
Appears inWorkshop on Complexity-Effective Design, 27th ISCA, Vancouver, Canada, June 2000

SyCHOSys: Compiled Energy-Performance Cycle Simulation

Ronny Krashinsky, Seongmoo Heo, Michael Zhang, and Krste Asanovi´c
MIT Laboratory for Computer Science, Cambridge, MA 02139

fronny|heomoo|rzhang|krste g@lcs.mit.edu

Abstract

SyCHOSys (Synchronous Circuit Hardware Orchestra-
tion System) generates high-speed energy-performancecy-
cle simulators by compiling a processor description into
efficient C++ code. This framework can custom compile
a cycle simulator with arbitrary mixed levels of simulation
detail ranging from gate-level to purely behavioral mod-
els. In addition, SyCHOSys can compile detailed energy
statistics gathering code into the simulator and generate
a custom analysis tool to combine the resulting statistics
with capacitance values extracted from circuit layout infor-
mation to give energy dissipation. To increase simulation
speed, we group circuit nodes having the same switching
activity and only count transitions once per group. We have
also developed energy estimation techniques that exploit
the properties of well-designed low-power microproces-
sors to improve the accuracy of simple transition-sensitive
energy models. We evaluate SyCHOSys using a custom
datapath circuit, and show close agreement (<7% error)
with SPICE energy numbers, while simulating over 7 or-
ders of magnitude faster than SPICE and 5 orders of mag-
nitude faster than PowerMill. We also describe a structural
energy-performance simulation of a pipelined MIPS pro-
cessor built with SyCHOSys that can track all internal sig-
nal node transitions at 16 kHz.

1 Introduction

Energy dissipation is emerging as a key constraint for
both high-performance and embedded microprocessor de-
signs, requiring architects to consider energy in addition to
performance when evaluating design decisions. Unfortu-
nately, estimating energy dissipation for a candidate design
is considerably more difficult than estimating performance.

Circuit simulators such as SPICE [9] or PowerMill [7]
provide accurate energy numbers but run much too slowly
to evaluate the effect of architectural modifications on large
benchmark programs. A number of techniques have been
proposed to estimate energy dissipation at higher levels of
abstraction. One class of methods make use of statisti-

cal measures of circuit complexity and/or expected activ-
ity to estimate energy dissipation [6, 10]. Although these
methods quickly provide estimates, they can give large er-
rors for test inputs that don’t match the modeled statistics,
and cannot give cycle-by-cycle breakdowns of where en-
ergy was dissipated. For architectural studies, transition-
sensitive methods are more useful. These methods mea-
sure the actual signal transitions caused by an input work-
load and use them to animate energy models [8]. This tech-
nique has the advantage of providing detailed energy infor-
mation on a cycle by cycle basis, but has the disadvantage
of requiring dynamic simulation of whole program execu-
tion. One approach for obtaining the required fast proces-
sor simulator is to hand craft a C or C++ RTL model for a
particular processor configuration, such as in the Simple-
Power system [15], but writing and modifying such models
is time-consuming and error-prone.

To support our research into new energy-efficient ar-
chitectures, we are developing a fast but flexible energy-
performance simulation framework named SyCHOSys
(Synchronous Circuit Hardware Orchestration System).
SyCHOSys is fast because it translates a structural ma-
chine description and related statistics gathering code into
inlined C++ code which is then compiled with a native
C++ compiler. The resulting cycle simulator is compara-
ble in performance to hand-crafted simulators and an or-
der of magnitude faster than commercial compiled Verilog
simulators. SyCHOSys is flexible because it allows arbi-
trary C++ code to be included in the simulator. In ad-
dition, rather than generate a closed stand-alone simula-
tor, SyCHOSys produces a C++ object that can itself be
linked with other C++ code. SyCHOSys supports cycle
simulation at all levels of detail from purely behavioral to
gate level, and allows arbitrary forms of statistics gather-
ing code to be included. SyCHOSys saves effort com-
pared with a hand-crafted simulator because it automati-
cally schedules code block execution to satisfy all inter-
module data dependencies. In addition, it can automati-
cally add code to monitor inter-module activity for energy
transition counting. The structural input description al-
lows SyCHOSys to group nodes that have the same switch-
ing behavior to reduce the run-time overhead of transition

counting.
A further contribution of this paper is the development

of accurate energy models driven by the limited infor-
mation available from cycle-accurate transition counting.
As described below, we exploit the properties of well-
designed low-power microprocessors to calibrate our mod-
els to give energy numbers within PowerMill’s error (<7%
from SPICE) while allowing simulation over 5 orders of
magnitude faster.

The remainder of this paper is structured as follows.
Section 2 describes the structure of the SyCHOSys cycle
simulation system using a simple circuit example. Sec-
tion 3 describes the fast energy modeling techniques we are
developing for use with cycle simulators. In particular, we
focus on fast accurate techniques for estimating datapath
energy. Section 4 describes how energy statistics gather-
ing is added into the compiled cycle simulator. Section 5
evaluates the speed and accuracy of our datapath modeling
technique for the GCD circuit. Section 6 discusses the pro-
cessor models we are developing, and Section 7 describes
our plans for future work. Finally, Section 8 compares
SyCHOSys with other related work, and Section 9 sum-
marizes the paper.

