to retain
the time of P1’s write to b5 to reconstruct the evic-
tion of b1 .

the figure are 4-way associative, and that all the memory
accesses depicted map to the same set. Processor 1’s write
to block b5 causes b1 to be evicted, but the write request is
overwritten in the MTR by Processor 2’s write to the same
block. However, unlike the ambiguities described previ-
ously, this type of ambiguity is easily resolved. During the
initial MTR update, the read vector is also updated upon ev-
ery write request as if the request were a read-modify-write.
In this specific example, the read-modify-write update al-
lows the read vector to retain knowledge of P1’s access to
b5 for reconstructing the eviction. Note that marking writes
as read-modify-writes preserves the correctness of the MTR
algorithm, because the final directory and cache state for
read-modify-writes is indistinguishable from the final state
for writes. If no other processor accesses the same block
afterwards, the write timestamp indicates that the block is
modified. If another processor writes to the same block,
the previous owner’s copy becomes invalid, no matter if it
is a clean-shared or modified copy. Similarly, if another
processor reads the same block, the previous owner’s copy
becomes clean-shared.

3 Extensions of MTR

In this section, we describe how MTR can be used to
reconstruct many different cache configurations and coher-
ence protocols. We also discuss the use of MTR within a
checkpointing simulator, and we outline how both MTR up-
dates and reconstruction can be parallelized.

3.1 Alternative Cache Configurations

The MTR structure is independent of the simulated
cache parameters, with each MTR entry corresponding to
a memory block. Thus, MTR can support multiproces-
sor counterparts of earlier uniprocessor multiconfiguration
cache simulation techniques [22, 9], allowing a single fast-
forwarding run or a stored MTR checkpoint to capture the

behavior of multiple different multiprocessor cache config-
urations. The state of any sized cache with any associa-
tivity can be reconstructed by time sorting touched mem-
ory blocks into the appropriate cache sets; cache block
sizes that are a multiple of the MTR block size can be eas-
ily constructed by merging timestamps from all constituent
MTR blocks. In addition, the MTR structure can recon-
struct most common forms of time-based replacement pol-
icy (e.g., LRU or cache-decay counters).

Multi-level cache hierarchies can be supported by recon-
structing the largest cache with MTR and using detailed
warming or a further reconstruction for the smaller caches.
To reconstruct a non-inclusive cache hierarchy, we first re-
construct the inner caches then omit these cached lines
while reconstructing the CSR for the outer caches.

3.2 Alternative Coherence Protocols

MTR can support a variety of cache coherence protocols,
such as MESI, MOESI, update protocols, and systems with
imprecise directory representations. Here, we illustrate how
MTR supports the MESI protocol, which enhances the MSI
protocol with an additional exclusive (E) state. A read re-
quest for an unshared memory block is cached in the exclu-
sive state as an optimization for read-modify-writes, while
a read request for a shared memory block is cached in the
shared state as in the MSI protocol. Under MESI, MTR re-
construction must determine whether a clean line is in the
exclusive or shared state. A memory block held by multi-
ple caches must be in the shared state. However, if there is
only one cache with a valid and clean copy of a particular
memory block, it can be in either exclusive or shared state.
The ambiguity is similar to that depicted in Figure 8(b). If
the directory is notified of P1’s dirty writeback, it would
grant P2 an exclusive copy of the data, but if P1’s copy is
not evicted until after P2’s read request, P2 would have re-
ceived a shared copy instead. This ambiguity is relatively
infrequent since it only occurs when there is exactly one
read sharer, and can usually be resolved using the same
technique described earlier for determining eviction times
under the MSI protocol.

In addition, MTR works with snoopy protocols, which
are simpler to support than their directory-based counter-
parts since they only require cache reconstruction.

