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Abstract

To address the needs of the next generation of low-poweemsgstDDR2 SDRAM offers a num-
ber of low-power modes with various performance and powasamption tradeoffs. The SCALE
DRAM Subsystem is an energy-aware DRAM system with varigigsesn policies that make use
of these modes. In this thesis, we design and implement a CIDA®M controller and test a ver-
sion of the SCALE DRAM Subsystem in hardware. Power measenesrfrom the actual DRAM
chips are taken and compared to datasheet derived valuwkanaanalysis of the DRAM refresh
requirements is performed. Some notable power consumpegrits include active powerdown
being much closer to precharge powerdown and reads takiied tess current than the datasheet
indicates. In addition, based on the refresh tests, a sythi@npowers down at least 12.3s for each
32MB of traffic can save power using delayed refresh and EG& etecoding.
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Chapter 1

Introduction

SCALE is a programmable processer architecture designeffittently handle a wide range of
parallel workloads in embedded sytems[1]. The SCALE-0 @ssor consists of a MIPS control
processor, a 4-lane vector-thread unit, and a 32KB unifiedeblased around 8-word cache lines.
This cache directly interfaces with the SCALE DRAM Subsyste/hich uses four 256Mbit DDR2

DRAM chips to present a total of 128MB main system memory.

In modern energy-sensitive computing applications, thenorg subsystem can account for up
to 90% of the non-1/0 power consumption[2]. DRAM-based mgmmodules already implement
several different power modes, each with its own perforreard energy cost. In order to create
a power-efficient memory system, the DRAM controller mugpliement a mode transition policy

which saves as much energy as possible while maintainingaeptable level of performance.

Delaluz et al[2] found that in systems without cache, a gohbich scheduled chip powerdown
after several idle cycles provided significant energy sgwiwithout sacrificing performance. By
delaying powerdown, this policy avoided both the perforoeaand energy penalty of reactivation
under memory access patterns with high spatial locality.tf@nother hand, systems with cache
benefitted most from a policy of immediate powerdown, singagial locality was already handled

by the cache.

In his thesis, Pharris[3] designed the SCALE DRAM Subsydteimclude several policy mod-

ules. These modules independently control address ttaorglanemory request scheduling, and

13



DRAM power mode transitions. A computer simulation of the ANR Subsystem performance

under various benchmarks agreed that the best static ppisymmediate powerdown.

1.1 Overview

In this thesis, we implement a DDR2 DRAM controller and ust® itake actual power measure-
ments of Micron 256Mbit DDR2 SDRAM chips under various powerdes and transitions. We

also profile data corruption in a single DRAM chip when subfedelayed refresh intervals.

Experimental energy consumption data is important for atmn and evaluation of DRAM
mode transition policies. Every policy optimizes for a di#nt situation and spends different
amounts of time in the various power modes and transitianerder for a policy evaluation to be

correct, the energy cost of each state and transition mustiect.

Power consumption and refresh requirements on datasheegemerally conservative worst-
case estimates designed to increase manufacturing yield mhintaining a marketable product.
For a given parameter, this project will attempt to providaare realistic energy estimate based
on current consumption under operation. In addition tordeténg the average value and compar-
ing to a datasheet-derived value, we also examine depeadenexternal factors such as supply

voltage, operating frequency, and temperature.

1.2 DDR2 SDRAM Overview

A standard DRAM cell stores a single bit as charge on a cagamiintrolled by a transistor. The
simple structure of DRAM cells allows them to be packed fightesulting in affordable high
capacity, high density modules. The downside is that bitscgerupted or lost due to charge
leakage off the capacitor, requiring extra circuitry taesh the stored data periodically.

An SDRAM module is organized as a set of banks each of whicliagmh an independent

DRAM cell array. This array is broken up into rows and columnmigh a dedicated active row.
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Figure 1-1: SDRAM module organization[3].

1.2.1 Operation

Each SDRAM bank can be in one of two states: precharged aiekactWhen the bank is
precharged, a SDRAM memory transaction begins by selettieglesired bank and activating
the desired row by loading it onto the sense amplifiers, puitthe bank in the active state. After
an appropriate number of cycles known as the RAS to CAS Igt¢he column is selected along
with either a read or write command, and after another deteoyvik as the CAS latency, the data
is read in or out in fixed-length bursts on both the rising aaiting clock edges. Requests from
the same row but different column can be handled by changiegélumn address and waiting
another CAS latency before accessing the data. A requediftesent row requires precharging
the current row and activating the new one.

As mentioned before, DRAM cells will start to lose data usldsy are periodically refreshed.
In-between memory accesses, the DRAM controller can issiuesh commands to the SDRAM
banks. These commands precharge the currently active rdwhan select a row to be refreshed
based on an internal controller. Refresh commands musshbedsperiodically, generally on the

order of once every 10us.[4]
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Figure 1-2: DDR-Il SDRAM power mode transitions and asstecialelay.

1.2.2 Power modes

DDR2 SDRAM modules offer a number of low-power modes to coresenergy. Each of these
modes has different relative energy consumption, reaativalelay, and transition possibilities.

Active Powerdown- This state is entered from the active state when a powerdoimitiated,
and requires a short resynchronization time to return t@athige state. Depending on the DRAM
configuration, this mode can either be fast-exit or slovi-ésast-exit has a lower resynchronization
time than slow-exit, but has higher power consumption.

Precharge Powerdownt If no rows are currently active and a powerdown is initiateds state
is entered. It offers lower power consumption than eithaghefactive powerdown states, and has
a resynchronization time on par with slow-exit.