2 SyCHOSys Overview

SyCHOSys generates cycle simulators from flattened
structural netlists, as shown in Figure 1. We use our
SyCHONet language to describe the structural netlists, and
C++ as the behavioral modeling language for netlist leaf
cells. SyCHOSched takes a structural netlist as input,
and statically schedules evaluation of the behavioral blocks
specified in the netlist. It outputs C++ code containing calls
to the blocks’ behavioral methods. The resulting code can
then be compiled and linked together with the blocks’ def-
initions and with an external C++ environment that drives
the simulation by calling the statically scheduled evalua-
tion methods.

gcc

SyCHONet

SyCHOSched

scheduled
C++ code

SyCHOTick
C++ code

SyCHOLib
C++ library

SyCHOTick
simulator

Figure 1:SyCHOSys framework.

Control

X

Y

Zero? Sub

Figure 2:GCD circuit. Note that the registers receive enable sig-
nals from the Control, and that Zero and Sub are dynamic logic.

GCD(x, y) {
if (x < y) return GCD(y, x);
else if (y!=0) return GCD(x-y, y);
else return x;

}

Figure 3:Euclid’s greatest common divisor algorithm.

To help explain the operation of SyCHOSys, we show a
small example synchronous circuit in Figure 2. This cir-
cuit implements Euclid’s greatest common divisor (GCD)
algorithm shown in Figure 3.

2.1 SyCHONet

The SyCHONet representation of the circuit is shown in
Figure 4. The SyCHONet format consists of one line for
each component in the circuit. Each SyCHONet line spec-
ifies the name of the component, the behavioral type of the
component, and an ordered list of the component’s inputs.
Additionally, components such as flip-flops, latches, and
dynamic logic which have clock-dependent behavior are
tagged as such in the netlist. Untagged components are as-
sumed to be combinational logic blocks. The SyCHONet
format is designed to be machine-generated from a hierar-
chical design description such as structural Verilog.

2.2 SyCHOLib

SyCHOLib is a library of behavioral models. Each C++
behavioral component defines anEvaluate() method
which maps inputs to outputs. Figure 5 shows the Mux2
class. These methods can be parameterized using the C++
template mechanism, e.g., to accommodate variable bit-
widths. When parameterized components are included in a
SyCHONet, the template parameters are specified, as with
the Mux2 shown in Figure 4. Additionally, some compo-
nents define more than one evaluation method; for exam-
ple, dynamic logic components define aPrecharge()
method in addition to theEvaluate() method.

2

X { N-CLK FF_En<32> } (NextX.output, Ctrl.Xen);
Y { N-CLK FF_En<32> } (X.output, Ctrl.Yen);
NextX { Mux2<32> } (Y.output, XSubY.output, Ctrl.XMuxSel);
XSubY { H-DYNAMIC Sub<32> } (X.output, Y.output);
YZero { H-DYNAMIC Zero<32> } (Y.output);
YZeroLatch { H-LATCH Latch<1> } (YZero.output);
XLessYLatch { H-LATCH Latch<1> } (XSubY.signbit);
Ctrl { GCDCtrl } (XLessYLatch.output, YZeroLatch.output);

Figure 4:Netlist for GCD circuit.

template<int bits>
class Mux2 {
public:

Mux2(){};
inline void Evaluate(

BitVec<bits> input0,
BitVec<bits> input1,
BitVec<1> select) {

if (select) output = input1;
else output = input0;

}
BitVec<bits> output;

};

Figure 5:Example C++ behavioral model: Mux2. This library
component models abits wide two input multiplexor.

2.3 SyCHOSched

SyCHOSched schedules a SyCHONet by constructing
and topologically sorting dependency graphs. The depen-
dencies between components are established based on the
data dependencies and clock tags in the netlist. Each com-
ponent can define up to four evaluation methods, one for
each region of a clock period (rising, falling, high, low).
For example, in Figure 4 the N-CLK tag of component X
is shorthand for indicating that itsEvaluate() method
should be called during the clock-falling period. Table 1
shows how the methods are defined for the standard com-
ponent types. Additionally, the table shows how compo-
nents can define arbitrary methods, such as a register file
which defines Read and Write methods. All of these meth-
ods map inputs to outputs, and are supplied in the behav-
ioral description of the component.

Based on the clock tags in the netlist, SyCHOSched
constructs four graphs, one for each region of the clock pe-
riod. Each dependency graph is then topologically sorted
to determine a correct scheduling. Any combinational
logic cycles are detected and reported as an error at this
stage. In general, all combinational logic blocks will be

Block Rising High Falling Low

Combinational Evaluate Evaluate
P-CLK Evaluate
N-CLK Evaluate
H-LATCH Evaluate
L-LATCH Evaluate
H-DYNAMIC Evaluate Precharge
L-DYNAMIC Precharge Evaluate

RegFile Read Write

Table 1: Evaluation methods defined for various component
types for each region of a clock period.

evaluated during both the clock-high and clock-low peri-
ods. However, we perform optimizations which analyze
the graphs so that a component is only evaluated during
clock periods in which its inputs may change. The result-
ing schedule for the example circuit is shown in Figure 6.

