
Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

1

Cache Refill/Access Decoupling
for Vector Machines

Christopher Batten, Ronny Krashinsky,
Steve Gerding, Krste Asanović

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

December 8, 2004

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

2

Cache Refill/Access Decoupling
for Vector Machines

• Intuition
– Motivation and Background
– Cache Refill/Access Decoupling
– Vector Segment Memory Accesses

• Evaluation
– The SCALE Vector-Thread Processor
– Selected Results

My talk will have two primary parts. First, I will give some motivation and
background before discussing the two key techniques that we are proposing in
this work. Namely, cache refill/access decoupling and vector segment memory
accesses. In the second part of the talk, I will briefly evaluate a specific
implementation of these ideas within the context of the SCALE vector-thread
processor.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

3

Applications with Ample
Memory Access Parallelism

Turning access parallelism
into performance is challenging

Processor Architecture

Modern High Bandwidth
Memory Systems

I would like to begin with two key observations.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

4

Applications with Ample
Memory Access Parallelism

Turning access parallelism
into performance is challenging

Processor Architecture

Modern High Bandwidth
Memory Systems

Target application domain
– Streaming
– Embedded
– Media
– Graphics
– Scientific

The first is that many applications have ample memory access parallelism and
by this I simply mean that they have many independent memory accesses. This
is especially true in many streaming, embedded, media, graphics, and scientific
applications.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

5

Applications with Ample
Memory Access Parallelism

Turning access parallelism
into performance is challenging

Processor Architecture

Modern High Bandwidth
Memory Systems

Techniques for high
bandwidth memory systems
– DDR interfaces
– Interleaved banks
– Extensive pipelining

Target application domain
– Streaming
– Embedded
– Media
– Graphics
– Scientific

The second observation is that modern memory systems have relatively large
bandwidths due to several reasons including high speed DDR interfaces,
numerous interleaved banks, and extensive pipelining.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

6

Processor Architecture

Applications with Ample
Memory Access Parallelism

Turning access parallelism
into performance is challenging

Modern High Bandwidth
Memory Systems

Many architectures
have difficulty
turning memory
access parallelism
into performance
since they are
unable to fully
saturate their
memory systems

Ideally, an architecture should be able to turn this memory access parallelism
into performance by issuing many overlapping memory requests which saturate
the memory system. Unfortunately, there are two significant challenges which
make it difficult for modern architectures to achieve this goal.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

7

Applications with Ample
Memory Access Parallelism

Turning access parallelism
into performance is challenging

Processor Architecture

Modern High Bandwidth
Memory Systems

Memory access
parallelism is poorly
encoded in a scalar ISA

Supporting many
in-flight accesses is
very expensive

The first is at the application/processor interface – scalar ISAs poorly encode
memory access parallelism making it difficult for architectures to exploit this
parallelism. The second challenge is at the processor/memory system interface
since supporting many accesses in-flight in the memory system is very
expensive.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

8

Applications with Ample
Memory Access Parallelism

Turning access parallelism
into performance is challenging

Vector Architecture

Modern High Bandwidth
Memory Systems

Supporting many
in-flight accesses is
very expensive

Our group is specifically interested in vector architectures. Vector architectures
are nice since vector memory instructions better encode memory access
parallelism, but even vector architectures require a great deal of hardware to
track many in-flight accesses

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

9

Applications with Ample
Memory Access Parallelism

Turning access parallelism
into performance is challenging

Vector Architecture

Non-Blocking Data Cache

Modern High Bandwidth
Main Memory

A data cache helps
reduce off-chip
bandwidth costs at the
expense of additional
on-chip hardware

Furthermore, modern vector machines often include non-blocking data caches
to exploit reuse and reduce expensive off-chip bandwidth requirements.
Unfortunately, these non-blocking caches have several resources which scale
with the number of in-flight accesses and this increases the cost for applications
which do not fit in cache or have a significant number of compulsory misses. To
get a better feel for these hardware costs we first examine how many in-flight
accesses are required to saturate modern memory systems.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

10

Each in-flight access
has an associated hardware cost

Processor Cache Memory

100 Cycle
Memory
Latency

Cache Refill

Primary Miss

This is a timeline of requests and responses between the processor and the
cache and between the cache and main memory. Each tick represents one
cycle, and we assume that the processor to cache bandwidth is two elements
per cycle while the cache to main memory bandwidth is one element per cycle.
The blue arrow indicates a processor load request for a single element. For this
example, we assume the processor is accessing consecutive elements in
memory and that these elements are not allocated in the cache.