Self Refresh- This is the lowest power state, and can be entered from tbehBrge state.
While minimal energy is consumed and refresh commands daeed to be periodically issued,

exiting this state takes on the order of several hundredesycl

1.2.3 Timing Constraints

DDR2 DRAM commands are subject to two classes of timing caimgs. The first class is bank
timing constraints which govern how close commands addcegsthe same bank can be issued.

The second class is bus timing constraints, which governdiose commands from any bank can
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Figure 1-3: Hardware setup.

be to each other. A list of timing constraints can be foundhinDDR2 datasheet[4].

1.3 Hardware Setup

1.3.1 SCALE DRAM Board

The SCALE DRAM board is the primary memory testing platforon this project. The board

itself consists of a Xilinx Virtex-1l FPGA directly connesd to several memory modules[5].

Virtex-1l FPGA  The Xilinx Virtex-1l XC2V4000 FPGA contains all the logic geired to drive
the DDR2 DRAM chips, as well as extra logic to interface witle tbaseboard and execute test

patterns.

256Mbit DDR2 DRAM There are four Micron 256Mbit 8Mx8x4 Bank DDR2 DRAM chips

attached to the FPGA with dedicated address and data buBkese four chips are used in the
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power and refresh tests. Two more chips are attached to tGé& M a shared address and data

bus, however these chips are not currently used.

1.3.2 Tester Baseboard

The tester baseboard both supplies power to the DRAM boatcabows the DRAM board to

interface with a PC. It contains 16 voltage-adjustable entrmonitored power supplies which
can be used to power sets of chips on the DRAM board. The sisdmpling mode reads values
from the current sensors and sends them directly to a PCeRltiX card interface. The baseboard

controller can also pass requests from the PC to the DRAMdbaarthe AHIP protocol[7].
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Chapter 2
Design

Part of this thesis includes designing, implementing, astrig a DDR2 DRAM controller, as well
as testing a basic implementation of the SCALE DRAM SubsygstBoth the DRAM controller
and the SCALE DRAM Subsystem designs are targeted for thiex4rFPGA on the DRAM
board, and include platform-specific optimizations andgteslecisions. The biggest impact of
using an FPGA to drive the DRAM is that the system logic becothe performance bottleneck,
not the DRAM itself.

2.1 DDR2 DRAM Controller Design

The DDR2 DRAM controller module (ddrontroller) presents an 32-bit out-of-order pipelined
memory interface to a single 256Mbit DDR2 SDRAM chip. It geates all initialization, control,

and refresh signals and maintains all state necessarydqrtper operation of the DDR2 chip.

2.1.1 Controller Interface

The ddrcontroller module interfaces with external logic that ran$alf the DDR2 DRAM clock
rate. The interface is basically a pipelined out-of-ordenmry. Requests consist of either a read
or a write operation, along with bank, row, and column adsies Writes also include the data

to be written and a mask specifying which bytes within eachdnghould be overwritten. The
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Figure 2-1: Sample ddcontroller write and read requests.
ddr_controller
Tagged Request »| Bank Request > Command > Execute » Tagged Response
FIFO FSM Pipeline
A

v

DDR2 DRAM

Figure 2-2: ddrcontroller block diagram.

controller will indicate when it is ready to start acceptiegjuests to each bank.

2.1.2 Reguest Stages

The modules which make up ddontroller are arranged in three main stages. The first sgage
the Bank Request FIFO that buffers requests into the coatrddext is the Command FSM stage
which is responsible for translating memory access requeti DDR2 DRAM commands. Last,
the Execute stage is a pipeline which handles the actual iflothe DRAM chip. Both the Bank
Request FIFO stage and the Command FSM stage run at half tAéDfock rate, while the

Execute stage runs at the full clock rate.

Bank Request FIFO Stage

The Bank Request FIFO accepts and buffers memory accesssteauntil ready to be processed

by the corresponding bank in the Command FSM. A new memonyesigs dequeued from the
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Figure 2-3: Command FSM block diagram.

fifo and presented to the Command FSM stage as the new adafjiweston the cycle after the last

command from the current active request wins arbitratioif,tbere is no current active request.

Command FSM Stage

The Command FSM stage generates possible commands fromog#oh banks and the chip
master, verifies them against timing constraints, selestdo@issue, and determines new bank and

timing constraint state in a single half-DRAM-speed cycle.

State For each bank, the state consists of the current active seqsepresented by the Bank
Request FIFO, the current open row, and four counters qurelng to timing constraints for the
four primary commands (PRECHARGE, ACTIVE, READ, WRITE).

In addition to the bank, the bus maintains a separate seuoters for each of the four primary
commands. A fifth requester, known as the chip master, is & mnaditional state machine which

transitions between named states that represent diffghgsical states the chip is in.

Propose Command At the beginning of each cycle, each bank proposes a commamaissued
on the command bus based on its state. The chip master alsosg®a command if it needs to,
and has the ability to override the commands proposed onekiecycle. If the chip master sets

next_force_close high for a given bank, then on the next cycle if the bank hasveaen, the bank
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| Request | Active Row | force_close | force_open [ stall | Command [ New Request |

X X X X 1 NOP 0

X none 1 0 0 NOP 0

X row_a 1 0 0 PRECHARGE 0

X none 0 1 0 ACTIVE 0

X row_a 0 1 0 NOP 0

none X 0 0 0 NOP 1
op:row.a:colLb none 0 0 0 ACTIVE 0
op:row.a:colLb row_c 0 0 0 PRECHARGE 0
op:row.a:colLb row_a 0 0 0 op 1

Figure 2-4: Proposed command truth table for each bank.

proposes a PRECHARGE, otherwise it proposes a NOP.nékteforce_open signal has similar
behavior with the ACTIVE command.

