
Implementing Virtual Memory in a
Vector Processor with Software
Restart Markers

Mark Hampton & Krste Asanovic
Computer Architecture Group
MIT CSAIL

Vector processors offer many benefits

One instruction triggers multiple operations

v1[5] v2[5]

v1[4] v2[4]

v1[3] v2[3]

v1[2] v2[2]

v3[1]

v3[0]

addv v3,v1,v2

But difficulty supporting virtual memory has been a key reason why
traditional vector processors are not more widely used

Dependence checking
performed by compiler

Reduced overhead in
instruction fetch and
decode

Regular access patterns

Demand-paged virtual memory is a
requirement in general-purpose processors

Protection between processes is supported
Shared memory is allowed
Large address spaces are enabled
Code portability is enhanced
Multiple processes can be active without
having to be fully memory-resident

A memory instruction uses
a virtual address…

load 0x802b10a4

…which is then translated
into a physical address

load 0x000c56e0

Requires OS and hardware support

Demand paging allows multiple interactive
processes to run simultaneously

The hard disk enables the illusion of a single
large memory system

CPU (single-
threaded)

Memory

Hard disk

CPU executes one
process at a time

Processes share
physical memory…

…and use larger hard
disk as “virtual” memory

If needed page is not in physical memory, trigger a page fault

Page fault is very long-latency operation, and don’t want CPU to be
idle, so perform context switch to bring in another process

Context switch requires ability to save and restore CPU state needed to
restart process

P3 P1 P2

P2

P4 P5P1 P3 P2

Parallel functional units complicate the saving
and restoring of state

Could save all pipeline state, but this adds significant complexity

Precise exceptions only require architectural state to be saved by
enforcing restrictions on commit

Issue Unit

FU0
Instr i+5

FUn
Instr i-3

FU1
Instr i

.

.

Architectural
State

Page fault
detected

Fetch and
Decode

Unit

Precise exceptions preserve the illusion of
sequential execution

FU0

FUn

FU1

.

.

Architectural
State

Fetch and
Decode

Unit

Instruction i+5
.
.
Instruction i
.
Instruction i-3
Instruction i-4oldest

newest

Fetch and
decode in
order

Execute and
writeback results
out of order (detect
exceptions)

Commit results
in order (handle
exceptions)

Reorder Buffer (ROB)
FU0

Instr i+5

FU1
Instr i

FUn
Instr i-3Instruction i+6

newest

Key advantage is that restarting after exception is simple

Page fault
detected

Most precise exception designs support a
relatively small number of in-flight operations

FU0

FUn

FU1

.

.

Architectural
State

Fetch and
Decode

Unit

Instruction i+5
.
.
Instruction i
.
Instruction i-3
Instruction i-4oldest

Reorder Buffer (ROB)
FU0

Instr i+5

FU1
Instr i

FUn
Instr i-3Instruction i+6

newest

Each in-flight operation needs a temporary buffer to hold result
before commit
Problem with vector processors is that a single instruction can
produce hundreds of results!

Vector processors also have a large amount of
architectural state to preserve

.

.

Scalar Registers

r31

r4

r3

r2

r1

r0

Architectural State
for Scalar Processor

Vector processors also have a large amount of
architectural state to preserve

.

.
.
.

.

.

. . .

Scalar Registers Vector Registers

r31

r4

r3

r2

r1

r0

v31

v4

v3

v2

v1

v0

[vlmax-1][2][1][0]

Architectural State for Vector Processor

This hurts performance and complicates OS interface

Our work addresses the problems with virtual
memory in vector processors

Problem: All of the vector instruction results
have to be buffered for in-order commit
Solution: We don’t buffer results; instead we
use idempotent regions to allow out-of-order
commit
Problem: The vector register file significantly
increases the amount of state to save
Solution: We don’t save vector registers;
instead we recreate that state after an
exception

The problem with parallel execution is
knowing where to restart after an exception

Copying one array to another can be done in
parallel:

185…6327…409A

B

… … X

Can’t simply restart from the faulting operation because all of
the previous operations may not have completed

But suppose something goes wrong

85…????…409

What if we didn’t worry about which
instructions were uncompleted?

In this example, A and B do not overlap in memory →
original input data still exists
Could copy everything again and still get same result

185…6327…409

85…????…409

A

B

… … X

185…6327…409

Only works if processor knows it’s safe to re-execute code,
i.e. code must be idempotent

Software restart markers delimit regions of
idempotent code

Instructions from a single region can be committed out-of-order—no
buffering required
An exception causes execution to resume from head of region
If regions are large enough, CPU can still exploit ample parallelism

.

.

.

instruction i

.

.

.

instruction 3

instruction 2

instruction 1

Precise Exception Model Software Restart Markers
Software
marks
restart
points

Need a
single
register to
hold
address of
head of
region

instruction i
.
.
.

.

.