3.3 MTR and Checkpointing

Checkpointing removes the overhead of repeated func-
tional fast-forwarding when evaluating multiple microar-
chitectural configurations, although it is more difficult
to implement and requires large disk files to hold the
memory contents at each checkpoint. MTR snapshots
can be added to architectural checkpoints to reduce the
amount of detailed warming required. Because MTR is
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microarchitecture-independent, many different configura-
tions can be initialized from the single snapshot.

The MTR representation is highly compressible. In the
temporal dimension, long timestamps can be compressed
using small deltas from a local base timestamp. In the spa-
tial dimension, the multilevel valid-bit scheme discussed
in Section 2.4 eliminates the need to store addresses along
with data: the address can be reconstructed based on offset
within the snapshot and the empty page bit vector.

3.4 Parallelization

MTR is well suited to parallel-hosted simulation in
which each simulated CPU runs in its own thread. A
slightly modified MTR in which each processor has its own
write timestamp field would permit fast simulation with-
out synchronization for every memory operation. The only
concurrency constraint is that application-level atomic in-
structions must be implemented with atomic accesses to the
simulated shared memory to ensure legal execution order-
ings. During fast-forwarding, a processor would make fast
updates as before. The last writer would be determined at
reconstruction time by comparing all CPUs’ write times-
tamps. During parallel reconstruction, the shared MTR is
read-only and the writeable CSR is divided into per-CPU
sections that can be written without the need for locks. A
barrier is needed between the coalesce and fixup stages.

4 Evaluation

To evaluate the MTR, we implemented a flexible and
detailed cache-coherent distributed shared memory system
model that includes primary caches, main memory with
variable latency, and interconnection networks. We drive
the memory system with Bochs, a popular x86-based full-
system SMP-capable emulator [13]. The full-system nature
of Bochs (i.e. it boots 4-way SMP Linux 2.4.24) allows us
to test MTR with realistic workloads that require OS sup-
port. Furthermore, the execution-driven nature of the simu-
lator allows our detailed memory system to affect the inter-
leaving of threads, something difficult to achieve in trace-
driven simulation.

The overall simulator structure is shown in Figure 10.
The main loop of the simulator moves round-robin between
the CPU models and the devices, incrementing a cycle count
at the end of each loop. Those devices which need atten-
tion assert an interrupt line and are handled by the operating
system on the simulated machine. During fast-forwarding
mode, the Bochs CPUs access a shared “magic memory”
for instant resolution of loads and stores. During detailed
simulation, the memory backend performs detailed timing
simulation such as cache miss/refill and network routing op-
erations. MTR performs cache and directory reconstruction
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Figure 10. Our detailed memory model can stall a
processor’s execution based on timing models

for fast to detailed transitions. During detailed to fast transi-
tions, the processors halt execution until all of the outstand-
ing memory requests are serviced. To reduce the chance of
coinciding with a periodic behavior in the benchmark, we
randomly sample the detailed portions rather than rely on
periodic sampling across the duration of the benchmark.

We used a simple timing model for this paper, to allow a
greater number of runs to be completed. We believe the con-
clusions regarding accuracy of our memory system model
are relatively unaffected by the exact timings chosen, al-
though conclusions about a given real configuration would
obviously require a more detailed system model. We use an
in-order processor model that assumes each non-memory
instruction takes one cycle to decode and execute. We com-
bine this with a cache of L2-like size and organization, but
L1-like timing to approximate the IPC of a modern out-of-
order superscalar processor. A low DRAM latency was cho-
sen to shorten simulation time while still causing significant
timing-dependent instruction interleaving. Instructions that
access the memory system are subject to the latencies of the
model (shown in Table 1).

The multithreaded workloads used to evaluate MTR in-
clude Fortran/OpenMP NAS Parallel Benchmarks, server-
style benchmarks which spend more time in the OS, and one
dynamically scheduled AI benchmark written in Cilk[14].
Refer to Table 2 for a description of the benchmarks. For
simulation automation, benchmarks were invoked in a run-
level without superfluous processes/daemons to ensure that
non-essential processes do not interfere with the bench-
mark. Each benchmark’s inputs were chosen to allow de-
tailed runs to complete within 12 hours on a 2.2GHz Pen-
tium 4.