2.4 SyCHOTick

A SyCHOTick simulator is a cycle-based simulator
which uses the SyCHOSched output. In its simplest
form, it instantiates a simulation object (generated by
SyCHOSched) and defines a clock tick method, such as
the one shown in Figure 7. It also provides a user interface
to the simulator which may include such things as initializ-
ing the circuit and providing debugging output. A power-
ful feature of SyCHOSys is that arbitrary C++ code can be
included with the simulator. For example, in our CPU sim-
ulator, we have code to first load a program into memory
and then to service Unix system I/O calls on the simulated
program’s behalf. We have found this C++ interface much
easier to use and more efficient than a Verilog/PLI inter-
face.

3 Energy Models

Developing models for energy dissipation involves a
tradeoff between simulation speed and energy accuracy. In
our work, we are interested in gathering energy numbers

3

GCD::clock_LtoH() {
}

GCD::clock_H() {
YZero.Evaluate(Y.output);
YZeroLatch.Evaluate(YZero.output);
XSubY.Evaluate(X.output, Y.output);
XLessYLatch.Evaluate(XSubY.signbit);
Ctrl.Evaluate(XLessYLatch.output,

YZeroLatch.output);
NextX.Evaluate(Y.output, XSubY.output,

Ctrl.XMuxSel);
}

GCD::clock_HtoL() {
Y.Evaluate(X.output, Ctrl.Yen);
X.Evaluate(NextX.output, Ctrl.Xen);

}

GCD::clock_L() {
YZero.Precharge();
XSubY.Precharge();
NextX.Evaluate(Y.output, XSubY.output,

Ctrl.XMuxSel);
}

Figure 6:SyCHOSched output clock functions for the GCD cir-
cuit.

for large benchmark programs requiring perhaps billions of
execution cycles, which is only tractable with very simple
runtime statistics gathering. This section describes how we
take advantage of our limited application domain of well-
designed high-performance low-power microprocessors to
increase the accuracy of simple transition-sensitive energy
models.

The three major sources of power dissipation in a digital
CMOS circuit are summarized by [4]:

Ptotal = aClVswingVddf + IscVdd + IleakageVdd

where the first term is the dynamic switching component of
the energy, the second term is from short-circuit currents,
and the last term is from leakage currents including diode
and sub-threshold leakage.

Dynamic switching is the primary source of energy dis-
sipation in CMOS circuits, wherea is the average number
of transitions per cycle (the activity factor),Cl is the ef-
fective load capacitance,Vswing is the signal swing on the
node, which is often equal toVdd, the supply voltage, and
f is the clock frequency. Short circuit current is generated
during signal transients as both NMOS and PMOS tran-
sistors turn on simultaneously in a static CMOS gate, and
is a function of signal rise-fall times and circuit state. In

void gcd_clock_tick() {
gcd->clock_LtoH();
gcd->clock_H();
gcd->clock_HtoL();
gcd->clock_L();

}

Figure 7:SyCHOTick main simulation loop for the GCD circuit.

well-designed circuits, short circuit energy should be less
than 10% of dynamic switching energy. During active op-
eration, the leakage currents,Ileakage , are usually much
smaller than the other terms and can be neglected. We
can usually treat signal swing, clock frequency, and sup-
ply voltage as fixed quantities. The difficult part of ac-
curate energy modeling with a cycle simulator is model-
ing dynamic signal activity, effective load capacitance, and
short-circuit currents.

A limitation of a cycle simulator is that it does not
model transient glitches which can cause additional power
dissipation. The SyCHOSys simulator is only capable
of modeling up to two transitions per cycle for clock-
controlled circuitry such as precharged dynamic logic. In
a well-designed low-power processor, however, glitch en-
ergy should be minimal. Dynamic circuit blocks, such as
the adder, must avoid glitches for correct operation. Con-
trol lines are usually registered to avoid glitches and driver
conflicts in tristate busses. Glitches are more of a concern
in larger datapath units such as multipliers and shifters, and
in control logic blocks. For these blocks, each unit’s energy
model can estimate glitch activity based on input values.

3.1 Dynamic Switching Energy

Microprocessors can be split into three main types of
circuit blocks — memory arrays, datapaths, and control
logic — connected together by global wires. The energy
dissipation on global wires can be determined solely by the
total capacitance and transition frequency. For the various
circuit blocks, we simplify our task by considering each
type of component separately.

3.1.1 Memory Arrays

Memory arrays are one of the largest consumers of en-
ergy in a typical microprocessor but are straightforward to
model because of their regular layout structure and sim-
ple activation pattern. Once calibrated with a few test pat-
terns, a cycle by cycle address and data trace is sufficient
to model the energy dissipation of a large memory array
to acceptable accuracy. For example, our low-power cache

4

IA
A

B
IB

IF F

φ

φ

ID
D

Q
φ

φ

IQ

IQB

Figure 8:Transmission gate mux and latch designs.

design employs multiple levels of cache sub-banking and
self-timed low-voltage-swing techniques, yet our cycle-
based energy model captures energy dissipation to within
3% of SPICE simulation based on extracted layout.