Thus the load request misses in the cache and causes a cache refill request to
be issued to main memory. Some time later, main memory returns the load
data as well as the rest of the cache line. We assume that the cache line is four
elements. The cache then writes the returned element into the appropriate
processor register.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

11

Each in-flight access
has an associated hardware cost

Processor Cache Memory

100 Cycle
Memory
Latency

Cache Refill

Primary Miss

Reserved Element
Data Buffering

Access
Management State

Each in-flight access requires two pieces of hardware. The first is some
reserved element data buffering in the processor. This is some storage that the
processor sets aside so that the memory system has a place to write data when
it returns. We need this because we are assuming that the memory system
cannot be stalled, which is a reasonable assumption with today’s heavily
pipelined memory systems. The second component of the hardware cost is its
access management state – this is information stored by the cache about each
in-flight element. For example, it includes the target register specifier so that
the cache knows into which register to writeback. It is important to note that
the lifetime of these resources is approximately equal to the memory latency.

Obviously, the processor cannot wait 100 cycles to issue the next load request
if we hope to saturate the memory system …

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

12

1 element

cycle
100 cycles

100 in-flight elements

Main Memory
Bandwidth-Delay Product

Saturating modern memory systems
requires many in-flight accesses

Processor Cache Memory

100 Cycle
Memory
Latency

Cache Refill

Secondary Miss

Primary Miss

Thus on the cycle after the first request, the processor should make another
request for the second element in the array. This request will also miss in the
cache, but it is to the same cache line as the first request – and that cache line
is already in flight. Thus we do not need to send a new refill request to main
memory. The first miss to a given cacheline is known as a primary miss (show
here in blue), while additional misses to a cache line which is already in-flight
are known as secondary misses (shown here in red). The processor will
continue to issue secondary misses until it gets to the next cache line and thus
the next primary miss.

So to saturate the main memory bandwidth of one element per cycle we must
support one hundred in-flight elements … this means the processor must have
100 elements worth of reserved element buffering and the cache must have
100 elements worth of access management state. In other words, the hardware
costs are proportional to the bandwidth-delay product of main memory.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

13

2 elements

cycle
100 cycles

200 in-flight elements

Effective
Bandwidth-Delay Product

Caches increase the
effective bandwidth-delay product

Processor Cache Memory

100 Cycle
Memory
Latency

Cache Refill

Secondary Miss

Primary Miss

Now lets see what happens if we include reuse. Assume that the processor is
loading each element in the array twice and is issuing two requests per cycle to
match the cache bandwidth. You would think that this is a good thing since we
should be able to exploit the reuse to amplify our memory system bandwidth.
While this is true, since these requests are misses, it means that the processor
and cache must track twice as many secondary misses before the processor can
get to the next primary miss. Thus the processor must have twice as much
reserved element data buffering and the cache must have twice as much access
management state. In other words, with reuse the hardware cost can be
proportional to the effective bandwidth delay product: the cache bandwidth
times the access latency in cycles. Modern vector memory systems have large
and growing effective bandwidth delay products and thus require expensive
non-blocking caches. This brings us to the goal for this work …

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

14

Goal For This Work

Reduce the hardware cost
of non-blocking caches in vector

machines while still turning
access parallelism into performance

by saturating the memory system

The goal is to reduce the hardware cost of non-blocking caches in vector
machines while still turning access parallelism into performance by saturating
the memory system.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

15

In a basic vector machine a single vector
instruction operates on a vector of data

Control
Processor FU

Memory System

Memory
Unit

vr0
vr1
vr2

FU FU FU

Vector Processor

I am going to begin with a very brief refresher of how a basic vector machine
works. A vector machine includes a parallel array of functional units, a vector
memory unit, and a vector register file. The control processor is in charge of
these units and issues commands instructing them what to do.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

16

In a basic vector machine a single vector
instruction operates on a vector of data

Control
Processor FU

Memory System

Memory
Unit

vr0
vr1
vr2

Vector Processor

FU FU FU

vlw vr2, r1

Let’s consider a simple example. The control processor issues a vector load
word command to the vector memory unit, which then loads a vector of data
into vector register two.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

17

In a basic vector machine a single vector
instruction operates on a vector of data