Hazard Check The command proposed by each bank is verified against thesparmding bank
and bus counters in the hazard check phase. If either thedmamker or the bus counter for the
proposed command is not 0, the command is changed to a NORdster may also pause a bank
by settingnext_stall high, causing the proposed command in the following cyclegtdurned into
a NOP regardless of counter state.

The commands proposed by the chip master are not subjecy teeaard checking, since they

are usually exclusive and have more deterministic timirgntthe four primary bank commands.

Arbitrate  In the arbitrate phase, one of the up to five non-NOP proposeuhtands is selected
as the winner. The four banks each have equal priority, aadatbiter cycles through a four
different fixed orders based on the last bank that succégsgalied a command. The chip master
has the lowest priority, and is the default command issuedl the banks propose NOPs. Each

command requester is notified whether or not it won arbdrati

Issue and Update Based on the results of arbitration, the correct next statebe determined.

If a bank does not propose a command or does not win arbitratien its state remains the same
and all the non-zero bank counters are decremented. If admeskpropose a command and wins
arbitration, then the new bank state is determined by whaichmand was just proposed, and the

bank counters are updated to include new timing constramised by the command about to be
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Send write data to IOB

Drive data strobe
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OO N|Oof O] AlWN

Signal done, read data from IOB Signal done

Figure 2-5: Execute Stage pipeline diagram.

issued. Each chip master state has two possible next statesf-the chip master wins arbitration,

and one if it doesn't.

The arbiter winner is an input to two large muxes. One of thefecds the command to be
issued on the next cycle and passes it to the Execute stageotfiér selects which set of values
should be used to update the bus counters to reflect new tocoimgraints caused by the command

that is about to be issued.

Execute Stage

The Execute stage is a simple 9-stage pipeline that issueshaads onto the DDR DRAM com-
mand bus and reads and writes data when appropriate. Trb@puns at the full DRAM clock

rate, however since its input runs at half the DRAM clock rateery other command is a NOP.

2.1.3 Request Handling
Initialization

Upon a reset of the ddrontroller, the chip master begins the power-up and imntdilon sequence
for the DRAM chip. During this sequence, the chip master getstall signal high for each of
the banks, preventing them from requesting any operationse the sequence is compledta||

is brought low, allowing normal DRAM operation.
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Read and Write Request

A read or write request issued to the daimtroller module is immediately enqueued in the appro-
priate Bank Request Fifo. In the event a Bank Request Fifolisthe correspondingank ready
signal will be brought low, indicating that no more requéstthat bank should be issued.

The Bank Command FSM will request the next command from tmeesponding Bank Re-
quest FIFO if it either does not have any active requestd,tbeilast command corresponding to
the previous request was acknowledged.

On the next cycle, the new active request is presented todah& Bommand FSM. Based on
the state of the bank, a command is proposed. This proposechand is then checked against the
Bank Counters and the Bus Counters to see if it violates amiyngj constraints. If no constraints
are violated, the proposed command is sent to the Arbiteeratise a NOP is sent.

The Arbiter selects one of the valid commands to be requestatds an acknowledgement
back to the corresponding bank or Master FSM, and passesthmand on to the Execute Stage
pipeline. If a bank requests a NOP or its requested commamot iacknowledged, then its state
does not change for the next cycle.

If the bank requests a command and that command is acknogdedlgen the bank state is
updated for the next cycle, as are the Bank Counters and Bustés to reflect new timing

constraints caused by issuing this command.

Refresh and Self Refresh

Two events can trigger the refresh cycle. Approximatelyrgveis, the ddrcontroller must issue
a REFRESH command. A timer in the Master FSM sends a signahahefresh is necessary,
and resets when a REFRESH command is issued. The refreghatyolbegins if theelf_refresh
signal is brought high.

Upon entering the refresh cycle, the chip master f&ete_close to high for each of the banks.
This causes the banks to immediately request a PRECHARGEOW & open, otherwise request
a NOP. Thdorce_close signal effectively acts liketall once all banks have precharged.

Once all banks are in the precharged state, a REFRESHcommand is requested. If the
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Figure 2-6: Chip master FSM states.

self_refresh signal is high, then CKE is brought low at the same time the REFH ALL command
is issued, causing the DRAM to enter the self refresh powendoode. Ifself_refresh is low, then
force_close is brought back low, allowing the banks to resume normal aipe.

If the DRAM is in self refresh powerdown mode aséf_refresh is brought back high, then
after the appropriate resynchronization time has elagbedorce_close signals are brought back

low, allowing the banks to resume normal operation.

Precharge and Active Powerdown

When theactive_powerdown signal is brought high, the chip master brirggall high for each of
the banks, preventing them from issuing more commands.ett tringsCKE low, causing the
DRAM to enter powerdown mode. If all banks were in the pregbdrstate, then the DRAM is in
precharge powerdown mode, otherwise it is in active powendo

When theprecharge_powerdown signal is brought high, the Master FSM brinfysce close
high for each of the banks. Once all the banks are prechafgeH,is brought low, entering

precharge powerdown mode.
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There are two powerdown exit conditions. If b@iecharge_powerdown andactive_powerdown
are brought low, the@KE is brought high, and after the resynchronization time hapssdstall
is brought low allowing banks to resume normal operationvétdown is also exited if a refresh

is requested, in which case after the resynchronizatioe kies elapsed, the refresh cycle begins.

