
Appears in 20th ACM International Conference on Supercomputing (ICS06), Cairns, Australia, June 2006.

Implementing Virtual Memory in a Vector Processor with
Software Restart Markers

Mark Hampton
MIT CSAIL

32 Vassar Street, Cambridge, MA 02139

mhampton@csail.mit.edu

Krste Asanović
MIT CSAIL

32 Vassar Street, Cambridge, MA 02139

krste@csail.mit.edu

ABSTRACT
Traditional vector architectures often lack virtual memory
support because it is difficult to support fast and precise
exceptions for these machines. In this paper, we propose a
new exception handling model for vector architectures based
on software restart markers, which divide the program into
idempotent regions of code. Within a region, the processor
can commit instruction results to the architectural state in
any order. If an exception occurs, the machine jumps imme-
diately to the exception handler and kills ongoing instruc-
tions. To restart execution, the operating system has just
to begin execution at the start of the region. This approach
avoids the area and energy overhead to buffer uncommit-
ted vector unit state that would otherwise be required with
a high-performance precise exception mechanism, but still
provides a simple exception handling interface for the op-
erating system. Our scheme also removes the requirement
of preserving vector register file contents in the event of a
context switch. We show that using our approach causes
an average performance reduction of less than 3% across a
variety of benchmarks compared with a vector machine that
does not support virtual memory.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
D.4.2 [Operating Systems]: Storage Management—vir-
tual memory

General Terms
Design, Performance

Keywords
Vector processors, Exception handling

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS06, June 28-30, Cairns, Queensland, Australia.
Copyright c© 2006 ACM 1-59593-282-8/06/0006 ...$5.00.

It is well established that vector architectures can provide
high performance with relatively low complexity for data
parallel codes across a wide range of application domains
ranging from supercomputing [27, 9] to embedded media
processing [22, 26, 2, 18]. However, extensive vector capa-
bilities have yet to appear in recent commercial products
other than newer versions of traditional large-scale vector
supercomputers [5, 16]. Although short-vector multimedia
extensions such as Intel’s MMX/SSE and Motorola/IBM’s
Altivec provide some of the benefits of vector processing,
they cannot provide the same degree of complexity reduc-
tion in instruction fetch, decode and register renaming, or
the same improvement in sustained memory performance as
a traditional long-vector architecture.

One of the factors that has hindered the widespread adop-
tion of vector architectures is the difficulty of implement-
ing virtual memory in these machines. Demand-paged vir-
tual memory is considered a requirement in modern general-
purpose computing systems as it allows many interactive
processes to be active simultaneously while using only the
physical memory required for the current working set. Vec-
tor supercomputers, however, have typically not supported
virtual memory [27, 30, 16]. Supercomputer jobs are de-
signed to fit into physical memory so that expensive CPUs
do not have to wait while pages are swapped in from disk,
and batch scheduling is also common where a queue manager
ensures the set of running jobs can fit in physical memory.

The main requirement to support virtual memory is that
the processor state can be saved to memory when a page
fault is detected to allow a different process to use the pro-
cessor. The original context must then be able to be restored
from memory and restarted once the missing page is loaded
from disk. Modern processors usually support precise ex-
ceptions, where only the architectural state of the processor
needs to be saved to memory. The operating system (OS)
can then restart a job by simplying reloading the architec-
tural state and jumping to the program counter (PC) where
execution was interrupted. As an alternative to precise ex-
ceptions, the microarchitectural state of the machine can be
saved and restored around a page fault (we call this microar-
chitectural swapping). This approach considerably compli-
cates the OS view of the machine, and usually adds sig-
nificantly to interrupt response time. In addition, microar-
chitectural swapping can add considerable hardware area,
delay, power, and design complexity, as circuit datapaths
and control logic may have to be added to allow read and
write of otherwise inaccessible state.

Vector machines add two major complications to virtual



memory handling. First, many vector units are designed to
run decoupled from the scalar unit, which runs far ahead
fetching instructions for subsequent loop iterations [10], and
vector instructions can be long running, so a vector instruc-
tion might complete hundreds of clock cycles after a scalar
instruction that follows it in program order. This makes
supporting precise exceptions through conventional register
renaming and reorder buffer techniques very expensive due
to the length and number of instructions in flight. Second,
vector units have far more architectural and microarchitec-
tural state than scalar units. This adds to the cost of re-
naming if vector registers are renamed, but also lengthens
context switch times for both precise exceptions and mi-
croarchitectural swapping.

In this paper, we introduce the technique of software
restart markers to support virtual memory in a vector pro-
cessor. This is a combined hardware and software scheme
that takes advantage of the nature of vector loops to re-
duce the cost of adding a vector unit to a scalar machine
that already supports virtual memory. Software divides the
vector instruction stream into idempotent regions of code.
The hardware can then commit instructions out of order
within each region. At the end of each region, the machine
must impose a trap barrier to wait for all preceding po-
tentially faulting instructions to clear exception checks be-
fore allowing instructions from the following region to begin
committing. If an exception is detected, hardware simply
discards the entire vector unit state before jumping to an
exception handler. However, because the region was idem-
potent, the OS can simply restart execution at the begin-
ning of the region once the faulting page is loaded. Our
approach removes the need to save and restore vector regis-
ter state around page faults because the vector state will be
recreated from the code at the restart point, enabling the
operating system to effectively ignore the addition of the
vector unit. This retains the same simple restart model of
a scalar machine with precise exceptions, and avoids addi-
tional interrupt overhead.

2. SOFTWARE RESTART MARKERS
In this section, we present the design of our software

restart scheme. We also discuss some of the issues with
our scheme and present possible solutions.