3.1.2 Datapaths

Datapaths also consume considerable energy in a proces-
sor but are more complicated to model because of their
complex interconnect structure, the wide variety of cir-
cuit types, and the richer set of activation patterns. We
have implemented a low-power datapath library in a TSMC
0.25�m CMOS process, including units such as muxes,
buffers, latches, adders, shifters, register files, etc., and for
each unit we provide an energy model. The energy dissi-
pated in a unit is a function of the input and output signal
statistics and the effective internal load capacitances. The
effective internal load capacitances are independent of a
specific datapath layout, and can be determined once when
the unit is designed. The energy dissipated on the nets be-
tween datapath components is modeled based on the capac-
itance and switching frequency, just as with global wires.

While designing our datapath library, we experimented
to find basic cells that had good energy-delay products.
By far the most common cells in a processor datapath
are muxes and latches, and for these functions we found
that transmission gate designs, as shown in Figure 8, had
among the best overall energy-delay product while also be-
ing simple and robust [11]. Coincidentally, we find that
these cells have properties that enable simple but accurate
energy modeling; their internal energy consumption can be
determined with only the transition counts at their inputs
and outputs. For example, node IA in the mux circuit tran-
sitions the same as input node A, and node IF transitions
the same as output node F. Similarly, in the latch circuit,
node ID transitions as often as node D, and nodes IQ and
IQB transition as often as the output Q.

More complex datapath blocks have custom energy
models derived from their internal structure. For example,
for our carry-skip adder, we use bitwise XOR and AND of

the input vectors to determine the values for the propagate
and generate gate outputs on a per-cycle basis, while the
carry chain values are determined by XOR-ing the adder
output with the internal propagate value. The carry skip
values are computed from the individual carry bits. By us-
ing bit-parallel arithmetic in this way, we can rapidly cal-
culate switching of all internal nodes in the adder.

3.1.3 Control Logic

Control logic also has a complex structure (often automat-
ically synthesized, placed, and routed) and a rich set of ac-
tivation patterns, but is usually fashioned from a small set
of static CMOS standard cells. For simple pipelined RISC
and VLIW processors, control logic is usually responsible
for less than 10% of total processor energy [1], particu-
larly if energy expended in control line drivers is excluded.
We believe modeling control logic energy consumption ac-
curately will become increasingly important in low-power
processor designs because many techniques (e.g., instruc-
tion compression or clock gating) reduce memory and
datapath energy but require additional control logic. At
this time we are not modeling control logic energy, but we
plan in the future to add support in SyCHOSys for gate-
level modeling of standard cell control blocks, with load
capacitances extracted from placed and routed output.

3.1.4 Effective Load Capacitance

The energy models for global wires and datapaths multi-
ply transition counts with corresponding effective load ca-
pacitance values. The capacitance values can either be ex-
tracted from layout or estimated using some interconnect
length model if layout is not available. For circuit extrac-
tion, we are currently using the SPACE 2D extractor [14]
which extracts layout parasitics including capacitance to
the substrate, fringe capacitance, crossover coupling ca-
pacitance, and capacitance between parallel wires. SPACE
produces a SPICE netlist of wire caps plus transistors.

We have written amergecap tool that reads the ex-
tracted SPICE netlist and for each net returns a single
equivalent capacitance to ground obtained by summing all
capacitances connected to the net. As part of this process,
we estimate the effective capacitance contribution of any
transistor gates or drains connected to the net. These ca-
pacitances can be difficult to model because they are volt-
age dependent. However, we exploit the fact that in a well-
designed circuit signal rise-fall times are usually restricted
to a narrow range around the natural fanout-of-four (FO4)
rise-fall times; we can therefore determine effective tran-
sistor gate and drain capacitances by constructing circuits
with typical rise-fall times. The coupling capacitance be-
tween two nets also varies dynamically depending on their

5

relative switching. A cycle simulator cannot determine the
relative timing of two signals, and even if that were possi-
ble, tracking inter-signal interactions would require exces-
sive compute time and storage. We make the approxima-
tion that two coupled signals never switch simultaneously,
and simply sum all inter-node capacitances into a single
equivalent capacitance to ground.

3.2 Short-Circuit Energy

In general, modeling short-circuit current is difficult in
a cycle simulator because it can depend on the relative
switching time of two inputs to a logic gate. For invert-
ers, however, there is only one input and we can use a
typical FO4 rise-fall time to calibrate the short-circuit en-
ergy loss per transition for a given inverter strength. Then
we only require transition counts to determine short-circuit
energy. Outside of memory and register arrays (which we
model separately including short-circuit currents) we note
that most short-circuit energy in our designs is dissipated
by inverters. In the datapath, transmission gate muxes and
latches only dissipate short-circuit current across invert-
ers (the C2MOS stage in the feedback path of the latch
never dissipates short-circuit current). All forms of signal
buffer including clock drivers and control line drivers are
usually just inverter chains. Some of the other blocks in
the datapath are dynamic and hence do not dissipate short-
circuit energy, and more complex gates, such as three-input
NANDs, have lower conductances for short-circuit current.
We can therefore expect to estimate most short-circuit en-
ergy accurately just by tracking inverter transition counts.
We are currently still developing the short-circuit current
models and these figures are not included below.