2.1.4 Design Extensions

Several extensions to the DDR controller design have bedadaspecifically for debugging and
power measurement purposes. These modifications are ddsmhe modular and easily removed

when the ddrcontroller is not used for DRAM-specific tests.

Active Powerdown Bank State

DDR2 DRAM does not have distinct commands for precharge pdoven and active powerdown.
Rather, the powerdown state entered is based on the cuarktstate. Under normal operation,
the precharge powerdown signal causes all the banks to be precharged and then esitgapow-
erdown, while theactive_powerdown signal simply initiates a powerdown without looking at the
bank states. If the banks are all precharged wémtive_powerdown goes high, the DRAM will
enter the precharge powerdown state rather than the activerdown state.

For the purposes of power state measurement, the activergowe state has two hard-coded
4-bit flags. The ACTIVEBANKS_OPEN flag specifies which banks must be opened before enter-
ing active powerdown, while ACTIVEBANKS_CLOSED specifies which banks must be closed.
When combined with théorce_open andforce_close signals, the exact state of the banks can be set

before entering active powerdown.

Master Command Pattern

Certain specific command patterns are impossible to gensiraply by issuing read/write requests
to the ddrcontroller. To generate these patterns, an extra set @sstafadded to the chip master
FSM. The controller switches to these states at the end dfesrecycle if thedebug_in[ 0] signal

is high.
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The first state initializes the bank states. The next 8 st@atele continuously issuing com-
mands. By setting thstall signal, the banks are prevented from issuing commandshbutaiso
do not update their own states based on the commands issuib@ lohip master. None of the
issued commands are subject to timing constraints, hovteeenumber of cycles between each
state transition can be set to avoid conflicts. This commaubkds exited whenever a refresh is

needed, and resumes at the end of the refresh cycle dethug_in[0] signal is still high.

Refresh Stall

Approximately every 7us, the refresh counter expires aedctiip master enters a refresh cycle
which precharges all the banks, issues a REFRBEH command, and resets the counter. If the
debug_in[ 1] signal is high, then the chip master will issue a NOP instdaal REFRESHALL
when in a refresh cycle, effectively disabling refresh.sdif refresh is brought high whilede-
bug_in[1] is high, then the chip will enter precharge powerdown irgtefself refresh, and will

not periodically exit for a refresh cycle.

2.2 SCALE DRAM Subsystem Design

The SCALE DRAM Subsystem is a flexible energy-aware memosyesy designed to interface
with the SCALE cache. The design, analysis, and evaluatidhi® system is the subject of the
Pharris thesis[3], and will not be covered in detail here.

Due to limitations of hardware, many features of the SCALEADRSubsystem are not ac-
tually implemented. This section gives a quick overview e fictual system which has been

implemented and tested in hardware.

2.2.1 SIP Interface

The DRAM subsystem interfaces with the SCALE cache via thieiBterface, and controls four
256Mbit DDR2 DRAM chips. SIP consists of two 40-bit wide uméttional channels. SIP trans-

actions have 3-bit opcodes, 32-bit addresses, and 5-Bitaagvell as between 1 and 8 data words.
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Figure 2-7: SCALE DRAM Subsystem block diagram[3].

2.2.2 Organization
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tion, and work is in progress to support 4-word half-lineuests.

SIP. All of these stages run at half the DRAM clock rate.

The SIP protocol supports byte, half-word, single word, &wlord cache line read and write

requests. Only single word and 8-word line requests have tested in the physical implementa-

The DRAM Subsystem is organized into several fully pipdalirstages which translate a SIP re-

guest into a series of DRAM requests, collect the resulis cartput the appropriate response over

Request Dispatcher Accepts requests from SIP and generates the appropriateaods to be
passed to each Channel. The Address Translator modulenhthRequest Dispatcher determines

how SIP memory addresses map to the physical chip/bankdotuwhn addresses.




Channel Accepts memory requests from the Request Dispatcher aferdoéad and write data
to/from the DDR2 DRAM. There is one daontroller module per Channel, responsible for ac-
tually interfacing with the DRAM chip. The Channel should@lbbe responsible for scheduling
powerdown transitions for the dabontroller, as well as intelligently reordering incomiregjuests,

however both those features are not yet implemented.

Master Request Buffer Keeps track of requests in progress, and notifies the CoathRequest

Manager once all parts of a request have completed.

Completed Request Manager Assembles responses to completed requests and sends them ou
over SIP. For store requests, the Completed Request majusgesends an acknowledgement
with the corresponding tag. For load requests, the Conmpleeguest Manager reads the data
out of the Load Buffer of each Channel and rearranges thewrdiog to the Address Translator

configuration.

2.3 Implementation Notes

The design presented in the previous two sections représeriinal working versions tested in
hardware and used for the power analysis in the next chaptes. original designs came from
Pharris’s thesis[3], however some parts were modified ahdretcompletely redone in order to

create a working hardware implementation.

2.3.1 DDR2 DRAM Controller Notes
Request Stage

The original ddrcontroller module was designed to run at 200MHz and issuentamas every
cycle. It accomplished this by having four simple bank stagehines that converted requests into

commands, a fixed-order arbiter, and a pipelined execuge stAfter adding a stall signal and
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refresh cycle handling, this design worked for isolated mgnmequests, however it simply could
not enforce bus timing constraints, making bank interlegwmnpossible.