Control
Processor FU

Memory System

Memory
Unit

vr0
vr1
vr2

FU FU FU

Vector Processorvadd vr0, vr1, vr2

The control processor might then issue a vector add command to the functional
units which perform the add and write the result into vector register zero.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

18

In a basic vector machine a single vector
instruction operates on a vector of data

Control
Processor FU

Memory System

Memory
Unit

vr0
vr1
vr2

FU FU FU

Vector Processorvsw vr0, r2

Finally, the control processor issues a vector store word command to the
memory unit which moves the data from vector register zero into the memory
system. Modern vector machines often include some decoupling between these
units as an inexpensive way to tolerate various system latencies.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

19

In a decoupled vector machine the
vector units are connected by queues

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU-CmdQ

VSU-
CmdQ

VLU-
CmdQ

VLDQ

VSDQ

Memory System

This is a figure of a basic decoupled vector machine and is similar to the
previous figure, except that the units are connected by decoupling queues.
Additionally, the parallel functional units have been grouped into a vector
execution unit, and the memory unit has been divided into a separate vector
load unit and vector store unit.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

20

Non-blocking caches require extra
state to manage outstanding misses

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU-CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

As I mentioned earlier, modern vector machines often include non-blocking
data caches to act as bandwidth amplifiers. Shown here is a basic non-blocking
cache. In addition to the standard tag and data arrays, the cache includes extra
state to track in-flight accesses. This states is located in the miss status
handling registers and is composed of two structures: a set of miss tags and
one replay queue per miss tag. The function of these structures will become
clear as we go through an example.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

21

Control processor issues a
vector load command to vector units

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

Our example will follow a vector load command through the system. The control
processor begins by sending the address portion of the command to the vector
load unit and the register writeback portion to the vector execution unit.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

22

Vector load unit reserves storage
in the vector load data queue

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

The vector load unit then breaks up the long vector accesses into smaller
memory requests. For each request, the vector load unit first allocates a slot in
the vector load data queue or VLDQ and then issues this request to the memory
system.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

23

If request is a hit,
then data is written into the VLDQ

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

HIT

If the request is a hit, then the cache immediately writes the data into the
appropriate VLDQ slot.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

24

VEU executes writeback command to
move data into architectural register

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

HIT

The vector execution unit executes the writeback command and moves the data
from the VLDQ into an architecturally visible vector register.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

25

On a primary miss, cache allocates
a new miss tag and replay queue entry

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

MISS

Replay Queue Entries

• Target register specifier
• Cache line offset
• Other management state

Now lets examine what happens if the VLU request misses in the cache. The
cache is then going to allocate a new miss tag and replay queue entry. There is
one miss tag for each cache line which is in-flight, and the miss tag simply
contains the address of that in-flight cache line. There is one replay queue entry
for each pending access. The entry contains various management state
including the target register specifier and the cache line offset for the access.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

26

On a primary miss, cache allocates
a new miss tag and replay queue entry

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

MISS
RE-
FILL

Once the cache has allocated a miss tag and replay queue entry, the cache
issues a refill request to main memory.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

27

On a secondary miss, cache just
allocates a new replay queue entry

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

RE-
FILLMISS

While the refill is in-flight the cache can continue to issue more requests some
of which may be secondary misses. These misses are to a cache line which is
already in-flight, and therefore they need only be allocated replay queue
entries.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

28

Processor is free to continue issuing
requests which may hit in the cache

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

HIT

MISS

RE-
FILL

The processor can also get hits to a different cache line while the refill is still in-
flight. The VLDQ acts as a small memory reorder buffer since the memory
system can write the VLDQ out of order, but the vector execution unit pops
data off the VLDQ in order.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

29

When the refill returns from memory,
the cache replays each pending access

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

MISS

RE-
FILL

HIT

Eventually main memory returns the data to the cache …

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

30

When the refill returns from memory,
the cache replays each pending access

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

MISS

RE-
PLAY

RE-
FILL

HIT

… and the cache replays the accesses in the corresponding replay queue,
sending the data back to the VLDQ.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

31

Expensive hardware is required to
support many in-flight accesses

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Proc Cache Mem

The key point is that a decoupled vector machine needs a great deal of
hardware to saturate modern memory systems. This hardware includes the
command queues, the VLDQ, the miss tags, and the replay queues. Reuse
makes the situation even worse, since the system needs to handle even more
in-flight accesses. To better understand how these resources scale we are going
to take a look at a decoupling diagram.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