4 SyCHO Energy Analysis

Conventional RTL simulations only need to accurately
model the register values each cycle. One motivation
for specifying a SyCHOSys design as a structural netlist
of components is to enable cycle-accurate simulation for
all interesting nodes in the design. As described above,
SyCHOSched generates a simulation that accurately tracks
the input and output values of each block. These values
are valid for each period of the clock; this includes nodes
which take on two distinct values per clock period, for ex-
ample the output of a dynamic logic block and any combi-
national logic which is connected to it.

The structural nature of the SyCHONet description sim-
plifies the process of energy estimation. We divide the
problem into two parts, the energy dissipated on the nets
which connect components together, and the internal en-
ergy used by each component. To determine the energy

of the external nets, we simply add counters into the sim-
ulation code which keep track of the total transitions for
each bit; these counters are generated automatically based
on the SyCHONet structural description. Then energy can
be calculated using this number and the capacitance of the
node as extracted from layout.

Each component is responsible for calculating its own
internal energy. ACalcStats() method can be defined
along with eachEvaluate() method in the behavioral
description, and is called after everyEvaluate() . Based
on its new inputs and outputs, the block calculates any in-
ternal statistics which it needs to determine energy con-
sumption. For example, an adder might count the transi-
tions in each portion of the carry chain, while a register
file block could count the total number of reads and writes.
In addition to defining a statistics gathering routine, each
component type defines a method which interprets these
statistics to determine energy.

In order to minimize simulation time, we only track
switching statistics while simulating the circuit. All of the
remaining energy analysis happens as a data processing
step after the statistics have been gathered. As described
above, we found that the internal energy usage of many
components can be calculated based only on capacitance
numbers and the transition counts of their input and output
nodes. Since we automatically count the transitions on all
external nets, we make these counts available to compo-
nents for their internal energy calculation routines. This
avoids duplicating the statistics tracking on the external
net and in the internal statistics gathering of the compo-
nent. Additionally, when two or more components share
a common input, the transitions are only counted once but
both components can make use of the numbers in deter-
mining their internal energy usage. Another feature of the
SyCHOSys design is that energy statistics can be gathered
for a subset of the components or a selected subset of sim-
ulation time to improve simulation speeds.

4.1 Transition Counting

Rapid signal transition counting is the key to fast
energy-performance simulation. The transitions on a bus
are determined by the logical XOR of the current and pre-
vious values; accumulating a count of the number of ones
for each bit in this value gives a summary of bus activity.
A naive method to count bus transitions is to use a series of
shifts, masks, and adds to accumulate each bit separately
as in the following code:

trans = val1 ˆ val2;
if (trans==0) return; // optimization
for (i=0; i<n; i++) {

bit_count[i] += ((trans >> i) & 0x1);
}

6

bit_count[0]

bit_count[n]

[1][2]

[2]

[1]

[msb]
sig_bit sig_bit

[0]

Figure 9:Alternative memory layouts for counting the bit tran-
sitions of an n-bit bus.

The check for zero is an optimization so that the rest of the
loop can be avoided. The memory layout for this scheme
is shown in Figure 9 by the horizontal boxes.

To improve simulation speed, we maintain transition
counts for each bit in the bus using an alternative trans-
posed memory layout (the vertical boxes in Figure 9) and
use the following faster bit-parallel ripple carry algorithm:

carries = val1 ˆ val2;
for (i=0; carries != 0; i++) {

temp = sig_bit[i];
sig_bit[i] ˆ= carries;
carries &= temp;

}

This method has the advantage of terminating as soon as
carries becomes zero, but has the disadvantage that it
can waste memory for narrow busses. We handle single-
bit nets using the naive technique and a single memory
location. When taking energy statistics for the GCD ex-
ample, we found that using our counting method increased
the overall simulation speed by a factor of four over the
naive method, and a factor of two over the naive method
with the additional zero check.

5 Energy-Performance Model Evaluation

To evaluate the performance and accuracy of SyCHO-
Sys datapath energy models, we implemented the GCD
circuit using our datapath cells in a TSMC 0.25�m pro-
cess as shown in Figure 10. The circuit runs at 200 MHz
and contains a mixture of various datapath units including
flip-flops, latches, muxes, and adders, and both static and
dynamic logic.

We modeled this circuit with several different simula-
tors as shown in Table 2. The hand-tuned C code (an it-
erative version of Figure 3) runs extremely quickly, tak-
ing only three processor cycles per loop iteration. A com-
parable behavioral Verilog simulation is around 200 times

Figure 10:Layout of GCD circuit.

slower. We also implemented a structural Verilog simula-
tion which wires together components such as the registers,
subtractor, and mux, which were modeled as separate be-
havioral blocks; this version ran around 30% slower than
the behavioral design. The SyCHOSys structural simula-
tion is comparable to the structural Verilog design, and runs
over 20 times faster. When we add energy statistics track-
ing to the SyCHOSys simulator, we observe a 40-fold slow
down. However, the SyCHOSys energy simulator is still 7
orders of magnitude faster than a HSpice simulation, and 5
orders of magnitude faster than PowerMill.