In order to support full bank interleaving with arbitraryning constraints, the ddrontroller
request stage had to be completely redesigned. While thelasign correctly issues commands
from multiple banks, the logic is too slow to run at the full BR clock rate. A quick simulation
benchmark of random fully interleaved read/write requektsy only a 20% performance penalty
when issuing commands every other cycle, mainly becausecomsnand sequences already have

at least 2 cycle timing constraints spacing them out.

Execute Pipeline

The execute pipeline timing was derived from trial and erfdre initial controller design assumed
the delay between the FPGA 1/O registers and the DRAM |/Odrafivas insignificant due to the
short traces, however the majority of the delay turned obete the FPGA 1/O pads themselves,
and combined with the wire and DRAM buffer delays, accoumbeclimost half a clock cycle. A

4ns wire delay was used to make simulation match the actudhaae behavior.

DDR 10B

The hardest part of the system was latching read data in fren"DRAM clock domain to the
FPGA clock domain. The DDR input registers in each 10B spIX2R input line into two signals
that are maintained for a full cycle before getting overterit These signals transition based on
the data strobe, and need to be latched into the FPGA cloclkitdmefore they can be processed.
At first, the registers that latch data from the DDR input s&gi were manually placed and routed
to meet timing constraints, however with modifications t® ¥2 ddr4.iob_8 module and carefully
selected timing constraints, later iterations of the dointroller module did not require any manual
place and route modifications.

Interestingly, while the request stage logic is the slov@gic in the controller, performance
is actually constrained by the DDR I/O configuration. Spealfy, each data strobe input must be

routed to eight DDR input registers using local routing teses on the FPGA. The skew in the
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data strobe signal across multiple inputs worked out to gl.&long with a delay of 1ns from the
input pad in the worst case across all four controllers. Asag the data strobe and data arrived
at the same time on the FPGA pads, the delay and skew addedebyahFPGA routing make
135MHz a practical limit for four controllers in the currdmbard without fully manual place and

route.

2.3.2 SCALE DRAM Subsystem Notes

Once the ddicontroller module was functioning correctly, the rest & DRAM subsystem pretty
much worked with minimal changes from the original versiBren with the most straightforward
policies, the DRAM Subsystem still was a large piece of lpgising up most of the FPGA re-
sources. Since the only off-chip testing interface is AHiBst of the tests had to be implemented
entirely in the FPGA, and occasionally ran into size and dpesies. The DRAM subsystem also
used all four chips, adding some extra place and route ctsmthat were not present when only

one controller was used at a time.
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Chapter 3

DDR2 DRAM Properties

This section measures various parameters of the 256Mbit DDRAM chips installed on the
DRAM board. Unless noted otherwise, all measurements &emtaith 125MHz DRAM clock,
1.8V supply voltage, 32C package temperature, 7us refresh cycle, on-die terramatabled,
and chip select active on all idle cycles. It is important tdenthat datasheet values are provided
based on a 200MHz clock, H®).1V supply voltage, up to 85C package temperature, on-die

termination disabled, and chip select disabled on all igitdes.

3.1 Power Measurements

The power measurements on the following section are tal®en the Tester Baseboard. There
are two independent 1.8V power supplies with manually cafdsl current sensors hooked up to
500kHz ADCs. Each power supply powers two DDR2 DRAM chips.

3.1.1 Methodology

Because the current sensor sampling rate is significanilgridhan the DDR2 DRAM operating
frequency, each test consists of a tightly looping commatiebpn which gets averaged into a single
current reading. Each test is run three times - once with tloths executing it, and once with each

of the two chips idling. For each run, 20 sequential measargsmare taken. The reported average
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Pattern Measured Current (mA) | Standard Deviation (mA) | Cycles Per Pattern
idle 179.9 15 N/A
wO0-w0-w0-w0-w0-w0-w0-w0 266.0 2.1 16
r0-r0-r0-r0-r0-r0-rO-rO 191.3 2.2 16
r0-w0-r0-w0-r0-w0-r0-w0 2145 1.6 80
wO-w1l-w2-w3-w0-wl-w2-w3 286.9 1.9 16
r0-r1-r2-r3-rO-r1-r2-r3 194.7 1.7 16
r0-wl-r2-w3-r1-w0-r3-w2 224.0 1.6 16

Table 3.1: Read/Write current measurements.

Pattern Measured Current (mA) | Standard Deviation (mA) | Cycles Per Pattern
idle - all banks precharged 179.9 15 N/A
idle - all banks active 181.0 17 N/A
p0-a0-p0-a0-p0-a0-p0-a0 206.1 15 40
p0-pl-p2-p3-a0-al-a2-a3 234.3 1.6 16
p0-al-p2-a3-pl-a0-p3-a2 232.4 1.6 16

Table 3.2: Precharge/Active current measurements.

and standard deviation values represent the current aermagross both chips on all runs of a

given test assuming one chip is executing the test and tlee @tidling.

3.1.2 Active Operation Current

Each tested command pattern consists of a fixed ratio ofeatdiidle commands. Assuming that
idle current does not change and ignoring the effects ofnaldRAM state transitions and refresh
cycles, the current draw for a single cycle of a command castebermined.

Because precharges and actives must always occur in a fikeéna generally within an in-
terval smaller than the current sampling period, it is nagilale to distinguish the two commands.
The reported current is the average current of a prechaxde agd an active cycle.