4.1 Baseline Functional Warming (FFW)

To provide a baseline, we added a fast functional warm-
ing (FFW) mode to our simulator, which is a straight-
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Benchmark Description Instructions Mem Refs Ambiguous Touched blocks /
(Millions) (Millions) Addresses mem refs (%)

BT NPB: block-tridiagonal CFD application, class S 780 400 95632 0.23
CG NPB: conjugate gradient kernel, class S 792 390 111818 0.42
EP NPB: embarassingly parallel kernel, class W 4306 2076 93786 1.40
FT NPB: 3X 1D fast fourier transform, class S (-O0) 5264 2964 106356 0.44
LU NPB: lower-upper decomposition with SSOR CFD application, class S 368 172 105995 0.24
MG NPB: multigrid kernel, class W 2621 1549 292698 1.78
SP NPB: scalar pentagonal CFD application, class S 361 164 101855 0.23
dbench executes Samba-like syscalls, 3 clients, 10000 requests (gcc 2.96) 2692 867 180328 1.07
apache apache benchmark ’ab’ 2782 947 143332 0.27

worker threading model, 2000 requests, 3 at a time (gcc 2.96)
ck Cilk checkers (parallel alpha-beta search) 2617 396 102389 0.12

4 processors, black plies 6, white plies 5 (Cilk 5.3.2, gcc 2.96)

Table 2. Benchmark Description. All benchmarks are compiled with ifort-v8 -g -O2 -openmp unless noted.
Instructions and Memory Reference columns reflect full detailed runs of the benchmark. The table also includes
ambiguity and touched block stats for 1:100 MTR runs.

Number of Processors 4
Cache hit latency 1
Cache organization 4-way, 256KB
DRAM access latency 20
Cache miss buffer length 16
Network latency 1-cycle to neighbor
Network Topology 2D-mesh

Table 1. Simulation Parameters

forward SMP extension of earlier uniprocessor functional
warming work [27]. FFW fast-forwards the simulation by
updating the cache and directory state in each simulated cy-
cle, but these FFW updates are significantly more expen-
sive than MTR updates. For each memory request during
fast-forwarding, FFW must first calculate a set index, then
search all ways of the local cache to perform a tag check. If
the request results in a hit, FFW must update the local LRU
information; otherwise, multiple non-local caches and the
directory must be updated to reflect all of the downgrades
or invalidations caused by the cache refill. Whereas each
MTR update runs in constant time, FFW updates scale with
the number of caches and ways, and can vary due to miss
rates and sharing patterns. FFW is also more difficult to par-
allelize than MTR, requiring some form of mutual exclusion
to implement parallel cache and directory state updates cor-
rectly. On the other hand, FFW does not require any form
of reconstruction during the transition between fast to de-
tailed mode, because the directory and cache state is kept
up-to-date during fast-forwarding.

4.2 Full System Simulation Variations

Fast-forwarded simulation yields vastly different thread
interleavings than detailed simulation, since processors do

not stall on memory instructions during fast-forwarding. It
is well known that even small changes in SMP system tim-
ing often introduce large variations in simulation results [2].
It is therefore meaningless to compare a single run of de-
tailed simulation and a single run of fast-forwarded simu-
lation, because the different results may simply reflect the
variation introduced by different, but still representative,
thread interleavings rather than differences in simulation ac-
curacy. We present the fast-forwarding results in the context
of reasonable timing variations induced by altering system
parameters.

We introduce two sources of variability in our system.
First, we enable Bochs’s slowdown timer component, which
keeps the emulator in sync with real time on the host, and
causes emulated devices to be handled at nondeterminis-
tic rates, varying the OS scheduling of threads. Second,
we model changing processor workloads by choosing a dif-
ferent processor to run 25% slower than its peers every
10,000 instructions. Repeated simulation runs with these
timing variations capture various representative thread in-
terleavings and coherence race conditions. We use 100,000-
cycle measurement samples, which should be long enough
to span the duration of practical coherence races, so samples
(of which we take hundreds per run) should observe races
in proportion to their occurrence in full runs.