.

instruction 1
instruction 2
instruction 3

Software restart markers also create a new
classification of state

Software Restart Markers

lv v0, t2
.
.
.

addv v0, v1, v2
sv t2, v0
addu t1, t2, 512

lv v0, t0
sv t1, v0
addu t2, t1, 512

“Temporary” state only exists
within a single restart region,
e.g. v0
After exception, temporary
state will be recreated and
thus does not have to be
saved
Software restart markers
allow vector registers to be
mapped to temporary state

Vector registers don’t need to be preserved
across exceptions

.

.
.
.

.

.

. . .

Scalar Registers Vector Registers

r31

r4

r3

r2

r1

r0

v31

v4

v3

v2

v1

v0

[vlmax-1][2][1][0]

Architectural State Temporary State

Creating restart regions can be done by
making sure input values are preserved

Vectorized memcpy() loop
void* memcpy(void *out, const void *in, size_t n);
loop: lv v0, a1 # Load from input

sv a0, v0 # Store to output
addiu a1, 512 # Increment pointers
addiu a0, 512
subu a2, 512 # Decrement counter
bnez a2, loop # Is loop done?

Want to place entire loop within single restart region,
but argument registers are overwritten in each
iteration

Solution: Make copies of the argument registers

Creating restart regions can be done by
making sure input values are preserved
void* memcpy(void *out, const void *in, size_t n);
begin restart region

move t0, a0 # Copy argument registers
move t1, a1
move t2, a2

loop: lv v0, t1 # Load from input
sv t0, v0 # Store to output
addiu t1, 512 # Increment pointers
addiu t0, 512
subu t2, 512 # Decrement counter
bnez t2, loop # Is loop done?

done:
end restart region

This works for all functions with separate input and output arrays

But what if an input array is overwritten?

Vectorized loop for multiply_2() function
void* multiply_2(void *in, size_t n);
loop: lv v0, a0 # Load from input

mulvs.d v0, v0, f0 # Multiply vector by 2
sv a0, v0 # Store result
addiu a0, 512 # Increment pointer
subu a1, 512 # Decrement counter
bnez a1, loop # Is loop done?

Can’t simply copy array to backup register

But what if an input array is overwritten?

void* multiply_2(void *in, size_t n);
loop: lv v0, a0 # Load from input

mulvs.d v0, v0, f0 # Multiply vector by 2
sv a0, v0 # Store result
addiu a0, 512 # Increment pointer
subu a1, 512 # Decrement counter
bnez a1, loop # Is loop done?

Option #1: Copy input values to temporary buffer

But what if an input array is overwritten?

void* multiply_2(void *in, size_t n);
Allocate temporary buffer of size n pointed to by t2

memcpy(t2, a0, a1) # Copy input values to temp buffer
begin restart region
move t0, a0 # Get original inputs
move t1, a1
memcpy(a0, t2, a1)

loop: lv v0, t0 # Load from input
mulvs.d v0, v0, f0 # Multiply vector by 2
sv t0, v0 # Store result
addiu t0, 512 # Increment pointer
subu t1, 512 # Decrement counter
bnez t1, loop # Is loop done?
end restart region

Option #1: Copy input array to temporary buffer

But what if an input array is overwritten?

void* multiply_2(void *in, size_t n);
Allocate temporary buffer of size n pointed to by t2

memcpy(t2, a0, a1) # Copy input values to temp buffer
begin restart region
move t0, a0 # Get original inputs
move t1, a1
memcpy(a0, t2, a1)

loop: lv v0, t0 # Load from input
mulvs.d v0, v0, f0 # Multiply vector by 2
sv t0, v0 # Store result
addiu t0, 512 # Increment pointer
subu t1, 512 # Decrement counter
bnez t1, loop # Is loop done?
end restart region

Option #1: Copy input array to temporary buffer

Disadvantages: Space and performance overhead

Strip mining Usually still faster than scalar code

But what if an input array is overwritten?

void* multiply_2(void *in, size_t n);
loop: lv v0, a0 # Load from input

mulvs.d v0, v0, f0 # Multiply vector by 2
sv a0, v0 # Store result
addiu a0, 512 # Increment pointer
subu a1, 512 # Decrement counter
bnez a1, loop # Is loop done?

Option #2: Use scalar version when vector overhead is too large

But what if an input array is overwritten?

void* multiply_2(void *in, size_t n);
sltiu t0, a1, 16 # Is n less than threshold?
bnez t0, scalar_version # If so, use scalar version

Vector version of function with restart markers here
.
.
j done

scalar_version:
Scalar code without restart markers here

.

.
done: # return from function

Option #2: Use scalar version when vector overhead is too large

But what if an input array is overwritten?

void* multiply_2(void *in, size_t n);
sltiu t0, a1, 64 # Is n less than threshold?
bnez t0, scalar_version # If so, use scalar version

Vector version of function with restart markers here
.
.
j done

scalar_version:
Scalar code without restart markers here

.