The measured current values for each pattern are listedbiled8.1, 3.2, and 3.3. Based on
these patterns, estimates for each cycle of a given comnsagaldulated in Table 3.4 along with
the corresponding datasheet values.

Of the values calculated, both burst and interleaved rea@mis are significantly lower than

Pattern Measured Current (mA) | Standard Deviation (mA) | Cycles Per Pattern
idle 179.9 15 N/A
rp0-a0-rp0-a0-rp0-a0-rp0-a0 207.3 1.7 40
wp0-a0-wp0-a0-wp0-a0-wpO-a 221.6 1.9 48
rp0-rpl-rp2-rp3-a0-al-a2-a3 226.0 15 16
wpO0-wpl-wp2-wp3-a0-al-a2-ai 280.9 2.5 16

Table 3.3: ReadAP/WriteAP/Active current measurements.

36



Command Measured Current Delta (mA) | Datasheet Current Delta (mA)
Idle 0 0
Burst Write 86 95
Interleaved Write 106
Burst Read 11 85
Interleaved Read 15 200
Precharge/Active 107 45
ReadAP/Active 46 55
WriteAP/Active 101
Refresh 200

Table 3.4: Active command current measurements.

Chip State Measured Current Delta (mA) | Datasheet Current Delta (mA)
Idle (chip select disabled) 0 0
Active Powerdown (Fast Exit) -64 -10
Active Powerdown (Slow Exit) -69 -24
Precharge Powerdown -72 -25
Self Refresh -76 -25

Table 3.5: Powerdown current measurements.

the datasheet values, while precharge and active are smmtiff higher. The low value for read

current can be attributed to the point-to-point connechetween the FPGA and the DRAM re-

sulting in very little drive current required compared te thatasheet referencef2dutput load. It

is worth noting that there is much less of a difference betwaterleaved read current and burst

read current than the datasheet values.

3.1.3 Powerdown Current

The powerdown tests are similar to the active command stept instead of running a command
pattern, the chip transitions to a powerdown state. A sumimithe difference in current between
the idle with chip select disabled state and the various pdeven states can be found in Table 3.5.
For each power state, we also measure the sensitivity t& élequency in Figure 3-1 and supply
voltage in Figure 3-2.

From the powerdown measurements, two results stand owt, e idling current measured
is significantly higher than the datasheet spec. The datasherent deltas are based on a 30 mA
per chip idle current with chip select disabled. In our tgslie current works out to at least 76 mA
per chip, with no measurable difference between idling wiilp select active and disabled. The
second interesting result is that there is much less of ardifice between active powerdown fast

exit and active powerdown slow exit than the datasheet slairhe relative values of these results
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Figure 3-1: Powerdown current for varying clock, 1.8V.

do not appear to depend on either clock frequency or suppisige.

3.2 Refresh Interval

The refresh interval test profiles the refresh charactesisf a single 256Mbit DDR2 DRAM chip.

According to the datasheet, a refresh command must be ieseeg 7.8125us, and refreshes one
row per bank, thus each row requires a refresh every 64ms t&hi looks at both the rate and
distribution of data corruption when the rows are not rdfegs Since data corruption is a result
of charge leaking from the DRAM cells, and leakage is strpiegkrelated with temperature, tests

are performed for two different chip package temperatures.

3.2.1 Methodology

Two different fixed byte patterns are loaded into every waldrass in banks 0 and 1, for a total of
16MB of data. Refresh stall pin is then brought high for a ggeocumber of seconds. After this

delay, refresh stall is brought back low, allowing the coldr to resume normal refresh while the
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Figure 3-2: Powerdown current for 125MHz, varying Vdd.

Parameter Number of words
Total tested 4194304
Per run failed average 98117 (2.34%)
Per run failed standard deviatioh 3099
Failed 1 or more runs 284073 (6.77%)
Failed 5 or more runs 110130 (2.62%)

Table 3.6: Detailed failure statistics for 160s interval.

values are read out sequentially and compared to the pattern

3.2.2 Refresh Block Results

Figure 3-3 shows the data corruption rate as a function ofdfresh delay for both tested tem-
peratures. As expected, there is a crude exponentialaesdtip between refresh delay and bit
corruption rate.

The word address of each corrupted word was recorded forriOwith a 160s refresh delay
at 32, and the results are summarized in Table 3.6. Of the rowddiiat at least 1 run, Figure

3-4 shows the failure consistency.

Each run uses one of two data patterns with alternating Bissuming a word fails due to a
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Figure 3-4: Distribution of failed rows across 160s refrdshay runs.

single faulty bit that consistently corrupts one of the tvasgible values which can be stored on it,
each word is expected to fail on half the trials. As shown guir¢ 3-4, the bulk of the failed rows
failed 4 or 5 of the trials, with more random failure distrilauin accounting for the large number of

only 1 trial failures.

3.3 Error Analysis

There are several possible error sources in the test setogt. dfithem would affect only the actual

measured current value, not the relative value compareth&y tests on the same chip.

Calibration Each current sensor was manually calibrated with the assomtpat the raw value
returned is linearly proportional to the actual measuredecit. Raw values from a 3@Bresistor,

a 22.7) resistor, and an open-circuit were used to calculate afliedtset and ratio at the 1.8V
power setting. Current through a 12.@esistor was then measured and found to be within 2mA of

the expected value.
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Refresh The command patterns can be interrupted for a refresh cywe every 7.5us. These
refresh cycles, which last around 380ns, will obviouslyéawifferent power consumption value
from the pattern. Since the cycles occupy around 5% of thentamal bus time, and less than 25%

of a single sample time, the effect should be negligible.