4.3 Accuracy Comparison

This section compares the cache miss rate and coher-
ence message count (under the MSI coherence protocol) re-
ported by detailed simulation, FFW, and MTR. Figure 11
shows these metrics for only one cache due to space lim-
itations, but the results are similar for the other caches.
We use FFW(a:b) and MTR(a:b) to denote the results of
FFW and MTR where a:b is the ratio of instructions ex-
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Figure 11. Accuracy comparison of FFW and MTR to detailed simulation. Each bar represents the median of
eight individual runs of the benchmark. Max and min are noted with thin lines.
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Figure 12. Comparison of MSI and MESI protocols. The rightmost figure shows the reduction in writeback
messages caused by resolving M/S ambiguities as described in Section 2.5
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ecuted in the detailed period to those executed in the fast
period. The length of the detailed phase is fixed at 100,000
instructions. There are seven bars for each reported metric,
each representing a simulation configuration: fully detailed
run, FFW(1:10), FFW(1:100), FFW(1:1000), MTR(1:10),
MTR(1:100), and MTR(1:1000). After trial runs with
a wide range of parameters, we have found this set of
detailed-to-fast instruction ratios to work well. It should
be noted that the parameter selection is suited only for our
implementation of the detailed model and benchmark set.

To show how the system variations affect simulation
measurements, we report each result as median of eight
separate runs (denoted by the solid bars), and the range of
values observed (as denoted by the thin lines). We do not
observe, and there is no reason to expect, a normal distribu-
tion of miss rates or message counts across runs. We also
note again that the detailed runs can only capture some of
the legal thread interleavings, which may differ significantly
from those captured by their corresponding fast-forwarding
runs. Nevertheless, in an attempt to quantify error incurred
by our techniques, we note the largest excursion from the
detailed run’s median, normalized to the detailed median.
Most accelerated benchmarks, with a detailed to fast ratio
of 1:10, have an error in miss rate of less than 15%. LU,
SP, and Apache exceed this error. For LU and SP, our short-
est benchmarks, the problem is likely due to an inadequate
number of detailed samples. Both MTR and FFW exhibit
similar deviations from the detailed simulations – an effect
most prominent in Apache. The technique we use to intro-
duce variability by selectively adding processor stalls has a
much larger relative impact on the fast-forwarding schemes
than on the fully detailed run, where processor CPI is al-
ready much higher due to memory system stalls. We be-
lieve this explains the bias and generally greater variance
observed with the fast-forwarding schemes versus the de-
tailed model.

Increasing the ratio to 1:1000 leads to an unacceptable
fast forwarding error in most cases. We achieve a good bal-
ance of error and speed when we set the detailed to fast ratio
to 1:100. At this rate, six of the ten benchmarks have error
within 25%, with the best performers being EP, MG, and
CG with error below 12%. These benchmarks have rela-
tively fewer invalidation and downgrade requests, indicat-
ing simpler sharing behaviors that are less likely to be per-
turbed by the effects of fast-forwarding.

Despite using different fast-forwarding strategies, both
FFW and MTR report similar results for all metrics. The
slight discrepancies can usually be attributed to the MTR’s
assumption that all ambiguous blocks should be marked
“modified.” Table 2 lists the number of ambiguously re-
constructed addresses. The number of ambiguities does not
always correlate directly with the accuracy of MTR fast-
forwarding. First, although the number of ambiguities may

be high, the resulting error may be small if we always pick
the correct way to reconstruct. Second, the ambiguously re-
constructed blocks may not be needed again, which is likely
in applications with low temporal locality. Third, the error
caused by incorrect reconstruction may be negligible com-
pared to the simulation’s variability, so it does not affect
the overall accuracy of the fast forwarding simulation. To
reduce error further, we can adopt the more sophisticated
approach of establishing eviction times to help resolve am-
biguities at the cost of slower reconstruction as described
below.