The SyCHOSys energy simulation kept statistics for a
total of 300 nodes (bits), including 4 32-bit external busses,
8 1-bit external signals, 5 32-bit internal busses for the sub-

Simulation model Compiler / Simulation
Simulation Engine Speed (Hz)

C-Behavioral gcc -O3 109,000,000.00
Verilog-Behavioral VCS -O3 +2+state 544,000.00
Verilog-Structural VCS -O3 +2+state 341,000.00
SyCHOSys-Structural gcc -O3 8,000,000.00
SyCHOSys-Energy gcc -O3 195,000.00
Extracted Layout PowerMill 0.73
Extracted Layout Star-HSpice 0.01

Table 2:Comparison of various simulation speeds for the GCD
circuit. All simulations were run on a 333 MHz Sun Ultra-5 work-
station under Solaris 2.7.

7

GCD inputs GCD HSpice Power- SyCHO-
cycles Mill Sys

X 0x04000000 18 0.946 0.8163 0.9560
Y 0x40000000 (-13.7%) (+1.06%)
GCD 0x04000000
X 0x00ffffff 18 0.555 0.5211 0.5444
Y 0x0ffffff0 (-6.11%) (-1.91%)
GCD 0x00ffffff
X 0x05555555 22 1.095 1.001 1.021
Y 0x6aaaaaa4 (-8.58%) (-6.76%)
GCD 0x05555555
X 0x0487ab00 26 1.198 1.102 1.195
Y 0x3b9aca00 (-8.01%) (-0.250%)
GCD 0x003d0900
X 0x01fffffe 45 1.267 1.158 1.236
Y 0x50ffffaf (-8.63%) (-2.48%)
GCD 0x00ffffff
X 0x053ec600 46 2.059 1.910 2.125
Y 0x34f7e020 (-7.24%) (+3.21%)
GCD 0x00004e20
X 0x01000000 66 3.266 2.953 3.494
Y 0x40000000 (-9.58%) (+6.98%)
GCD 0x01000000

Table 3:Comparison of simulated energy usage for several GCD
computations using various energy simulators. All energy num-
bers are in nJ. The percent differences from HSpice are shown for
PowerMill and SyCHOSys.

tractor, and 4 1-bit internal signal for the control. The total
number of nodes in the design layout was 1278; our energy
equations account for the switching activity on almost all
of these nodes by taking advantage of the fact that the tran-
sition frequencies of internal nodes often mirror those of
the input or output nodes.

Table 3 shows a comparison of energy usage as calcu-
lated by HSpice, PowerMill, and SyCHOSys. Seven in-
put vectors were chosen to exercise the GCD circuit differ-
ently. The results illustrate the importance of transition-
sensitive modeling, e.g., the difference in data values
causes the first case to dissipate almost twice the energy
of the second case even though both complete the GCD
calculation in the same number of cycles. The SyCHO-
Sys energy model differed from HSpice by a maximum of
7%. In all cases, it gave numbers within PowerMill’s er-
ror; although it should be noted that PowerMill had a lower
variance in error.

6 Processor Model Development

Our goal in developing SyCHOSys is to aid our research
in the design of low power processors. To this end, we have
been using our tool to design a MIPS R3000-compatible
RISC microprocessor with a five-stage pipeline (at this
point our design doesn’t include floating point or address
translation). We have found SyCHOSys to be a powerful
tool, enabling a top-down design methodology in which
we successively refine a working design. In the following,
all simulation speeds are for tests run on a 333 MHz Sun

Ultra-5 workstation running Solaris 2.7.
As an initial step, we designed a behavioral RTL simu-

lator using SyCHOSys. This design modeled each pipeline
stage as a large behavioral block, and was cycle-accurate
at the registers between stages. The memory was modeled
as a “magic” memory which performed all operations in a
single cycle. We compiled this design using the SyCHO-
Sys framework, and achieved a simulation speed of around
400 kHz. We have found comparable Verilog models com-
piled using industry tools to run at 3 kHz to 35 kHz depend-
ing on the tool and the level of optimization. For reference,
we also have a C++ ISA interpreter which runs at about
3 MHz.

The next step in our design was to break the behavioral
blocks up into adders, muxes, shifters, etc. The control
was still modeled as a large behavioral block, and we still
used a “magic” memory. We also used a “magic” mul-
tiplier/divider unit with a single cycle latency. This de-
sign contained around 135 components in the SyCHONet,
and ran at a speed of 280 kHz. This simulation is cycle-
accurate at each block used in the design, yet the perfor-
mance is still comparable to an RTL simulation, and far
better than compiled behavioral Verilog simulations. We
take this as evidence of the speed advantages of leveraging
a powerful general purpose compiler.