DRAM Chip State The current parameters given in the DDR2 DRAM datasheetaligidual
samples for a single command, while the measurements takdoramultiple complete patterns
which are averaged together. Energy-consuming stateiticarssthat occur in the DRAM chip
become part of the measured current, even if they did notraming the cycle the command was
issued or active.

One example of this is the write-recovery process when &ivitcfrom a burst write to a burst
read. Based on the values calculated in Table 3.4, an 8@-c@ealO-rO-w0-r0-w0-r0-w0 pattern
should take 190 mA, but it is measured as taking 215 mA.
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Chapter 4

Policy Evaluation

In his thesis, Pharris[3] explored a number of differentrapiag policies for the SCALE DRAM
Subsystem using a software simulator and power consumptres from the Micron DDR2
DRAM datasheet. Since then, significant changes have beda to#éhe underlying DDR2 DRAM
controller design as well as parts of the DRAM Subsystemdeoto function in hardware. These
changes make the software DRAM Subsystem model no longercamade representation of the
performance of the actual SCALE DRAM Subsystem, howeveku®im progress to update the

model.

In this section, we will look at some of the important poli@tate conclusions drawn from the
old software model and discuss how they may be affected dythetnew system design as well

as updated power consumption estimates.

4.1 Address Policy

The address translator module within the Request DispaiEhesponsible for mapping 32-bit SIP
addresses to chip, bank, row, and column addresses. Wrheatisglan address mapping policy,

performance and power tradeoffs can vary greatly deperatirtfe actual workload.
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Bank Mapping Enabled Bank Mapping Disabled
4 Chip Striping row:bank:col:chip bank:row:col:chip
2 Chip Striping chip[1]:row:bank:col:chip[0] | chip[1]:bank:row:col:chip[0]
No Chip Striping chip:row:bank:col chip:bank:row:col

Table 4.1: Example address translator policies

4.1.1 Maximizing Performance

For the majority of the benchmarks, an address policy whigpexl 8-word cache line requests
across all four chips and mapped rows across banks resnlted highest performance.

By striping requests across all four chips, the effectivenoly bandwidth is a little less than
twice the SIP bandwidth, so the memory system is capabletofatang its interface to the pro-
cessor. With striping across only two chips, the peak badtwis equal to SIP bandwidth, but
precharge/active and refresh overhead makes it slighg; I&he downside to striping is that all
four chips must be active for each cache line request, sorlydime a chip may powerdown is if
there are no requests coming from the processor.

Because each bank may have an open row, striping rows a@oks,lalso known as bank map-
ping, allows four times as many rows to be open per chip, lowgehe number of precharge/actives
required for local access patterns. There are very few aasese bank mapping decreases per-
formance, and the measured power values show that both theeruwf open banks and bank

interleaving have little effect on power consumption.

4.1.2 Minimizing Power

The minimum power address policy depends much more on waakénd powerdown policy.
Every workload exhibits a certain locality over a given pdrof time. The general chip striping
policy should be to stripe cache line requests across thamam number of chips such that the
total address space exceeds the workload locality for atidaran the order of the powerdown
threshold. Because powerdown is applied to a whole chippisty across fewer chips increases
the chance that a given chip will be idle long enough to powerd If a certain number of chips
must remain active, then it is best to maximize performasitee the faster requests are handled,

the sooner the next powerdown opportunity will arrive.
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Command Type | Precharge/Active Break Even Point
Idle 100
Write 5
Read 26

Table 4.2: Bank interleaving power compared to prechacgjgéapower

Once again, bank mapping is a good idea for minimizing powesx@l. Though it increases
the number of open rows, unless requests are local enoughatithin a single row, more power
is saved by avoiding the extra precharge/active cycles ihapent keeping the rows open. The
values in Table 4.2 show how many cycles of each request tyst be addressed to the same
row before more energy is saved by not having bank intertbageesses than is spent by the extra

precharge/active cycle to switch rows.

4.2 Powerdown Policy

Both Delaluz et al[2] and Pharris[3] found that in a systerthve shallow powerdown state and
a deep powerdown state, the most effective policy was tcsitian to the shallow state as soon
as possible, and then use a threshold value to determine wheansition to the deep power-
down state. These findings were based on the assumptiorhthdeep powerdown state offers
significant power savings over the shallow powerdown stdiigevalso having significantly higher
resynchronization time. Because DDR2 DRAM has more tharpveerdown states, a state must

be chosen for each role.

4.2.1 Shallow Powerdown State

The main characteristic of a shallow powerdown state isrfgpailow resynchronization time while
offering some amount of power savings over the idle state.tfitee possible shallow power states
are active powerdown fast exit, active powerdown slow exit] precharge powerdown.

For the purposes of power consumption, active powerdovwm siat requires 4 extra cycles of
idle power consumption, but gains lower consumption dugaotive powerdown when compared

to fast exit. Assuming idle current is 76mA (the minimum pbksvalue observed), any active
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powerdown duration longer than 15 cycles will consume lesggp with slow exit than with fast
exit. Of course fast exit will have better benchmark perfance than slow exit, however that is
much more workload dependent.

Precharge powerdown has lower power consumption tharegmbwerdown slow exit, but oc-
casionally will precharge a row that needs to be activatethemext access. As long as these
accidental precharges happen less often than once eveggcl@8 of powerdown, precharge pow-

erdown will consume less power, though again with a certaifiopmance penalty.