2.1 Out-of-Order Instruction Commit
Implementing a precise exception model effectively re-

quires instructions to be committed in program order. This
can significantly inhibit parallel execution. To illustrate this,
consider the memcpy function, for which the prototype is
given below.

void* memcpy(void *out, const void *in, size_t n);

This function copies the first n bytes of in to the first n

bytes of out. The input and output arrays do not overlap
in memory, otherwise the behavior is undefined. A simple
implementation of this function would execute a loop that
copies a value from one array to the other in each iteration.
As there are no data dependences, all iterations of the loop
could theoretically be executed in parallel.

However, under the precise exception model, although
the loop iterations can be executed in parallel, they have
to be committed sequentially. Consider Figure 1(a), which
presents an abstract representation of the instructions in

.

.

.

memcpy instruction i

.

.

.

memcpy instruction 3

memcpy instruction 2

memcpy instruction 1 memcpy instruction 1

memcpy instruction 2

memcpy instruction 3

.

.

.

memcpy instruction i

.

.

.

(a) In-order commit (b) Out-of-order commit

Figure 1: (a) Exception model with in-order com-
mit. There is an implicit trap barrier at the end
of each shaded region, which each contain one in-
struction. (b) Exception model with out-of-order
commit. The number of trap barriers has been dras-
tically reduced.

the memcpy function. Each instruction has an associated
trap barrier, which is indicated by a different shaded region.
Thus, the first instruction from iteration 100 cannot commit
until all of the instructions from the previous 99 iterations
have committed. This means that its result, if any, has to
be buffered either in the physical register file or the store
queue. Since the processor has finite available resources,
if a particular instruction causes a stall—perhaps due to a
cache miss—then later instructions might not even be able
to issue, thus degrading performance.

For best performance, the memcpy instructions should be
allowed to commit out-of-order, as shown in Figure 1(b).
This depicts a region of instructions; regions must be com-
mitted in order, but within each region, instructions may be
committed in any order that preserves dependences. The
problem with out-of-order commit is that upon returning
from an exception, the processor has to determine which
instructions still need to be executed. This problem can
be avoided for the memcpy function by taking advantage of
the fact that the input array is not overwritten. After han-
dling an exception, if the processor restarts the function
from the beginning, the same result will be produced. All
that the processor needs is some method to determine where
to restart execution after handling the exception.

We generalize this observation to create an alternative to
the precise exception model. We allow software to explicitly
mark points in the instruction stream where restart is re-
quired, dividing the code into restart regions, which permit
a coarser commit granularity than single instructions. At
the beginning of each region, we insert a special trap barrier
instruction that waits for all previous instructions to com-
mit. It then updates an OS kernel-visible register, the restart
PC, with the address of the subsequent instruction. If an ex-
ception occurs in the middle of a region, the OS kernel can
restart the process by simply jumping to the restart PC.
This requires that software ensure the code in each restart
region is idempotent—i.e. it can be re-executed multiple
times without changing the result. Another trap barrier in-
struction is placed at the end of the region to indicate that
the processor can resume conventional precise exception se-
mantics. However, if two regions are placed back-to-back,
then only a single barrier is needed between them.



To illustrate how restart regions are formed, consider the
sample vectorized loop shown in Figure 2, which could be
part of an implementation of memcpy. This example uses
the VMIPS instruction set [12]. Each vector register holds
64 8-byte elements, so each loop iteration copies 512 bytes.

# void* memcpy(void *out, const void *in, size_t n);

loop: lv v1, a1            # Load the input vector

sv a0, v1            # Copy the data to the output vector

addiu a1, 512        # Increment the input base register

addiu a0, 512        # Increment the output base register

subu a2, 512         # Decrement the number of bytes remaining

bnez a2, loop        # Is loop done?

Figure 2: Vectorized memcpy loop.

As shown earlier, the memcpy function could be contained
within a single restart region. However, although the high-
level C definition of memcpy is idempotent, the VMIPS code
that we present is not, as the argument registers are over-
written in each loop iteration. This can be handled by copy-
ing the argument register values to other registers at the be-
ginning of the restart region. The registers with the copied
values can then be used to execute the loop. Figure 3 shows
the memcpy loop inside a restart region. Although copy-
ing register values can increase the register pressure, the
effect will often be insignificant—typically only the num-
ber of iterations and a few memory pointers will have to be
preserved. As we will see in the results, the performance
overhead caused by additional register pressure is usually
small compared to the total execution time of the function.

begin restart region

move t0, a0   # Copy the argument registers

move t1, a1

move t2, a2

loop: lv v1, t1            # Load the input vector

sv t0, v1            # Copy the data to the output vector

addiu t1, 512        # Increment the input base register

addiu t0, 512        # Increment the output base register

subu t2, 512         # Decrement the number of bytes remaining

bnez t2, loop        # Is loop done?

done:

end restart region

Figure 3: Vectorized memcpy loop with software
restart markers.

Note that in the above loop, no vector registers are live
across restart region boundaries. Unless techniques such
as interprocedural dependence analysis [25] are used, vector
registers are typically only live within a single function (and
usually only within a loop iteration). By creating a restart
region that encompasses an entire vectorized function, the
vector register state will be recreated each time the region is
restarted. We exploit this fact to eliminate the saving and
restoring of vector registers on a context switch. The vector
registers are treated as temporary state, which is only valid
within a restart region. This both reduces memory required
to save the process state and improves context switching
time. It also allows the OS to be ignorant of the presence of
the vector unit in the user-level architectural state.

Figure 4 summarizes the differences in the exception han-
dling process between the precise exception model and soft-
ware restart markers. Once an exception is detected, soft-

Handling an Exception Precisely Handling an Exception with Software 
Restart Markers

7. Resume process 
by jumping to 
exception PC

6. Restore 
architectural state

5. Run exception 
handler

4. Save 
architectural state 
(including
exception PC and 
vector register file)

3. Undo imprecise 
state changes

2. Commit earlier 
pending instructions

1. Detect exception

Software must…Hardware must…

Before
handler

During
handler

After
handler 6. Resume process by 

jumping to restart 
PC

5. Restore 
architectural state

4. Run exception 
handler

3. Save architectural 
state (including 
exception PC and 
restart PC—but not
vector register file)

2. Abort pending 
instructions

1. Detect exception

Software must…Hardware must…

Figure 4: Comparison between the exception han-
dling process with precise exceptions and with soft-
ware restart markers.

ware restart markers simplify hardware by allowing the pro-
cessor to simply abort pending instructions, rather than en-
forcing in-order instruction commit. This also avoids the
time to undo imprecise state changes in a checkpointing
scheme [13]. Although software restart markers require an
additional register to be saved and restored—the restart
PC—they remove the need to preserve the contents of the
vector register file. These advantages are obtained without
complicating the exception handler or the method of resum-
ing process execution.

