GLOBALLY-SYNCHRONIZED FRAMES FOR GUARANTEED QUALITY-OF-SERVICE IN ON-CHIP NETWORKS

Jae W. Lee (MIT)
Man Cheuk Ng (MIT)
Krste Asanovic (UC Berkeley)

June 23th 2008
ISCA-35, Beijing, China
Resource sharing increases performance variation

- Resource sharing (+) reduces hardware cost
 (-) increases performance variation

- This performance variation becomes larger and larger as the number of sharers (cores) increases.
Desired quality-of-service from shared resources

- Performance isolation (fairness)

multi-hop on-chip network

- L2$ bank
- mem cont (hotspot)

accepted throughput [MB/s]

minimum guaranteed BW

processor ID
Desired quality-of-service from shared resources

- Performance isolation (fairness)
- Differentiated services (flexibility)
Resources with centralized arbitration are well investigated.

- Resources with *centralized* arbitration
 - SDRAM controllers
 - L2 cache banks

- They have a single entry point for all requests.
 → QoS is relatively easier and well investigated.

References:
- [MICRO ’06]
- [PACT ’07]
- [USENIX sec. ’07]
- [IBM ’07]
- [MICRO ’07]
- [ISCA ’08]
- [HPCA ’02]
- [ICS ’04]
- [ISCA ’07]
- ...

Jae W. Lee (5 / 33)
QoS from on-chip networks is a challenge

- Resources with *distributed* arbitration
 - multi-hop on-chip networks

- They have distributed arbitration points.
 → QoS is more difficult.

- Off-chip solutions cannot be directly applied because of resource constraints.
We guarantee QoS for flows

- Flow: a sequence of packets between a unique pair of end nodes (src and dest)
 - physical links shared by flows
 - multiple stages of arbitration for each packet

- We provide guaranteed QoS to each flow with:
 - minimum bandwidth guarantees
 - bounded maximum delay
Locally fair $\not\Rightarrow$ globally fair

With locally fair round-robin (RR) arbitration:
- Throughput (Flow A) = $(0.5) \ C$
- Throughput (Flow B) = $(0.5)^2 \ C$
- Throughput (Flow C) = Throughput (Flow D) = $(0.5)^3 \ C$

\rightarrow Throughput of a flow decreases exponentially as its distance to the destination (hotspot) increases.
Motivational simulation

- In 8x8 mesh network with RR arbitration (hotspot at (8, 8))

![Graph showing accepted throughput for 8x8 mesh network with different routing methods.]

- w/ dimension-ordered routing
- w/ minimal-adaptive routing

locally-fair round-robin scheduling → globally unfair bandwidth usage

Jae W. Lee (9 / 33)
Desired bandwidth allocation: an example

- Taken from simulation results with GSF:

![Diagram showing fair allocation and differentiated allocation](image-url)
Globally Synchronized Frames (GSF) provide **guaranteed QoS** with minimum bandwidth guarantees and maximum delay to each flow in multi-hop on-chip networks:

- with high network utilization comparable to best-effort virtual-channel router
- with minimal area/energy overhead by avoiding per-flow queues/structures in on-chip routers → scalable to # of concurrent flows
Outline of this talk

- Motivation
- Globally-Synchronized Frames: a step-by-step development of mechanism
- Implementation of GSF router
- Evaluation
- Related work
- Conclusion
GSF takes a frame-based approach

- Frame is a coarse quantization of time.
 - The network can transport a finite number of flits during this interval.
- We constrain each flow source to inject a certain number of flits per frame.
 - Shorter frames → coarser BW control but lower maximum delay
 - Typically 1-100s Kflits / frame (over all flows) in 8x8 mesh network
Admission control of flows

- Admission control: reject a new flow if it would make the network unable to transport all the injected flits within a frame interval
Single frame does not service bursty traffic well

- Both traffic sources have the same long-term rate: 2 flits / frame.
- Allocating 2 flits / frame penalizes the bursty source.
Overlapping multiple frames to help bursty traffic