32

Effective decoupling requires
command and data queuing

VEUCP
VLU
VSU

Main Memory

DataTags

Program Execution

VSU

VEU

CP

VLU

This diagram shows the decoupling between the four units in the vector
machine. The horizontal position of each unit indicates which command or
instruction that unit is working on. At the very beginning all four units start
together - the control processor then runs ahead queuing up commands for the
other units.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

33

Effective decoupling requires
command and data queuing

VEUCP
VLU
VSU

Main Memory

VLU-
CmdQ

VEU-CmdQ

VSU

VEU

CP

VLU

Program Execution

DataTags

VEU-CmdQ

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

34

VEU

Effective decoupling requires
command and data queuing

VLU
VSU

Main Memory

VLU-
CmdQ

VEU-CmdQ

VSU-CmdQVSU

VEU

CP

VLU

Program Execution

DataTags

CP

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

35

VEU

VLU-
CmdQ

VEU-CmdQ

VSU-CmdQ

CP

Effective decoupling requires
command and data queuing

VLU
VSU

Main Memory VLDQ
Entries

VSDQ
Entries

VEU

VSU

VLU

Program Execution

DataTags

CP

The system also includes data queues to enable decoupling between the units.
The vector load data queue decouples the vector load unit and the vector
execution unit, while the vector store data queue decouples the vector
execution unit and the vector store unit.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

36

VEU

Saturating memory system with many
misses requires additional queuing

VLU
VSU

Main Memory

Miss Tags
Replay Queue Entries

VLDQ Entries

VSDQ
Entries

VSU

VLU-
CmdQ

VEU-CmdQ

VSU-CmdQ

CP

VLU

VEU

Program Execution

DataTags

CP

Now let’s look at what happens when the VLU reaches a string of misses. The
non-blocking cache will start to allocate miss tags and replay queue entries as
the VLU and the control processor continue to run ahead.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

37

VEU

Saturating memory system with many
misses requires additional queuing

VLU-
CmdQ

VEU-CmdQ

VSU-CmdQ

Miss Tags
Replay Queue Entries

VLDQ Entries

VLU

VSDQ
Entries

VEU

VSU

VLU
VSU

Main Memory

CP

Program Execution

DataTags

CP

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

38

VEU

Saturating memory system with many
misses requires additional queuing

VLU-
CmdQ

VEU-CmdQ

VSU-CmdQ

Miss Tags
Replay Queue Entries

VLDQ Entries

VLU

VSDQ
Entries

VEU

VSU

VLU
VSU

Main Memory

CP

Program Execution

DataTags

CP

The vector execution unit is stalled waiting for the data to return.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

39

VEU

Saturating memory system with many
misses requires additional queuing

VLU-
CmdQ

VEU-CmdQ

VSU-CmdQ

Miss Tags
Replay Queue Entries

VLDQ Entries

VLU

VSDQ
Entries

VEU

VSU

VLU
VSU

Main Memory

CP

Bandwidth-Delay Product

DataTags

CP

The key point to note here is that all of these resources need to scale in order
to saturate large bandwidth delay product memory systems, and these
resources can be quite expensive.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

40

Refill/access decoupling
prefetches lines into cache

Processor Cache Memory
PRIMARY

MISS

SECONDARY
MISSES

REPLAY

Processor Cache Memory

HITS

PREFETCH

We are now going to look at our first technique called refill/access decoupling.
This simple technique drastically reduces the hardware cost of non-blocking
data caches in vector machines. It is based on the observation that every cache
miss has two parts – the refill which moves data from main memory into the
cache and the access which moves data from the cache into the processor. We
simply want to decouple these so that the refill happens before the access, and
thus all the actual accesses should be hits.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

41

Refill/access decoupling
prefetches lines into cache

Processor Cache Memory

HITS

PREFETCH

• Acts as inexpensive
and non-speculative
hardware prefetch

• Only need one
prefetch per cacheline

• Prefetch requests are
cheaper than the
actual accesses

Essentially this acts as an inexpensive and non-speculative hardware prefetch.
In addition to the fact that we only generate one prefetch request per cache-
line, we will show over the next few slides that prefetch requests require less
resources than the actual accesses themselves.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