2.2 Obstacles to Restart Region Generation
There are two primary impediments to the use of software

restart markers: overwritten inputs and livelock.

2.2.1 Overwritten Inputs
A restart region has to be idempotent so that it can be

executed more than once while maintaining correctness. A
sufficient, but not necessary, condition for idempotency is
that the set of all external sources (registers and memory)
read by the region is disjoint from the set of destinations
written by the region (note that it is acceptable to overwrite
a value produced within the region). This is not a necessary
condition as shown by the following instruction:

andi r1, r1, 3

Although the andi instruction overwrites its input data, it
does so with an idempotent operation (masking out all but
the bottom two bits). However, typically the input values
to a restart region will need to be preserved.

As shown in Figure 3, input registers to a region can sim-
ply be copied to spare registers. Input memory values that
are overwritten are more difficult to handle, as the amount
of data is often much larger. Although a vectorizing com-
piler may apply transformations to remove dependences that
inhibit restart region formation, certain types of code will
still cause problems. Consider the vectorized function in
Figure 5, which takes an input array in of size n and multi-
plies each element by 2, overwriting the input values. One
approach is to to copy in to a temporary array, and then cre-
ate a new loop—contained within a single restart region—
that loads values from the temporary array. However, this



could introduce significant performance and memory over-
head, depending on the number of elements to be copied.

# void* multiply_2(void *in, size_t n);

loop: lv v1, a0            # Load the input array

mulvs.d v1, v1, f0   # Multiply array by 2

sv v1, a0            # Store result

addiu a0, 512        # Increment the base register

subu a1, 512         # Decrement the number of bytes remaining

bnez a1, loop        # Is loop done?

Figure 5: Vectorized multiply 2 loop.

Alternatively, we can divide each loop iteration into two
restart regions, as shown in Figure 6. This sacrifices perfor-
mance in machines that implement vector chaining, as the
store will not be able to chain to the multiply. Addition-
ally, performance will be degraded in systems that other-
wise decouple the scalar unit and vector unit, as the scalar
operations at the end of the loop have to wait for the vector
store to complete, which in turn delays the vector load in
the subsequent iteration.

loop: begin restart region

lv v1, a0            # Load the input array

mulvs.d v1, v1, f0   # Multiply array by 2

begin restart region

sv v1, a0            # Store result

end restart region

addiu a0, 512        # Increment the base register

subu a1, 512         # Decrement the number of bytes remaining

bnez a1, loop        # Is loop done?

Figure 6: Vectorized multiply 2 loop with software
restart markers.

A separate issue with the code in Figure 6 is that for cor-
rectness the vector register state must now be saved and
restored around a context switch, removing one of the ad-
vantages of the basic software restart scheme. Software can
set a status bit on the begin region instruction to inform the
kernel whether the vector register state is live on a fault.
This status bit must be saved along with the process state
to indicate if the vector register state should be reloaded
when swapping the process back in.

2.2.2 Livelock
The system must ensure forward progress in the face of

finite resources. For example, for a demand-paged virtual
memory system the number of memory pages touched in
a region must be less than the number of available physical
pages to allow execution to proceed through the entire region
without a page fault. In practice, this particular restriction
is not usually significant.

A more significant restriction arises if TLB refills are han-
dled in software, where the number of different pages ac-
cessed within a restart region must be less than the number
of available TLB entries so that the region can run from
start to finish without incurring a TLB miss.

Despite the performance overhead of software-managed
TLBs, they are still popular because they give the OS the
flexibility of choosing a page table structure [29]. Addition-
ally, a vector unit may be added to an existing processor
that handles TLB refills in software [9]. We therefore in-

vestigate alternative approaches that reduce the overhead
of avoiding livelock with a software-managed TLB.

Since unit-stride vector memory accesses are so com-
mon [12], it is overly conservative to assume that each oper-
ation within a vector memory instruction touches a different
page. For example, in the memcpy function, copying a single
page of data would typically require several vector memory
instructions, since the accesses are sequential. Where the
compiler can determine strided memory accesses are used
and the stride is small, the compiler can often create restart
regions without having to account for the possibility of live-
lock. In order to handle datasets that are too large to be
completely mapped by the TLB, the standard technique of
strip mining can be employed so that a new restart region is
started before there is any danger of overflowing the TLB.
For code with indexed memory accesses or strided memory
accesses with large strides, restart region formation may be
significantly restricted if software TLB refill is used, possibly
leading to performance degradation.

Hardware page table walkers are commonly used to refill
TLBs for processors that execute large numbers of concur-
rent operations [14]. These avoid any TLB livelock issues, as
TLB misses do not trigger exceptions. Note that handling
TLB refills in hardware does not eliminate the need for soft-
ware restart markers, as the process still has to be able to
restart after a page fault or a memory protection violation.

2.3 Performance Optimizations
Thus far we have not addressed the potential performance

overhead if multiple exceptions occur within a restart re-
gion, causing the same instructions to be executed more
than once. This can be particularly harmful in a system
with a software-managed TLB if a restart region contains
accesses to several different data pages. For example, if
maximally sized restart regions are used with the memcpy

routine, then there will be a significant overhead from per-
forming the same memory transfers multiple times. After
copying the first page of data, a TLB miss will occur when
the second page of data is accessed, causing the program to
begin from the head of the restart region and copy the first
page again. The subsequent TLB miss on the third page
of data will cause the first and second pages to be copied
again, and this pattern will continue, with the overhead be-
coming worse as more of the restart region is processed. Ad-
ditionally, if a context switch occurs, then when the original
process resumes, all of the TLB mappings will have been
flushed. We discuss two possible solutions to this problem.