- **Overlapping multiple frames** to multiply injection slots
 - Sources can inject flits into future frames (with separate per-frame buffers)
 - Older frames have higher priorities for contended channels.
 - Drain time of head frame does not change.
 - Future frames can use unclaimed BW by older frames.
 - Maximum network delay < 3 * (frame interval)
- Best-effort traffic: always lowest priority (throughput ↑)
Reclamation of frame buffers

- Per-frame buffers (at each node) = virtual channels
- At every frame window shift, frame buffers (or VCs) associated with the earliest frame in the previous epoch are reclaimed for the new futuremost frame.
Early reclamation improves network throughput

- **Observation:** Head frame usually drains much earlier than frame interval → low buffer utilization

- **Terminate head frame early if empty**
 - Use a global barrier network to confirm no pending packet in router or source queue belongs to head frame.
 - Empty buffers are reclaimed much faster and overall throughput increases. (by >30% for hotspot traffic pattern)
GSF in action: two-router network example (3 VCs)

- Flow A
- Flow B
- Flow C
- Flow D

Active frame window:

- Frame 0
- Frame 1
- Frame 2
- Frame 3
- Frame 4
- Frame 5
- ...
GSF in action

- GSF in action: two-router network example (3 VCs)

Flow A → VC 0 (Fr0) → Flow C
Flow B → VC 1 (Fr1) → Flow C
Flow C → VC 0 (Fr0) → Flow D
Flow D → VC 2 (Fr2) → Flow D

Active frame window:

Frame 0
Frame 1
Frame 2

...
GSF in action

- GSF in action: two-router network example (3 VCs)

Diagram showing the flow of data through two routers with three virtual circuits (VCs) labeled FR0, FR1, and FR2.

Active frame window:

- Frame 0
- Frame 1
- Frame 2
- Frame 3
- Frame 4
- Frame 5
- ...
GSF in action

- GSF in action: two-router network example (3 VCs)

Flow A Flow B Flow C Flow D

VC 0 (Fr0) VC 1 (Fr1) VC 0 (Fr0) VC 1 (Fr1)
VC 1 (Fr1) VC 2 (Fr2) VC 1 (Fr1) VC 2 (Fr2)
VC 2 (Fr2) VC 2 (Fr2) VC 2 (Fr2) VC 2 (Fr2)

active frame window:

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
...
GSF in action

- GSF in action: two-router network example (3 VCs)

Diagram showing traffic flows and virtual channels (VCs):
- Flow A
 - VC 0 (Fr0)
 - VC 1 (Fr1)
 - VC 2 (Fr2)
- Flow B
 - VC 1 (Fr1)
- Flow C
 - VC 0 (Fr0)
 - VC 1 (Fr1)
- Flow D
 - VC 2 (Fr2)

Active frame window:
- Frame 0
- Frame 1
- Frame 2
- Frame 3
- Frame 4
- Frame 5

Note: The diagram illustrates the flow of frames and virtual channels across the network.
GSF in action

- GSF in action: two-router network example (3 VCs)

Diagram:
- Flow A
- Flow B
- Flow C
- Flow D

VCs:
- VC 0 (Fr3)
- VC 1 (Fr1)
- VC 2 (Fr2)

Frames:
- Frame 0
- Frame 1
- Frame 2
- Frame 3
- Frame 4
- Frame 5

Active frame window:
- Frame 0
- Frame 1
- Frame 2
- Frame 3

Frame window shift:
- Frame 1
- Frame 2
- Frame 3
- Frame 4
- Frame 5
Carpool lane sharing

Buffers are expensive in on-chip environment.
- Cannot transport a flit even if there is an empty slot in other frame buffers.

