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Vector processors offer many benefits

One instruction triggers multiple operations
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But difficulty supporting virtual memory has been a key reason why 
traditional vector processors are not more widely used

Dependence checking 
performed by compiler

Reduced overhead in 
instruction fetch and 
decode

Regular access patterns



Demand-paged virtual memory is a 
requirement in general-purpose processors

Protection between processes is supported
Shared memory is allowed
Large address spaces are enabled
Code portability is enhanced
Multiple processes can be active without 
having to be fully memory-resident

A memory instruction uses 
a virtual address…

load 0x802b10a4

…which is then translated 
into a physical address

load 0x000c56e0

Requires OS and hardware support



Demand paging allows multiple interactive 
processes to run simultaneously

The hard disk enables the illusion of a single 
large memory system

CPU (single-
threaded)

Memory

Hard disk

CPU executes one 
process at a time

Processes share 
physical memory…

…and use larger hard 
disk as “virtual” memory

If needed page is not in physical memory, trigger a page fault

Page fault is very long-latency operation, and don’t want CPU to be 
idle, so perform context switch to bring in another process

Context switch requires ability to save and restore CPU state needed to 
restart process
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Parallel functional units complicate the saving 
and restoring of state

Could save all pipeline state, but this adds significant complexity

Precise exceptions only require architectural state to be saved by 
enforcing restrictions on commit
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Precise exceptions preserve the illusion of 
sequential execution
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Key advantage is that restarting after exception is simple
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Most precise exception designs support a 
relatively small number of in-flight operations
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Each in-flight operation needs a temporary buffer to hold result 
before commit
Problem with vector processors is that a single instruction can 
produce hundreds of results!



Vector processors also have a large amount of 
architectural state to preserve
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Vector processors also have a large amount of 
architectural state to preserve

.

.
.
.

.

.

.        .        .

Scalar Registers Vector Registers

r31

r4

r3

r2

r1

r0

v31

v4

v3

v2

v1

v0

[vlmax-1][2][1][0]

Architectural State for Vector Processor

This hurts performance and complicates OS interface



Our work addresses the problems with virtual 
memory in vector processors

Problem: All of the vector instruction results 
have to be buffered for in-order commit
Solution: We don’t buffer results; instead we 
use idempotent regions to allow out-of-order 
commit
Problem: The vector register file significantly 
increases the amount of state to save
Solution: We don’t save vector registers; 
instead we recreate that state after an 
exception



The problem with parallel execution is 
knowing where to restart after an exception

Copying one array to another can be done in 
parallel:

185…6327…409A

B

… … X

Can’t simply restart from the faulting operation because all of 
the previous operations may not have completed

But suppose something goes wrong

85…????…409



What if we didn’t worry about which 
instructions were uncompleted?

In this example, A and B do not overlap in memory →
original input data still exists
Could copy everything again and still get same result

185…6327…409

85…????…409

A

B

… … X

185…6327…409

Only works if processor knows it’s safe to re-execute code, 
i.e. code must be idempotent



Software restart markers delimit regions of 
idempotent code

Instructions from a single region can be committed out-of-order—no 
buffering required
An exception causes execution to resume from head of region
If regions are large enough, CPU can still exploit ample parallelism
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Software restart markers also create a new 
classification of state

Software Restart Markers

lv v0, t2
.
.
.

addv v0, v1, v2
sv t2, v0
addu t1, t2, 512

lv v0, t0
sv t1, v0
addu t2, t1, 512

“Temporary” state only exists 
within a single restart region, 
e.g. v0
After exception, temporary 
state will be recreated and 
thus does not have to be 
saved
Software restart markers 
allow vector registers to be 
mapped to temporary state



Vector registers don’t need to be preserved 
across exceptions
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Creating restart regions can be done by 
making sure input values are preserved

Vectorized memcpy() loop
# void* memcpy(void *out, const void *in, size_t n);
loop: lv v0, a1      # Load from input

sv a0, v0      # Store to output
addiu a1, 512  # Increment pointers
addiu a0, 512
subu a2, 512   # Decrement counter
bnez a2, loop  # Is loop done?