4.4 Case Study with Fast-Forwarding

The ultimate goal of fast-forwarding is to allow design-
ers to make quick and reliable architectural decisions even
in the presence of large cross-run variations. This section
presents a simple example to show results obtained from
fast-forwarded simulations can provide as much insight as
those from detailed runs. We have run the EP benchmark
under both the MESI and the MSI protocols, and the col-
lected coherence message metrics are shown in Figure 12.
As expected (unless many read-modify-writes are present),
shared requests under MESI and MSI are similar. However,
the shared replies are quite different, since part of the shared
reply messages in MSI become exclusive reply messages in
the MESI protocol. The increase in shared replies is promi-
nent in both fast-forwarding and detailed simulation data,
thus allowing one to draw the same conclusion about the
effects of the MESI versus MSI with much shorter simula-
tions.

Despite indicating a much larger absolute number of
writeback replies than detailed or FFW runs, MTR runs
present similar writeback replies under both protocols,
which allows one to draw the correct conclusion about the
effect of MESI on writeback replies. This MTR discrep-
ancy in writeback replies is due to our assumption that cer-
tain ambiguous blocks should be marked M rather than S.
When we enhance MTR reconstruction to resolve this cate-
gory of ambiguities, MTR results converge to their detailed
and FFW counterparts, because fewer spurious writeback
messages get generated by incorrectly marked M blocks
(rightmost graph in Figure 12).

4.5 Speedup

Figure 13 compares the running times of our two fast-
forwarding schemes. Each group of three bars represents
the benchmark’s execution time normalized to the slowest
run for that benchmark. The three bars represent detailed-
to-fast ratios of 1:10, 1:100, and 1:1000 respectively. When
only 1% or less instructions are run in detailed mode, over
95% of the simulation time is spent in fast mode. The
small fast-to-detailed transition times confirm that the re-
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C =
(Tfast,FFW + Tslow,FFW )− (Tfast,MTR + Tslow,MTR)

Tslow,MTR

+ 1

Figure 14. In this equation,C represents number of
configurations, Tspeed,scheme is an absolute time,
and Tslow includes all reconstruction time.

construction time of the MTR scheme does not outweigh
the speedup it can provide during fast mode. This is largely
due to the fact that while our programs can make billions
of memory references, the MTR compresses repeated ref-
erences to the same block. Table 2 shows the total num-
ber of memory references during all of execution and the
ratio of “touched blocks” to total references. The number
of touched blocks which must be considered during recon-
struction is a small fraction of the total requests – usually
less than half a percent.

MTR edges out FFW by up to 1.45× speedup on av-
erage, as shown in Figure 13. While MTR is always
faster than FFW, the relative improvement due to sam-
pling ratio is effected by variation, number of touched
blocks, and particular sharing scenarios. Although MTR
achieves a respectable speedup in the serial execution of
a single configuration, what is more exciting is the ad-
ditional speedup from multi-configuration simulation and
parallelization. Using the equation in Figure 14 and as-
suming 1% detailed execution time, we estimate that MTR
could simulate five different configurations simultaneously
and still have comparable running time to FFW running
one configuration. The numerator represents the amount of
time saved by using MTR instead of FFW. This time can be
spent reconstructing and executing additional detailed sim-
ulations – each requiring Tslow,MTR.

For completeness, we note that the MTR is 7.7 times
faster than our detailed model when using the relatively ac-
curate 1:100 sampling ratio. FFW is 5.5 times faster at this
ratio. Of course, much higher speedups will be achieved
when using a more complex detailed model, for example,
with a detailed DRAM model in place of our fixed-latency
memory, or an out-of-order superscalar processor model in-
stead of our in-order single-issue processor model.