2.3.1 Prefetching for Software-Managed TLBs
One method to reduce performance overhead of repeated

restarts with a software-managed TLB is to prefetch the
mappings that will be needed for each region. As long as
the data pages that will be accessed within each region can
be statically determined, a value can be loaded from each
page, causing the corresponding mapping to be placed in
the TLB. Prefetching can also be used with data-dependent
memory accesses if the entire dataset can be mapped by the
TLB. The compiler can simply load a byte from each page
in the dataset, and place all of the memory accesses within
a single restart region.

Prefetching only helps with TLB misses, and does not
avoid having to repeat work for other types of exceptions,
such as timer interrupts. Also, the compiler must employ



a suitable heuristic to determine when the overhead intro-
duced by adding prefetching instructions outweighs the po-
tential benefit.

2.3.2 Counted Loop Optimization
When dealing with counted loops, which make up the

bulk of vectorizable code, another way of avoiding waste-
ful repeated restarts is to only restart execution from the
earliest uncompleted loop iteration after handling an excep-
tion, instead of restarting at the beginning of a region. To
accomplish this, we can adapt a previous scheme from sen-
tinel scheduling [23], which creates idempotent blocks of
code to support compiler-controlled speculative execution in
a VLIW architecture. This work was extended in [3] to use
recovery blocks to improve performance. Similarly, we can
use recovery blocks with software restart markers. When
an exception is handled, the processor will then branch to
a block of fixup code which will adjust the counters and
pointer values before resuming execution of the loop. We
present a modified version of the memcpy loop in Figure 7 as
an example.

move t0, a0   # Copy the argument registers

move t1, a1

move t2, a2

move lc, 0   # Initialize loop iteration counter

begin restart region—put fixup code address into restart PC

loop: lv v1, t1            # Load the input vector

sv t0, v1            # Copy the data to the output vector

addiu t1, 512        # Increment the input base register

addiu t0, 512        # Increment the output base register

subu t2, 512         # Decrement the number of bytes remaining

excepbar_loop # Non-blocking instruction that increments

# a loop iteration counter when all previous

# instructions have cleared exception checks

bnez t2, loop        # Is loop done?

done:

end restart region

fixup_code:

move t3, lc # Get value of loop iteration counter

sll t3, 9            # Each iteration copies 512 bytes

addu t0, a0, t3      # Set output base register

addu t1, a1, t3      # Set input base register

subu t2, a2, t3      # Set loop counter

j loop               # Restart loop

Figure 7: Vectorized memcpy loop with loop itera-
tion counter.

The loop in Figure 7 uses a special barrier instruction—
excepbar loop—that will update a loop iteration counter
when it is known that no previous instructions will cause an
exception. This allows execution to resume from the earliest
uncompleted iteration after handling an exception, which
helps to reduce the number of re-executed instructions. Note
that this instruction does not update the restart PC.

3. COMPILER IMPLEMENTATION
In this section, we describe the compiler analysis necessary

to insert software restart markers.

3.1 Infrastructure
Our compiler infrastructure is based on the Trimaran sys-

tem [1]. The advantage of this infrastructure is that it uses
region-based compilation [11], which is a better fit for our
scheme than a more traditional function-based approach.

We have adapted SUIF [31] to serve as our compiler fron-
tend, by porting the tool flow used in [21]. The dependence
analysis in SUIF is used to determine when instructions are
vectorizable. This information is passed to the Trimaran
backend through the use of instruction annotations. Cur-
rently, we only have a backend for scalar code generation
and are still in the process of implementing Trimaran passes
to generate code for our target vector architecture.

We added support to SUIF for the C restrict keyword,
which informs the compiler that a variable is not aliased.
Without this information, the compiler would have to make
restrictive assumptions about whether an array could be
overwritten, which would inhibit both vectorization and
restart region formation. The vectorizer is only enabled for
a C function if all of the pointer arguments are qualified
as restricted. Note that aliasing is an orthogonal problem
to that of creating software restart markers. Our compiler
analysis could also be used within a Fortran compiler, for
which aliasing would not be a issue.

Although we are still implementing our vectorizing com-
piler, it is important to note that the generation of restart
regions will not be negatively affected by the use of the
vectorizer. In fact, the use of vectorizing transformations
should eliminate some dependences that would otherwise
impede restart region generation.

3.2 Restart Region Analysis
We added an analysis to the compiler to create a restart

region. This encompasses an entire idempotent function by
inserting a trap barrier after the function prologue (so that
the values saved to the stack are not corrupted) and an-
other one at the end of the function. Additionally, the argu-
ment registers are preserved. However, due to the potential
performance overhead of using large restart regions, we also
implemented the more robust counted loop optimization de-
scribed in Section 2.3.2.

Figure 8 shows the algorithm used in the compiler for the
counted loop optimization. First, all of the loop variables
that are live upon entering the loop and are modified by
the loop body are found. Since the fixup code must be able
to update their values after an exception by using just the
value of the loop iteration counter, all of the variables need
to be induction variables in order to use the optimization.
If this is the case, then the compiler inserts code to preserve
the original values of the variables and also to initialize the
loop iteration counter before starting the restart region. It
also inserts a barrier instruction at the end of the loop so
that the counter will be updated at the completion of each
iteration. In the fixup code, the value of the loop iteration
counter is used to create the correct values for the induction
variables. Note that this is frequently a simple procedure,
as shown in Figure 7.