4.2.2 Deep Powerdown State

A deep powerdown state is supposed to offer significant temlua power consumption at the
expense of a long resynchronization time. The only two stttat could qualify for a deep pow-
erdown state are precharge powerdown and self refresh. k§hanthe 200 cycle self refresh
resynchronization time, a the chip will have had to be in deewerdown for longer than 3600
cycles before self refresh consumes less power than pgeepawerdown.

While it is not entirely unreasonable for DRAM to be in a deepvprdown state for much
longer than 3600 cycles, in most cases the higher level mysté&nowingly going to sleep, and
can explicitly request a transition to self refresh insteadavaiting for a powerdown policy to
switch. One of the major benefits of self refresh mode is t@DRAM controller does not need
to maintain any state about the DRAM chip, other than thetfsat it is in the self refresh state.
Powerdown policies that include the self refresh state lshHook at the impact of powering down

the controller as well as the DRAM during the deep powerdoiates

4.3 Refresh Policy

For extended powerdown periods, the bulk of DRAM power camstion goes into the periodic
refresh cycles needed to maintain data integrity. Accgrdinthe DDR2 DRAM datasheet, self
refresh mode a refresh cycle occurs every 7.8125us and m@ss200 mA of current.

As discussed earlier, refreshes are required becausecalyadually leaks out of storage cells,

46



causing them to lose the stored value. A combination of kofilomg, error correcting codes,
and temperature dependent refresh intervals could allothedupower savings by decreasing the

frequency of refresh commands.

4.3.1 Bit Profiling

Based on the error distribution in Figure 3-4, more than dathe word errors come from words
that are consistently failing for a given refresh delay. lgiag the usable address space to work
around these spots is a quick way to decrease the data gorrugte when operating on a longer
refresh cycle.

While it is possible to design and implement a hardware addreapper that handles bad
memory areas, it might be a better idea to leave this taskgbehilevel software. The Linux
kernel already has a patch that lets it avoid using known bachony spaces. An application-
specific kernel could partition the memory into long-terrarage and short-term scratch areas,
and assign the less robust memory spaces to the short-termhere they will be refreshed more

frequently.

4.3.2 Error Correcting Codes

Standard ECC SDRAM modules use an extra 8 bits per 64 bitstaftdastore error correcting
code. These configurations can correct single-bit errodsdetect some multi-bit errors. If the
data corruption rate is sufficiently low within a DRAM chiprganizing the data internally in an
ECC configuration could compensate for errors caused byelomgresh intervals.

For every 8 words read, one refresh cycle must be skippedveomaver. For every 8 words
written, two refresh cycles must be skipped. A balanced lold6MB data read and 16MB
written will require at least one refresh delay longer th@rBlseconds to save power. Based on
the corruption rates measured for the 20 second refresi, de¢astandard ECC scheme combined
with bit profiling to identify any known bad areas should fégua quite reliable system for long-

term low duty cycle DRAM storage.
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4.3.3 Temperature Based Refresh

One of the power-saving features of mobile SDRAM is a spetiatle known as Temperature
Compensated Self Refresh. Essentially the refresh iftdorang self-refresh mode is adjusted
based on the ambient temperature. The 7.8125us refresiahtpioted in the DDR2 DRAM
datasheet assumes the DRAM is operating at its maximum texupe of 85 C.

As shown in Figure 3-3, there is about an order of magnitutferdince in bit corruption rate
between operating at 3Z and 48 C. Assuming this relationship holds for the entire tempeat
range, it should be possible to set the refresh delay to 3r8$at 32 C and not experience any

data corruption.
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Chapter 5

Conclusion

In addition to providing a functional hardware implemeiatof the SCALE DRAM Subsystem,
this thesis demonstrates that worst case specificationfseapeently less than ideal for common
case optimizations. Though we are unable to use the new DOF¥EMDpower figures to simulate
and evaluate policies on actual SCALE DRAM Subsystem waitksp we identify several unusual

results which would require closer examination.

As far as powerdown states are concerned, active powerdasinekit should be reserved
for systems where power savings is an afterthought and npeafuce is the main driver. Active
powerdown slow exit should be reevaluated against preehpogverdown, since it actually is
quite a bit closer in power consumption, and has the additibenefits of avoiding accidental
precharges. The self refresh powerdown state is ratherciimexby itself, but coupling it with
a memory controller that can also power down could resultgniBcant power savings for deep

sleep modes.

On the refresh side, the datasheet refresh requiremenéximesnely conservative. Of course
considering the primary purpose of memory is to store infdram without error, this is is normal,
but significantly more aggressive refresh settings coupiéul bit profiling and ECC data storage

could result in a lower power memory for low duty cycle apations.
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5.1 Future Work

5.1.1 DRAM Controller

The current DRAM controller design is optimal for the hardevét is running on, but should
be redesigned if moved to an FPGA that is significantly fasttative to the DRAM operating
frequency in order to ship the performance bottleneck batkamthe DRAM.

The current DRAM controller can only issue a command evengiotycle because the hazard
checking, arbitration, and update stages are relatively.sCertain commands such as precharges
have many fewer timing constraints, and might be able toestgpien opportunistically on the idle

cycles.

5.1.2 SCALE DRAM Subsystem

The current implementation of the SCALE DRAM Subsystem hasect chip striped address
map, no powerdown state support, and no ability to reordprasts. While these functions were
designed and evaluated in the software simulator, implémgthem in hardware could highlight

FPGA-specific design issues that were not present in thevaadtmodel.
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