Want to place entire loop within single restart region, 
but argument registers are overwritten in each 
iteration

Solution: Make copies of the argument registers



Creating restart regions can be done by 
making sure input values are preserved
# void* memcpy(void *out, const void *in, size_t n);
begin restart region

move t0, a0    # Copy argument registers
move t1, a1
move t2, a2

loop: lv v0, t1      # Load from input
sv t0, v0      # Store to output
addiu t1, 512  # Increment pointers
addiu t0, 512
subu t2, 512   # Decrement counter
bnez t2, loop  # Is loop done?

done:
end restart region

This works for all functions with separate input and output arrays



But what if an input array is overwritten?

Vectorized loop for multiply_2() function
# void* multiply_2(void *in, size_t n);
loop: lv v0, a0           # Load from input

mulvs.d v0, v0, f0  # Multiply vector by 2
sv a0, v0           # Store result
addiu a0, 512       # Increment pointer
subu a1, 512        # Decrement counter
bnez a1, loop       # Is loop done?

Can’t simply copy array to backup register



But what if an input array is overwritten?

# void* multiply_2(void *in, size_t n);
loop: lv v0, a0           # Load from input

mulvs.d v0, v0, f0  # Multiply vector by 2
sv a0, v0           # Store result
addiu a0, 512       # Increment pointer
subu a1, 512        # Decrement counter
bnez a1, loop       # Is loop done?

Option #1: Copy input values to temporary buffer



But what if an input array is overwritten?

# void* multiply_2(void *in, size_t n);
# Allocate temporary buffer of size n pointed to by t2

memcpy(t2, a0, a1) # Copy input values to temp buffer
begin restart region
move t0, a0         # Get original inputs
move t1, a1
memcpy(a0, t2, a1)

loop: lv v0, t0           # Load from input
mulvs.d v0, v0, f0  # Multiply vector by 2
sv t0, v0           # Store result
addiu t0, 512       # Increment pointer
subu t1, 512        # Decrement counter
bnez t1, loop       # Is loop done?
end restart region

Option #1: Copy input array to temporary buffer



But what if an input array is overwritten?

# void* multiply_2(void *in, size_t n);
# Allocate temporary buffer of size n pointed to by t2

memcpy(t2, a0, a1) # Copy input values to temp buffer
begin restart region
move t0, a0         # Get original inputs
move t1, a1
memcpy(a0, t2, a1)

loop: lv v0, t0           # Load from input
mulvs.d v0, v0, f0  # Multiply vector by 2
sv t0, v0           # Store result
addiu t0, 512       # Increment pointer
subu t1, 512        # Decrement counter
bnez t1, loop       # Is loop done?
end restart region

Option #1: Copy input array to temporary buffer

Disadvantages: Space and performance overhead

Strip mining Usually still faster than scalar code



But what if an input array is overwritten?

# void* multiply_2(void *in, size_t n);
loop: lv v0, a0           # Load from input

mulvs.d v0, v0, f0  # Multiply vector by 2
sv a0, v0           # Store result
addiu a0, 512       # Increment pointer
subu a1, 512        # Decrement counter
bnez a1, loop       # Is loop done?

Option #2: Use scalar version when vector overhead is too large



But what if an input array is overwritten?

# void* multiply_2(void *in, size_t n);
sltiu t0, a1, 16        # Is n less than threshold?
bnez t0, scalar_version # If so, use scalar version

# Vector version of function with restart markers here
.
.
j done

scalar_version:
# Scalar code without restart markers here

.

.
done: # return from function

Option #2: Use scalar version when vector overhead is too large



But what if an input array is overwritten?

# void* multiply_2(void *in, size_t n);
sltiu t0, a1, 64        # Is n less than threshold?
bnez t0, scalar_version # If so, use scalar version

# Vector version of function with restart markers here
.
.
j done

scalar_version:
# Scalar code without restart markers here

.