.
done: # return from function

Option #2: Use scalar version when vector overhead is too large

Goal of our approach is to implement virtual memory cheaply while
being able to handle the majority of vectorized code

The compiler implementation takes advantage
of existing techniques

We can create restart regions for scalar code with
Trimaran, which uses region-based compilation
[Hank95]
Vectorizing compilers employ transformations to
remove dependences, facilitating creation of restart
regions
We are currently working on a complete vectorizer

SUIF frontend provides dependence analysis
Trimaran backend is used to generate vector assembly code
with software restart markers
gcc creates final executables
This is a work in progress, so all evaluation is done using hand-
vectorized assembly code

We evaluate the performance overhead of
creating idempotent regions in actual code

Scale vector-thread processor
[Krashinsky04] is target system

Provides high performance for embedded programs
Only vector capabilities are used in this work
Microarchitectural simulator used for vector unit
Single-cycle magic memory emphasizes overhead of
restart markers

A variety of EEMBC benchmarks serve as
workload

gcc used to compile code
Results shown for default 4-lane Scale configuration

The performance overhead due to creating
restart regions is small

For most benchmarks, performance reduction is negligible

fft is an example of a fast-running benchmark with small restart
regions

An input array is preserved in viterbi to make the function
idempotent

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

rgbcmy rgbhpg rgbyiq dither rotate autcor conven fft viterbi Average

%
 p

er
fo

rm
an

ce
 re

du
ct

io
n

But what about the overhead of re-executing
instructions after a page fault?

Restarting after a page fault is not a significant
concern

Disk access latency is so high that it will dominate re-execution
overhead
Page faults are relatively infrequent

However, to test our approach sufficiently, we
examine TLB misses

.

.
.
.

TLB holds virtual-to-physical address
translations

If translation is missing, need to walk
the page table to perform TLB refill

TLB refill can be handled either in
hardware or software

Virtual
page #

Physical
page #

Entry 0

Entry n-1

.

.

The method of refilling the TLB can have a
significant effect on the system

Software-refilled TLBs cause an exception when a
TLB miss occurs

Typical designs flush the pipeline when handling miss
If miss handler code isn’t in cache, performance is further hurt
For vector processors, the TLB normally has to be as large as
the maximum vector length to avoid livelock
Advantage of this scheme is that it gives OS flexibility to choose
page table structure

Hardware-refilled TLBs (found in most processors)
use finite state machine to walk page table

Disadvantage is that page table structure is fixed
Doesn’t cause an exception, so performance hit is small
(previous overhead results are an approximation of using system
with hardware-refilled TLB)
No livelock issues

Although hardware refill is good for vector processors, we
use software refill to provide a worst-case scenario

Performance optimizations can reduce the re-
execution cost with a software-refilled TLB

Prefetching loads a byte from each page in
the dataset before beginning the region

Gets the TLB misses out of the way early
Disadvantage is extra compiler effort required

Counted loop optimization restarts after an
exception from earliest uncompleted loop
iteration

Limits amount of repeated work
Compiler algorithm in paper

We evaluate the performance overhead of our
worst-case scenario

Same simulation and compilation infrastructure is
used
Virtual memory configuration uses standard MIPS
setup with software refill

Default 64-entry MIPS TLB for control processor
128-entry TLB for vector unit
Fixed 4 KB page size—smallest possible for MIPS
All page tables modeled, but no page faults

Two additional overhead components are introduced
Cost of handling TLB miss (usually negligible)
Cost of re-executing instructions after a TLB miss

The performance overhead of using software-
refilled TLB is small with optimizations

Original design does not perform well with large datasets

Prefetching incurs smallest degradation

Counted loop optimization has small overhead, but still leads to
some re-executed work

0

2

4

6

8

10

12

14

16

18

rgbcmy rgbhpg rgbyiq dither rotate autcor conven fft viterbi Average

%
 p

er
fo

rm
an

ce
 re

du
ct

io
n

Restart
Prefetch
Count

~98% ~36%

Related Work

IBM System/370 [Buchholz86] only allowed one in-flight
vector instruction at a time, hurting performance
DEC Vector VAX [DEC91] saved internal pipeline state,
causing performance and energy problems
CODE [Kozyrakis03] uses register renaming to support
virtual memory, while our scheme can be used in
processors with no renaming capabilities
Sentinel scheduling [Mahlke92, August95] uses
idempotent code and recovery blocks, but for the
purpose of recovering from misspeculations in a VLIW
architecture
Checkpoint repair [Hwu87] is more flexible than our
software “checkpointing” scheme, but incurs more
hardware overhead

Concluding Remarks

Traditional vector architectures have not found
widespread acceptance, in large part because of the
difficulty in supporting virtual memory
Software restart markers enable virtual memory to
be implemented cheaply

They allow instructions to be committed out-of-order
They reduce amount of state to save in event of context switch

Our approach reduces hardware overhead while
incurring only a small performance degradation

Average overhead with hardware-refilled TLB less than 1%
Average overhead with software-refilled TLB less than 3%