5 Related Work

In statistical sampling, as used in our FFW and MTR
schemes, the simulator selectively executes representative
portions of the full benchmark. Much of the accelerated
simulator literature falls under this category, only differing
in which portions of the code are selected and how to fast-
forward to those specific points in the program [12, 19, 27].
Several techniques have been proposed to warmup cache
state prior to measurement in order to obtain more accurate
simulation results [1, 4, 5, 10, 11, 27]. The MTR adds mul-
tiprocessor and directory support to these techniques.

Memory Reference Reuse Latency (MRRL) can be used
to bound the amount of “detailed warming” prior to a sam-
ple to achieve a desired accuracy [8]. In a uniprocessor
model, MRRL can remove 90% of the warmup costs, but
as structures are larger and duplicated in a multiprocessor,
the remaining warmup time can still be significant. Also,
the reference patterns in a full-system multiprocessor simu-
lation change non-deterministically with changes in the mi-
croarchitecture, making it more difficult to apply MRRL.

In addition to bounding the amount of detailed sim-
ulation needed to achieve small error rates with the de-
sired confidence, the SMARTS framework [27] recently
proposed functional warming, which simulates large struc-
tures (such as caches and branch predictors) in detail dur-
ing fast-forwarding mode. By introducing a slight over-
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head during fast-forwarding, functional warming shortens
the detailed warming phase while providing accurate mea-
surements. TurboSMARTS amortizes the lengthy warming
phase by operating from stored snapshots which support
various uniprocessor microarchitectures [25].

In SMT simulation, instruction throughput during a de-
tailed sample interval can be used to guide fast-forwarding
to the next interval, or even to perform a purely analytical
simulation[24]. Such a technique can be augmented with
an MTR to accelerate its fast-forwarding periods. Our sim-
ulator has the benefit of having an operating system decide
realistically which threads may be executing concurrently.
This allows us to ignore combinations which do not oc-
cur in practice, which might represent a substantial fraction
of all possible phase combinations. SMARTS has recently
been extended [7] to support estimation of program runtime
on multiprocessors by taking detailed samples from only
those processors comprising the “critical path.” When par-
allel programs have no clear critical path or when runtime
is an insufficient metric, the MTR should allow more com-
prehensive studies.

When the host and target are of similar architectures, di-
rect execution is a natural choice [6, 16, 26] for fast simu-
lation. However, in a multiprocessor simulation the mem-
ory operations, not the instruction emulation, constitute the
largest obstacle to high speed simulation of a parallel pro-
cessor [15]. Thus, direct execution can be complemented
with MTR updates during fast-forwarding to further speed
up simulation.

Parallelizing the simulator is another logical speedup ap-
proach [3, 16, 20, 28]. Section 3 outlined how the MTR is
well-suited for parallel hosts. An extension to stack anal-
ysis can be used to support single-pass simulation of mul-
tiple configurations for an SMP [23]. While this approach
achieves some of MTR’s goals, it would be difficult to in-
voke in a parallel simulation as each cache must analyze
each memory access as it is issued, and it does not address
directory-based systems.

Finally, statistical/synthetic approaches can dramatically
reduce runtimes[17, 18]. With respect to multiprocessors, a
10–15% error in instruction throughput was observed de-
pending on workload [17], though trends observed with
synthetic workload follow those seen in a detailed baseline
model.

6 Conclusion

We have introduced the Memory Timestamp Record
(MTR) and algorithms for its use. Despite its extensive de-
scription, the MTR is a simple concept which exploits fun-
damental properties of caches and cache coherence. When
combined with statistical sampling, the MTR enables faster
execution of multiprocessor simulations: up to 1.45× faster
than a multiprocessor functional warming model (FFW) and

7.7× faster than our detailed baseline. In addition, the MTR
snapshot representation is not tied to specific microarchitec-
tural details. We have shown how it can be used to recon-
struct multiple cache configurations and coherence proto-
cols. An MTR-enabled simulator will allow computer ar-
chitects to rapidly evaluate a wide range of complex multi-
processor architectures.
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