Carpool lane sharing: relaxing frame-VC mapping to improve buffer utilization
- Reserve one frame buffer (VC0) for head frame only → does not increase the drain time of head frame
- The other buffers are now colorless and can be used by any frame.
- Head-of-line (HoL) blocking prevented by not allowing two packets to occupy a VC simultaneously (OK for shallow buffers).
Baseline virtual channel (VC) router

- Best-effort router
- Three-stage pipeline with look-ahead routing: VA/NRC-SA-ST
- Credit-based flow control
- VC, SW allocators: iSlip
 - uses round-robin arbiters (locally fair)
 - updates the priority of each arbiter only when that arbiter generates a winning grant
GSF router

- VC0: carpool lane
 - reserved for head frame only
- New registers
 - head_frame (HF) (per node)
 - frame_num (per VC)
- NRC: priority precalculation
 - (frame_num-HF) (mod W)
 (0 is the highest priority.)
- VC and SW allocation: priority enforcement
- Global barrier network for frame window shifting
Simulation setup

- **Network simulator:** *Booksimsim*
 - 0.5 M cycles with 50K-cycle warming up

- **Network configuration**
 - 8x8 2D mesh, dimension-ordered routing, 1 flit/cycle link capacity

- **Four traffic patterns**
 - one QoS traffic pattern: hotspot
 - three best-effort traffic patterns: uniform random, transpose, nearest neighbor
 - packet size is either 1 or 9 flits (with 50-50 chance)

- **Baseline VC router**
 - 3-stage pipeline (VA/NRC-SA-ST), 2-cycle credit pipeline delay
 - 6 VCs/physical link, buffer depth is 5 flits/VC

- **GSF parameters**
 - frame window size = 6 [frames], frame size = 1,000 [flits]
 - global barrier latency = 16 [cycles] (conservative)
Flexible guaranteed QoS provided

- All flows receive more than their minimum guaranteed bandwidth \((R_i/e^{\text{MAX}})\) in accessing hotspot.
 - \(R_i\): # of flit injection slots for Flow \(i\)
 - \(e^{\text{MAX}}\): maximum epoch interval.

- Example: 8x8 mesh network

```
+---+---+---+---+---+---+---+
| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
+---+---+---+---+---+---+---+
| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
+---+---+---+---+---+---+---+
```

- (a) fair allocation
- (b) differentiated allocation

Jae W. Lee (29 / 33)
Flexible guaranteed QoS provided

- All flows receive more than their minimum guaranteed bandwidth \((R_i/e^{\text{MAX}})\) in accessing hotspot.
 - \(R_i\): # of flit injection slots for Flow I
 - \(e^{\text{MAX}}\): maximum epoch interval.

- Example: 16x16 torus network with 4 hotspot nodes
Small throughput degradation for best-effort traffic

- **Network behavior with non-QoS traffic**
 - No latency increase in uncongested region
 - At most 12% degradation of network saturation throughput → can be reduced with larger frame (at the cost of delay bound increase)
Related work

- QoS support in IP or multiprocessor networks
 - Fair Queueing [SIGCOMM ’89], Virtual Clock [SIGCOMM ’90]
 - Multi-rate channel switching [IEEE Comm ’86]
 - Source throttling [HPCA ’01]
 - Age-based arbitration [IEEE TPADS ’92, SC ’07]
 - Rotating Combined Queueing (RCQ) [ISCA ’96]

 → expensive, inflexible, and/or without guaranteed QoS

- QoS on-chip networks
 - AEthereal (strict TDM; exp. channel setup) [IEEE Design & Test ’05]
 - SonicsMX (per-thread queues at each node) [DATE ’05]
 - MANGO clockless NoC (partitioning GS and BE VCs) [DATE ’05]
 - Nostrum (routes fixed at design time) [DATE ’04]
Conclusion

The GSF network is

- **guaranteed QoS-capable**
 - with minimum bandwidth guarantees and maximum delay

- **flexible**
 - fair and differentiated bandwidth allocation
 - no explicit channel setup required along the path

- **robust**
 - <5 % throughput degradation on average (12 % in the worst) for four traffic patterns in 8x8 mesh network
 - fairness vs overall throughput tradeoff with frame size

- **simple**
 - no per-flow queues/structures in on-chip routers
 \[\rightarrow\] scalable
 - relatively small modifications to a conventional VC router