Recently, we have further refined our design to more
accurately model a real processor. We’ve added instruc-
tion and data caches and a cycle-accurate model of the off-
chip memory system. We’ve also implemented an iterative
multiplier/divider. Our processor pipeline now supports
user/kernel mode and precise exception handling. Cur-
rently our SyCHOSys design runs at around 60 kHz, and
we are able to run large SpecInt95 benchmark programs
on our simulator. We have almost completed a full energy
model for the entire processor, minus the control logic. We
currently track a total of 2045 nodes at a simulation rate of
16 kHz. Note that the slowdown to include energy model-
ing is much less for the processor than for the GCD circuit
because the CPU model complexity is much greater rela-
tive to the number of nodes that need to be tracked. This
simulation rate is adequate for simulating a billion cycles
in less than a CPU day.

7 Future Work

In future work, we intend to model the energy usage of
the processor at a finer level of detail than just the cumula-
tive energy per block for an entire simulation. By dumping
energy statistics multiple times during a simulation, as of-
ten as every cycle, we hope to get a more accurate picture
of how the energy usage of a program varies over time.
Additionally, we intend to update our statistics tracking

8

mechanism to keep separate statistics for individual pro-
gram instructions. This will enable us to determine the en-
ergy usage of each instruction in a program, and through
automated compiler back-annotation we will be able to in-
vestigate the energy characteristics of user-level code se-
quences and compiler transformations.

We intend to extend the framework to support gate level
models for synthesized control logic derived from gate net
lists. This synthesized logic will be automatically sched-
uled along with datapath and memory components to yield
a complete full chip simulation. We will develop a gate-
level energy model using wire capacitance numbers which
can be extracted from placed and routed layout or esti-
mated from gate fanouts. We can use these models to de-
termine average control energies, perhaps per instruction
type, which can then be used for faster simulations which
don’t model the control logic at the gate level.

To improve accuracy, we intend to incorporate
transition-sensitive short-circuit current models. We also
intend to incorporate state-sensitive models for leakage
current for lower-threshold processes, and to provide ac-
curate standby mode power estimates.

To incorporate SyCHOSys into our VLSI tool flow, we
plan to provide automatic translation from Verilog into
SyCHONet. The Verilog description will be hierarchical
and, initially, strictly structural to provide a link between
the SyCHOSys simulation and the physical layout. To-
gether with our library of circuit leaf cells, a single Verilog
netlist can then be used to generate a complete hardware
design using automated procedural layout tools, or alter-
natively, a SyCHOSys cycle-accurate energy-performance
simulator. We will later allow combinational modules to
be described using a subset of behavioral Verilog, which
will then either be automatically synthesized into layout or
translated into a SyCHOSys behavioral C++ block.

8 Related Work

SyCHOSys is an integration of three trends in syn-
chronous circuit simulation — cycle-based simulation,
C/C++ component libraries, and compiled netlist simula-
tors. Table 4 shows some related simulators and the fea-
tures they have in common with SyCHOSys. SyCHOSys
is unique in that it compiles a cycle simulator from a struc-
tural netlist description of arbitrary C++ behavioral blocks.

There are several commercial cycle simulators for Ver-
ilog and VHDL, including SpeedSim [3] and Cyclone [13].
Verilog and VHDL are powerful languages for describing
arbitrary circuits including asynchronous designs, but cy-
cle simulation is only possible when the user adopts a re-
stricted synchronous design style [3, 13]. Although these

Simulation cycle- C/C++ compiled
Environment based libraries netlist

Cyclone
p

SpeedSim
p

StreC
p p

THOR
p p

CynApps
p

SystemC
p

SSIM
p p

SyCHOSys
p p p

Table 4:Comparison of various simulation environments

simulators can simulate a somewhat wider range of circuits
than SyCHOSys (for example, 4 state logic simulation), it
is much harder to extend their functionality because new
features must either be written in the HDL language itself
or added through slow and clumsy simulator APIs such as
Verilog/PLI.

CynApps [5] and SystemC [12] replace specialized
HDL’s such as Verilog and VHDL with similar HDL’s
based on C++, but they are based on an event-driven model
and do not perform cycle simulation. StreC [17] uses C as a
HDL and provides cycle scheduling of RTL level designs,
although the scheduling is not fully automated across dif-
ferent units. StreC treats all C code as hardware to be mod-
eled and so it is difficult for a user to increase the simula-
tor functionality, for example, to include per block energy
models. In CynApps, SystemC, and StreC, designs are
fully specified in C/C++ with no separate netlist descrip-
tion. In SyCHOSys, the separate SyCHONet description
is a key feature. This separation of the structural and be-
havioral descriptions allows static scheduling to be fully
automated; thus creating a cycle-based simulator without
making the designer worry about complex scheduling in-
teractions as in [17].

THOR [2] is similar to SyCHOSys in that it makes
use of C code to describe the behavior of blocks that are
wired together with a separate structural netlist, but uses
a slower run-time event-driven scheduler. SSIM [16] is a
gate-level simulator that is similar to SyCHOSys in that
it uses a levelization algorithm to translate a gate netlist
into C code which is then compiled to yield an executable
cycle-based simulator, however, SyCHOSys allows arbi-
trary behavioral blocks as netlist nodes.