The software restart marker analysis is executed before
the passes that handle register allocation and optimizations
such as common subexpression elimination. This is done so
that the restart region code will be optimized. However, cre-
ating restart regions before the optimization passes causes a
slight complication. Because the fixup code is outside of the
program control flow, the instructions that copy the induc-
tion variables to backup registers are treated as dead code.
We handle this by explicitly marking the backup registers
as live throughout the function.

Although this technique cannot be used for every type of



Determine if counted loop optimization can be used:
• Find the set S of all variables v0,v1,... in loop L that are live upon 

loop entry and modified within the loop body.
• For each variable vi in S, determine if it is an induction variable.
• If all elements of S are induction variables, then optimization can be 

used.
Code to be inserted before loop:
1. For each variable vi, copy its value to another variable

restart_vi.
2. Initialize loop iteration counter to 0 and place address of fixup

code in restart PC.
Code to be inserted at end of loop:
1. Add excepbar_loop instruction to end of loop body.
Fixup code to be inserted outside of program control flow:
1. Obtain value of loop iteration counter c.
2. For each variable vi, apply its induction operation c times to the 

value in restart_vi to get the current value of vi.
3. Jump to beginning of loop L.

Figure 8: Compiler steps to generate code with
counted loop optimization.

vectorizable loop—all variables restored by fixup code must
be induction variables—it is applicable to a wide variety of
programs. We have tested our compiler algorithm on several
different benchmarks, including code that contains multiple
loops, and the compiler generated correct code for all of the
examples. For programs with nested loops, we only generate
fixup code for the innermost loop, although the algorithm
could easily be extended to handle outer loops as well.

4. EVALUATION
In this section, we evaluate the performance effects of us-

ing software restart markers when compared to a baseline
system that does not support virtual memory.

4.1 Methodology
We evaluate our techniques using the Scale vector-thread

processor [20]. Scale flexibly supports both vector process-
ing and multithreaded execution, but in this work we only
use its vector capabilities. The default Scale configuration
has a single-issue MIPS control processor and a decoupled
vector unit. The vector unit has four lanes with clustered
functional units, and can support vector lengths of up to 128
elements. Maximum vector length varies from loop to loop,
and is dependent on the number of vector registers used by
the loop body.

From the perspective of our model, the implementation
details of Scale are unimportant, as the vector unit is sim-
ply treated as a black box containing temporary state that
is discarded at an exception but which can be easily recre-
ated when execution resumes. However, to obtain a realistic
performance evaluation, it is important that we use a high-
performance vector implementation. Otherwise, any over-
head from using software restart markers would be largely
hidden due to a slow vector unit. It has been previously
shown that Scale provides competitive performance in the
embedded domain [20]. Table 1 illustrates the speedup on
Scale for our workload, which consists of a variety of pro-
grams from the EEMBC 1.1 benchmark suite. Differences
between the speedups in Table 1 and the data in [20] are due
to recent changes in both the baseline architecture and the
vectorized code. These speedup results were obtained using
the Scale simulation environment, which includes a cycle-

level, execution-driven microarchitectural simulator with de-
tailed models of the vector unit and the DRAM memory sys-
tem. When evaluating the performance impact of software
restart markers below, we replaced the DRAM model with
a single-cycle “magic” memory to increase baseline perfor-
mance and hence emphasize the relative impact of overhead
instructions.

We model a standard MIPS R3000-style unified TLB [15]
for the control processor. This contains 64 entries, 8 of
which are “wired entries” reserved for root-level page ta-
ble entries and kernel mappings. A separate 128-entry TLB
is used for vector memory accesses. We model a system
with a software-refilled TLB to provide a worst-case sce-
nario. We stress that many vector implementations would
choose a hardware page table walker to give much better
performance and remove restrictions on restart region size,
but the software-managed TLB configuration allows us to
generate a significant number of exceptions to test our soft-
ware restart mechanism.

Each page has a fixed size of 4KB. We model the 2MB
virtually-addressed linear user page table as well as the 2KB
physically-addressed root-level page table. We do not model
page faults, as our primary interest is in the overhead to
allow a machine to take page faults rather than in the speed
impact of page faults themselves.

Because we do not yet have a complete vectorizing com-
piler, all vectorized code was written in assembly for the
actual evaluation, and the restart regions were manually
created using the techniques described in Section 2. The
high quality hand-vectorized code also ensures a conserva-
tive estimate of the relative overhead of the software restart
scheme. A poorer quality code generator would experience
relatively less impact from the software restart scheme. To
compile programs, we used a modified version of GNU gcc

version egcs-1.0.3a with the newlib standard C library.
We used GNU gas as our assembler. All code was compiled
with the -O flag and statically linked to produce an ELF
executable. To verify the correctness of our restart region
generation, we added an option to the simulator to randomly
replay execution from the beginning of a region at various
points in the program. For our results, each benchmark was
run for the recommended number of iterations, and bench-
marks were weighted equally to compute an average.

To delimit restart regions, we created new opcodes to
serve as trap barriers. Each of these instructions can only
commit once all previous exception checks have cleared. A
restart on instruction indicates the beginning of a new
restart region. This instruction uses a PC-relative offset to
determine the address to be placed in the restart PC—either
the subsequent instruction or the beginning of the appropri-
ate fixup code. A restart off instruction indicates that
the processor should revert to conventional precise excep-
tion semantics. An excepbar loop instruction performs the
function described in Section 2.3.2. Since we only use restart
regions for vectorized code, the performance overhead of ex-
ecuting these scalar opcodes is very small.

For all vectorized functions, we align the program code
to page boundaries. Since all of the code sizes are small
and each function fits within a single page, this avoids the
possibility of taking a TLB miss in the middle of a restart re-
gion because sequential instructions are located on different
pages. Of course, if a context switch occurs in the middle
of a region and the TLB is flushed, then when the original



Benchmark EEMBC Data Set Description Speedup of Vectorized
Category Code Over Scalar Code

rgbcmy consumer - RGB to CMYK color conversion 15.6
rgbhpg consumer - High pass grey-scale filter 41.6
rgbyiq consumer - RGB to YIQ color conversion 41.3
dither office banded Floyd-Steinberg grayscale dithering 5.3
rotate office medium Binary image 90 degree rotation 14.4
autcor telecomm data3 Autocorrelation program 31.6
conven telecomm data3 Convolutional encoder 914.1
fft telecomm data 3 Fast Fourier transform 15.0
viterbi telecomm data 4 Viterbi decoder 8.9

Table 1: Benchmark descriptions and speedups of vectorized code for the default Scale configuration with
four lanes.

process resumes at the head of the region, the mapping for
the program code will need to be re-fetched.