.
done: # return from function

Option #2: Use scalar version when vector overhead is too large

Goal of our approach is to implement virtual memory cheaply while 
being able to handle the majority of vectorized code



The compiler implementation takes advantage 
of existing techniques

We can create restart regions for scalar code with 
Trimaran, which uses region-based compilation 
[Hank95]
Vectorizing compilers employ transformations to 
remove dependences, facilitating creation of restart 
regions
We are currently working on a complete vectorizer

SUIF frontend provides dependence analysis
Trimaran backend is used to generate vector assembly code 
with software restart markers
gcc creates final executables
This is a work in progress, so all evaluation is done using hand-
vectorized assembly code



We evaluate the performance overhead of 
creating idempotent regions in actual code

Scale vector-thread processor 
[Krashinsky04] is target system

Provides high performance for embedded programs
Only vector capabilities are used in this work
Microarchitectural simulator used for vector unit
Single-cycle magic memory emphasizes overhead of 
restart markers

A variety of EEMBC benchmarks serve as 
workload

gcc used to compile code
Results shown for default 4-lane Scale configuration



The performance overhead due to creating 
restart regions is small

For most benchmarks, performance reduction is negligible

fft is an example of a fast-running benchmark with small restart 
regions

An input array is preserved in viterbi to make the function 
idempotent
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But what about the overhead of re-executing 
instructions after a page fault?

Restarting after a page fault is not a significant 
concern

Disk access latency is so high that it will dominate re-execution 
overhead
Page faults are relatively infrequent

However, to test our approach sufficiently, we 
examine TLB misses

.

.
.
.

TLB holds virtual-to-physical address 
translations

If translation is missing, need to walk 
the page table to perform TLB refill

TLB refill can be handled either in 
hardware or software

Virtual 
page #

Physical 
page #

Entry 0

Entry n-1

.

.



The method of refilling the TLB can have a 
significant effect on the system

Software-refilled TLBs cause an exception when a 
TLB miss occurs

Typical designs flush the pipeline when handling miss
If miss handler code isn’t in cache, performance is further hurt
For vector processors, the TLB normally has to be as large as 
the maximum vector length to avoid livelock
Advantage of this scheme is that it gives OS flexibility to choose 
page table structure

Hardware-refilled TLBs (found in most processors) 
use finite state machine to walk page table

Disadvantage is that page table structure is fixed
Doesn’t cause an exception, so performance hit is small 
(previous overhead results are an approximation of using system 
with hardware-refilled TLB)
No livelock issues

Although hardware refill is good for vector processors, we 
use software refill to provide a worst-case scenario



Performance optimizations can reduce the re-
execution cost with a software-refilled TLB

Prefetching loads a byte from each page in 
the dataset before beginning the region

Gets the TLB misses out of the way early
Disadvantage is extra compiler effort required

Counted loop optimization restarts after an 
exception from earliest uncompleted loop 
iteration

Limits amount of repeated work
Compiler algorithm in paper



We evaluate the performance overhead of our 
worst-case scenario

Same simulation and compilation infrastructure is 
used
Virtual memory configuration uses standard MIPS 
setup with software refill

Default 64-entry MIPS TLB for control processor
128-entry TLB for vector unit
Fixed 4 KB page size—smallest possible for MIPS
All page tables modeled, but no page faults

Two additional overhead components are introduced
Cost of handling TLB miss (usually negligible)
Cost of re-executing instructions after a TLB miss



The performance overhead of using software-
refilled TLB is small with optimizations

Original design does not perform well with large datasets

Prefetching incurs smallest degradation

Counted loop optimization has small overhead, but still leads to
some re-executed work
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Related Work

IBM System/370 [Buchholz86] only allowed one in-flight 
vector instruction at a time, hurting performance
DEC Vector VAX [DEC91] saved internal pipeline state, 
causing performance and energy problems
CODE [Kozyrakis03] uses register renaming to support 
virtual memory, while our scheme can be used in 
processors with no renaming capabilities
Sentinel scheduling [Mahlke92, August95] uses 
idempotent code and recovery blocks, but for the 
purpose of recovering from misspeculations in a VLIW 
architecture
Checkpoint repair [Hwu87] is more flexible than our 
software “checkpointing” scheme, but incurs more 
hardware overhead



Concluding Remarks

Traditional vector architectures have not found 
widespread acceptance, in large part because of the 
difficulty in supporting virtual memory
Software restart markers enable virtual memory to 
be implemented cheaply

They allow instructions to be committed out-of-order
They reduce amount of state to save in event of context switch

Our approach reduces hardware overhead while 
incurring only a small performance degradation

Average overhead with hardware-refilled TLB less than 1%
Average overhead with software-refilled TLB less than 3%