Many commercial processor designs employ a hand-
written C/C++ RTL simulator to verify system behavior.
Although these can provide high performance, they are la-
bor intensive to write and maintain. A particular difficulty
is correctly hand-scheduling evaluation for signal paths
that traverse multiple functional blocks in a single cycle
or clock phase. It is also difficult to automatically add new

9

functionality such as node transition counting or test vector
generation to the simulation because the design structure
must be inferred from the code. In contrast, SyCHOSys au-
tomatically reschedules and re-optimizes signal evaluation
after every modification, and, because the design structure
is explicit, it is straightforward to automatically compile in
new features to the simulation.

Our main contribution in energy modeling has been to
derive very fast and accurate transition-sensitive models
for datapath blocks driven by a cycle simulator. Simple-
Power [15] also builds accurate transition-sensitive mod-
els, but uses per-bit lookups in energy tables for common
bit-independent blocks such as muxes and latches. In con-
trast, SyCHOSys performs bit-parallel evaluation of transi-
tion counts, and automatically factors out transition count-
ing when blocks share a common net. For more complex
datapath blocks, such as adders, SimplePower uses more
complex tables indexed by previous and current input vec-
tors, or subsets of these vectors. In contrast, SyCHOSys
performs a bit-parallel evaluation of the internal gate struc-
ture to determine internal node switching.

9 Summary

We have described a compiled cycle simulator that
provides extremely high performance by generating C++
code designed to allow compile-time optimization. We
found that representing synchronous designs with struc-
tural netlists simplifies cycle scheduling and enables ag-
gressive compiler optimizations. In addition to provid-
ing fast simulation speed, the SyCHOSys framework al-
lows additional functionality to be automatically compiled
in. We have added signal transition counting on external
nets connecting blocks to augment block-internal statis-
tics gathering code for energy estimation. We have de-
veloped fast and accurate techniques for datapath energy
modeling that were found to be within 7% of SPICE en-
ergy estimates. Using our system we are building a de-
tailed pipelined MIPS processor model, that currently runs
at over 16 kHz while tracking transitions on over 2,000
nodes. This transition coverage is sufficient to model al-
most all datapath and memory energy consumption.

10 Acknowledgments

We thank Daniel Rosenband for providing the Verilog
CPU model used in our comparisons. This work was partly
funded by an NTT graduate fellowship and by DARPA
grant N66001-99-2-8917.

References

[1] T. D. Burd and B. Peters. Power analysis of a micropro-
cessor: A study of an implementation of the MIPS R3000.
Technical report, ERL Technical Report, University of Cal-
ifornia, Berkeley, May 1994.

[2] CAD Group, Stanford University. ”THOR tutorial”. 1988.

[3] Cadence Design Systems, Inc. ”SpeedSim Verilog Version
2.6 Technical Data Sheet”. San Jose, CA, USA, 1999.

[4] A. P. Chandrakasan, S. Cheng, and R. W. Broderson. Low-
power CMOS digital design.IEEE Journal of Solid-State
Circuits, 27(4):473–484, April 1992.

[5] CynApps, Inc. ”Cynlib: A C++ Library for Hardware De-
scription Reference Manual”. Santa Clara, CA, USA, 1999.

[6] S. Gupta and F. N. Najm. Power macromodeling for high
level power estimation. InProceedings DAC, pages 365–
370, Anaheim, CA, June 1997.

[7] C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski. The
design and implementation of PowerMill. InProceedings
of the IEEE Symposium on Low Power Electronics, pages
105–111, October 1995.

[8] H. Mehta, R. M. Owens, and M. J. Irwin. Energy charac-
terization based on clustering. InDAC, pages 702–707, Las
Vegas, NV, June 1996.

[9] L. Nagel. SPICE2. Technical Report ERL-M520, ERL
Technical Memo, University of California, Berkeley, 1975.

[10] Landman P. ”High-level power estimation”. InISLPED,
pages 29–35, Monterey, CA, USA, August 1996.

[11] V. Stojanović and V. G. Oklobdˇzija. Comparative analysis
of master-slave latches and flip-flops for high-performance
and low-power systems.IEEE Journal of Solid-State Cir-
cuits, 34(4):536–548, April 1999.

[12] Synopsys, Inc. ”SystemC Reference Manual Release 0.9”.
1999.

[13] Synopsys, Inc. ”Cyclone VHDL Datasheet”. 2000.

[14] N.P. van der Meijs and A.J. van Genderen. SPACE Tu-
torial. Technical Report ET-NT 92.22, Technical Report,
Delft University of Technology, Netherlands, 1992.

[15] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim,
and W. Ye. A unified energy framework with integrated
hardware-software optimizations. InISCA, Vancouver,
Canada, June 2000.

[16] L.-T. Wang, N. E. Hoover, E. H. Porter, and J. J. Zasio.
”SSIM: A Software Levelized Compiled-Code Simulator”.
In 24th DAC, pages 2–8, Miami Beach, FL, USA, June
1987.

[17] J. Yim, Y. Hwang, C. Park, H. Choi, W. Yang, H. Oh,
I. Park, and C. Kyung. ”A C-Based RTL Design Verifi-
cation Methodology for Complex Microprocessor”. In34th
DAC, pages 83–88, Anheim, CA, USA, June 1997.

10