As discussed in Section 2.3.1, one way to reduce the
performance overhead of our scheme in a system with a
software-managed TLB is to prefetch the necessary map-
pings. Since this adds overhead to a program, we only use
this approach for benchmarks that are likely to access multi-
ple pages of data. These are the image-processing programs,
listed as the first five benchmarks in Table 1.

4.2 Results
The results presented in this section represent a very

pessimistic evaluation of the overhead of software restart
markers. As mentioned previously, our simulation environ-
ment was designed to minimize program runtime—by using
a high-performance Scale implementation with magic mem-
ory running hand-optimized assembly code—thus overstat-
ing the performance impact of our approach. We also begin
by considering the worst-case scenario of using a software-
managed TLB.

Figure 9 shows the reduction in performance when execut-
ing vectorized code with restart regions. This overhead in-
cludes three components: the cost of handling TLB misses;
the overhead introduced by the extra instructions used to
create the restart regions; and the cost of re-executing in-
structions if an exception occurs in the middle of a restart
region. Simulations were conducted using four different ma-
chine configurations with one, two, four, and eight lanes to
show the impact of scaling baseline performance. However,
we discuss the results for the default four-lane configura-
tion unless otherwise noted. Results are presented for three
different schemes: the original software restart marker de-
sign discussed in Section 2, with an average performance re-
duction of 15.5%; the same design with prefetching of TLB
entries enabled, with an average performance reduction of
0.8%; and the counted loop optimization described in Sec-
tion 2.3.2, with an average performance reduction of 2.7%.
We did not implement the counted loop optimization for
the viterbi benchmark because in each loop iteration it
switches the roles of the input and output buffers, making
it difficult to write the fixup code for this situation.

The rgbcmy and rgbyiq benchmarks have default datasets
that require a large number of TLB entries in order to be
fully mapped. Thus, there was a significant performance
overhead when using the original software restart marker
design, as the multiple exceptions within each region caused
the re-execution of a great deal of work. Using prefetching

in conjunction with the original restart marker design pro-
duced the best results. The counted loop optimization did
not perform as well as expected, largely due to the fact that
there is a significant latency in our system between the TLB
check for a memory operation and the time that the oper-
ation is retired. As a result, if multiple iterations of a loop
are active at the same time, and a TLB miss occurs for the
latest iteration, the exception is immediately handled, and
all of the earlier work is discarded.

It should be noted that the prefetching scheme produces
code that is tied to a particular hardware implementation—
if the actual TLB size is less than that used by the compiler
in its analysis, then the prefetch code will livelock. Thus,
the counted loop optimization is more suitable for producing
code that is compatible with a variety of implementations.
Additionally, prefetching does not account for the possibil-
ity of other types of exceptions occurring within a restart
region. We placed each prefetching loop at the beginning
of the function, outside of any restart regions. As a result,
if a context switch occurs within a restart region and the
TLB entries are flushed, when the process resumes, the per-
formance will be similar to that of the original design. It
is possible to place a prefetching loop inside of a restart re-
gion, but this can introduce additional overhead if the entire
region is contained within a loop and is executed multiple
times, or if an exception occurs that does not cause a context
switch, as the prefetching loop will be executed unnecessar-
ily upon each restart.

As expected, increasing the number of lanes improves per-
formance and thus increases the overhead of software restart
markers in most cases. Two notable exceptions occur with
the original software restart marker design for the rgbcmy

and rgbyiq benchmarks. In these programs, the overhead
of having to re-execute instructions dominates program run-
time. However, because the vectorized functions have little
scalar overhead, increasing the number of lanes also reduces
the time required to re-execute instructions after a TLB
miss. Thus, the overhead due to software restart markers
remains relatively constant.

Once the first iteration of a benchmark kernel has com-
pleted execution, there will be no further TLB misses in
future iterations unless the dataset is too large to be fully
mapped by the TLB. This is similar to warming up a cache
that is large enough to hold the working set of a program. To
approximate the performance effect of a TLB with no valid
entries, we ran each benchmark for one iteration on the de-
fault four-lane configuration and flushed the TLB halfway



0

2

4

6

8

10

12

14

16

18

rgbcmy rgbhpg rgbyiq dither rotate autcor conven fft viterbi Average

%
 p

er
fo

rm
an

ce
 r

ed
uc

tio
n

Restart-1

Prefetch-1

Count-1

Restart-2

Prefetch-2

Count-2

Restart-4

Prefetch-4

Count-4

Restart-8

Prefetch-8

Count-8

All ~94% All ~36%

Figure 9: Total performance reduction in vectorized code due to using software restart markers to implement
virtual memory in a system with software-managed TLB. Three schemes are shown—the original restart
marker design, restart markers with prefetching enabled (which affects the first five benchmarks), and restart
markers using the counted loop optimization. The counted loop optimization is not implemented for the
viterbi benchmark. Results are presented for machine configurations with 1, 2, 4, and 8 lanes. The values
that exceed the graph boundaries are approximately constant across different configurations.

through the restart region that executed for the longest time.
This could happen in practice if a context switch occurred at
that point. Figure 10 shows the results of flushing the TLB.
In general, the original software restart marker design and
the prefetching scheme perform poorly across most bench-
marks. The counted loop optimization has an overhead of
greater than 20% for programs with small datasets—autcor,
conven, and fft—as these kernels finish execution quickly
and are therefore sensitive to TLB misses. However, for
the image-processing programs, which have larger datasets,
the loop optimization is more robust. The one exception
is rgbhpg, which processes an array a column at a time.
As a result, there can be accesses to several different pages
in a given loop iteration, or spread across a few iterations,
leading to a great deal of re-executed work.

Although the performance overhead from flushing the
TLB is high in many instances, it should be noted that this
will typically occur infrequently. Also, these results reflect
the use of a software-managed TLB; in a machine with a
hardware TLB refill, the performance degradation would be
much lower. However, even in the worst-case scenario of a
software-managed TLB, some of the performance may be re-
claimed due to the fact that the vector register file contents
do not have to be saved and restored in the event of a con-
text switch. Additionally, with the counted loop optimiza-
tion, even in cases with significant overhead, the vectorized
code is still significantly faster than the scalar code.

Figure 11 shows the performance overhead caused by the
extra instructions used to create restart regions, without
virtual memory enabled. This is roughly equivalent to the
performance impact for a design with a hardware TLB re-
fill. The original design of software restart markers has less
than a 1% overhead from the use of restart regions. We also
present the performance overhead for the counted loop opti-
mization, as this has the advantage over the original design
of reducing the amount of repeated work in the event of a

context switch. We find that the counted loop optimization
incurs nearly three times the overhead of the original design
in this case, for two main reasons: First, in benchmarks with
multiple loops, each within its own restart region, the con-
trol processor has to synchronize with the vector unit after
finishing each loop so that the proper fixup code address
can be placed into the restart PC. Second, each instance of
the excepbar loop instruction occupies an issue slot in the
vector unit which could be used by another operation.

5. RELATED WORK
The IBM System/370 vector facility [6] only allowed one

vector instruction to be in execution at a time. Although
this avoids the problems caused by multiple in-flight vector
instructions, it severely limits potential performance. The
IBM design also maintains in-use and dirty bits for the vec-
tor registers to avoid unnecessary register saves and restores
in the event of a context switch. However, this still requires
a significant amount of state to be saved and restored when
the vector unit is active.

The DEC Vector VAX [7] attempts to reduce context
switch overhead by only saving the vector unit state if the
new process contains a vector instruction. The DEC design
uses microarchitectural swapping to preserve the internal
state of the vector unit in the event of an exception, which
can hurt performance and energy consumption, as well as
complicate the OS interface.

Register renaming is widely used in superscalar proces-
sors to not only eliminate false dependences, but also to
facilitate in-order instruction commit. This technique has
been adapted to vector processors [8, 9, 19] to provide vir-
tual memory support but requires a substantial amount of
buffering in the form of additional physical vector registers.
Register renaming can provide other benefits if is used to
support out-of-order execution with a limited number of ar-
chitectural vector registers [8], but this performance advan-



0

1

2

3

4

5

6

7

8

rgbcmy rgbhpg rgbyiq dither rotate autcor conven fft viterbi Average

%
 p

er
fo

rm
an

ce
 r

ed
uc

tio
n

Restart-1

Count-1

Restart-2

Count-2

Restart-4

Count-4

Restart-8

Count-8

Figure 11: Total performance overhead in vectorized code from using software restart markers in a system
with a hardware-managed TLB.

0

10

20

30

40

50

60

70

80

90

100

rg
bc

m
y

rg
bh

pg

rg
by

iq
dit

he
r

ro
ta

te

au
tco

r

co
nv

en fft

vit
er

bi

Ave
ra

ge

%
 p

er
fo

rm
an

ce
 r

ed
uc

tio
n

Restart

Prefetch

Count

Figure 10: Total performance reduction when us-
ing software restart markers to implement virtual
memory and the TLB is flushed halfway through a
restart region. Results are presented for a configu-
ration with 4 lanes.

tage will be reduced for newer designs with more architec-
tural vector registers.

The CODE vector microarchitecture [19] is a decoupled
machine which supports virtual memory by using a clus-
tered vector register file with register renaming. The per-
formance of CODE is evaluated across a workload contain-
ing many of the same benchmarks that we use. There is an
average performance reduction of 5% when supporting pre-
cise exceptions on the default CODE configuration with 8
vector registers per cluster. This overhead is strictly due to
the register pressure from implementing register renaming—
the cost of handling TLB misses is not considered, although
with a hardware refill scheme, the results should be roughly

unchanged. Our scheme incurs a much smaller overhead,
although a completely accurate comparison is not possible
without normalizing the baseline hardware configurations
and using the same compilation infrastructure. However,
our approach also requires no additional registers or store
buffering, making it more scalable to future processor gen-
erations that will have larger numbers of simultaneous in-
flight operations. It can also be adapted to a variety of
vector microarchitectures, and does not require a particular
hardware implementation. The disadvantage of our model
is that it is less general, as it can only be used with regions
of code that are idempotent. However, a wide variety of
vectorizable functions fall into this category.

The Alpha floating-point architecture has imprecise
floating-point traps which require the user insert trap barrier
instructions to delimit safe regions to allow code to resume
after the trap [28], but this scheme does not consider other
classes of fault or allow irrevocable memory updates.

As mentioned in Section 2, there are some similarities with
our idempotent region analysis and the sentinel scheduling
analysis used to restart execution after a misspeculation in
a software-speculated VLIW architecture [23]. However, we
are concerned with providing a simple interface for an OS to
restart a process after a virtual memory exception without
incurring significant hardware overhead.

The Transmeta Crusoe processor has software-controlled
exception barriers at the borders of blocks of x86 code that
have been translated into the native VLIW format [17]. The
Transmeta scheme has a future file for registers and a spec-
ulative store buffer that allow state updates to be revoked if
an exception is encountered in a translated block. A commit
operation copies state updates into the architectural state.
By contrast, our scheme requires no state buffers because it
allows irrevocable state changes in the middle of a restart
region. Also, we allow for temporary architectural state that
is simply discarded at a commit point.

Moudgill and Vassiliadis [24] classify different types of
interrupts and discuss when precise interrupts are not re-
quired. They also consider the notion of sparse restart, in
which an interrupt-causing instruction is in the middle of a
region that contains freely intermingled completed and un-
completed instructions. They argue that a hardware mech-



anism is necessary in this case to selectively execute only
the uncompleted instructions after the interrupt handler is
finished. In contrast, we use idempotent blocks of code to
avoid having to implement costly hardware mechanisms.

Our approach to handling exceptions is similar to using
hardware checkpoints in out-of-order processors [13]. In our
scheme software restart markers act as checkpoints that are
statically determined by the compiler. This is potentially
less flexible than a hardware checkpointing scheme, since
restart regions must be idempotent. However, it has the ad-
vantage of simplifying the hardware exception mechanisms
since the only checkpointed state is the restart PC. Also,
while hardware checkpoints require all of the process state
to be copied—even if it is not being used—our scheme uses
compile-time analysis to only copy what is necessary.

The idea of prefetching TLB entries is presented in [4].
This scheme is designed to decrease the kernel TLB miss
penalty by prefetching entries on the inter-process commu-
nication path. Our work focuses on reducing restart region
overhead by prefetching user TLB entries.

6. CONCLUSION
Support for virtual memory in vector processors has been

limited. Where it has been provided, it has often come at the
cost of other features such as vector chaining, or with con-
siderable additional hardware complexity. Software restart
markers leverage compile-time analysis to coarsen the gran-
ularity at which exceptions can be reported, and treat vec-
tor registers as temporary state only visible inside a restart
region, significantly reducing the hardware cost and perfor-
mance overhead of supporting virtual memory for vector
processors. Our evaluations showed that the average per-
formance reduction due to our scheme when compared to a
system without virtual memory was less than 1% when a
TLB with hardware refill was used, and was still less than
3% even when a software-managed TLB was used.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments.

This work was partly funded by NSF CAREER award
CCR-0093354, DARPA PAC/C award F30602-00-2-0562,
and the Cambridge-MIT Institute.

8. REFERENCES
[1] Trimaran homepage. http://www.trimaran.org.

[2] K. Asanović. Vector Microprocessors. PhD thesis,
University of California at Berkeley, May 1998.

[3] D. I. August et al. Sentinel scheduling with recovery
blocks. Technical Report CRHC-95-05, Center for
Reliable and High-Performance Computing, University
of Illinois at Urbana-Champaign, January 1995.

[4] K. Bala et al. Software prefetching and caching for
translation lookaside buffers. In OSDI-1, November
1994.

[5] D. H. Brown Associates, Inc. Cray launches X1 for
extreme supercomputing, November 2002.

[6] W. Buchholz. The IBM System/370 vector
architecture. IBM Systems Journal, 25(1), 1986.

[7] DEC. Exception reporting mechanism for a vector
processor. U.S. Patent 5,043,867, August 1991.

[8] R. Espasa et al. Out-of-order vector architectures. In
MICRO-30, December 1997.

[9] R. Espasa et al. Tarantula: a vector extension to the
Alpha architecture. In ISCA-29, May 2002.

[10] R. Espasa and M. Valero. Decoupled vector
architectures. In HPCA-2, February 1996.

[11] R. E. Hank et al. Region-based compilation: an
introduction and motivation. In MICRO-28,
December 1995.

[12] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach, chapter
Appendix G. Morgan Kaufman Publishers, third
edition, 2003.

[13] W. W. Hwu and Y. N. Patt. Checkpoint repair for
out-of-order execution machines. In ISCA-14, June
1987.

[14] B. L. Jacob and T. N. Mudge. A look at several
memory management units, TLB-refill mechanisms,
and page table organizations. In ASPLOS-8, October
1998.

[15] G. Kane. MIPS RISC Architecture (R2000/R3000).
Prentice Hall, 1989.

[16] K. Kitagawa et al. A hardware overview of SX-6 and
SX-7 supercomputer. NEC Research & Development
Journal, 44(1), January 2003.

[17] A. Klaiber. The technology behind Crusoe processors.
White paper, Transmeta Corporation, January 2000.

[18] C. Kozyrakis. Scalable vector media-processors for
embedded systems. PhD thesis, University of California
at Berkeley, May 2002.

[19] C. Kozyrakis and D. Patterson. Overcoming the
limitations of conventional vector processors. In
ISCA-30, June 2003.

[20] R. Krashinsky et al. The vector-thread architecture.
In ISCA-31, June 2004.

[21] S. Larsen et al. Exploiting vector parallelism in
software pipelined loops. In MICRO-38, November
2005.

[22] C. G. Lee and M. G. Stoodley. Simple vector
microprocessors for multimedia applications. In
MICRO-31, 1998.

[23] S. A. Mahlke et al. Sentinel scheduling for VLIW and
superscalar processors. In ASPLOS-5, October 1992.

[24] M. Moudgill and S. Vassiliadis. Precise interrupts.
IEEE Micro, 16(1), February 1996.

[25] D. A. Padua and M. J. Wolfe. Advanced compiler
optimizations for supercomputers. CACM, 29(12),
1986.

[26] F. Quintana, J. Corbal, R. Espasa, and M. Valero.
Adding a vector unit to a superscalar processor. In
ICS-13, June 1999.

[27] R. M. Russell. The Cray-1 computer system. CACM,
21(1), 1978.

[28] R. L. Sites. Alpha Architecture Reference Manual.
Digital Press, October 1992.

[29] R. Uhlig et al. Design tradeoffs for software-managed
TLBs. ACM Transactions on Computer Systems,
12(3), August 1994.

[30] T. Utsumi et al. Architecture of the VPP500 parallel
supercomputer. In ICS-8, November 1994.

[31] R. P. Wilson et al. SUIF: An infrastructure for
research on parallelizing and optimizing compilers.
ACM SIGPLAN Notices, 29(12), December 1994.