42

The vector refill unit brings lines into the
cache before the VLU accesses them

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Vector
Refill
Unit

VRU-
CmdQ

Proc Cache Mem

We implement refill/access decoupling by adding a vector refill unit to the
previously described decoupled vector machine.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

43

The vector refill unit brings lines into the
cache before the VLU accesses them

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Vector
Refill
Unit

VRU-
CmdQ

Proc Cache Mem

As before the control processor issues a vector load command, but now it also
sends the address portion to the vector refill unit.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

44

The vector refill unit brings lines into the
cache before the VLU accesses them

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Vector
Refill
Unit

VRU-
CmdQ

Proc Cache Mem

PRE-
FETCH

The vector refill unit issues one refill request per cacheline into the memory
system. It is important to note that these refill requests are cheaper than
normal requests since they only require miss tags – they do not require replay
queue entries.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

45

The vector refill unit brings lines into the
cache before the VLU accesses them

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Vector
Refill
Unit

VRU-
CmdQ

Proc Cache Mem

PRE-
FETCH RE-

FILL

After allocating a miss tag, the cache issues the refill request to main memory
and many cycles later main memory returns the data to the cache.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

46

The vector refill unit brings lines into the
cache before the VLU accesses them

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Vector
Refill
Unit

VRU-
CmdQ

Proc Cache Mem

HIT

RE-
FILL

PRE-
FETCH

Vector
Execution

Unit

Since the vector load unit is trailing behind the vector refill unit, it should only
experience hits in the cache.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

47

The vector refill unit brings lines into the
cache before the VLU accesses them

Vector
Execution

Unit

Control
Proc

VLU

VSU

VEU- CmdQ

VSU-
CmdQ

VLU-
CmdQ

Main Memory

Data
Array

MSHR
Tag

Array

VLDQ

VSDQ

Replay
Queues

Miss
Tags

Vector
Refill
Unit

VRU-
CmdQ

Proc Cache Mem

PRE-
FETCH

HIT

RE-
FILL

Another important point to make is that refill requests which hit in the miss
tags, in other words they would normally be secondary misses, do not require
any additional access management state. They can simply be dropped by the
cache.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

48

VRU reduces need for hardware which
scale with number of in-flight elements

VLU- CmdQ

Miss Tags
Replay Queues Entries

VLDQ Entries

VSDQ
Entries

VRU- CmdQ

VEU- CmdQ

VSU- CmdQ

VLU- CmdQ

VEU- CmdQ

VSU- CmdQ

Miss Tags

VLDQ
Entries

VSDQ
Entries

VSU

CP

VLU

VEU

VEU

VLU

VRU

CP

VSU

Decoupled
Vector Machine

Decoupled
Vector Machine

with VRU

Now lets revisit the decoupling diagram when the processor experiences a
string of misses, but let’s include the vector refill unit.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

49

VRU reduces need for hardware which
scale with number of in-flight elements

VLU- CmdQ

Miss Tags
Replay Queues Entries

VLDQ Entries

VSDQ
Entries

VRU- CmdQ

VEU- CmdQ

VSU- CmdQ

VLU- CmdQ

VEU- CmdQ

VSU- CmdQ

Miss Tags

VLDQ
Entries

VSDQ
Entries

Decoupled
Vector Machine

Decoupled
Vector Machine

with VRU

VSU

CP

VLU

VEU

VEU

VLU

VRU

CP

VSU

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

50

Bandwidth-Delay

VRU reduces need for hardware which
scale with number of in-flight elements

VLU- CmdQ

Miss Tags
Replay Queues Entries

VLDQ Entries

VSDQ
Entries

VRU- CmdQ

VEU- CmdQ

VSU- CmdQ

VLU- CmdQ

VEU- CmdQ

VSU- CmdQ

Miss Tags

VLDQ
Entries

VSDQ
Entries

Decoupled
Vector Machine

Decoupled
Vector Machine

with VRU

VSU

CP

VLU

VEU

VEU

VLU

VRU

CP

VSU

At the top is the decoupled vector machine without the VRU and at the bottom
is the vector machine with the VRU. Notice that now its the VRU running ahead
issuing refill requests as opposed the the VLU running ahead. The key point is
that adding the VRU decreases the amount of resources needed to saturate
large bandwidth-delay product memory systems. Without the VRU, expensive
queues such as the VLDQ and the replay queues must scale with the number of
in-flight elements, but with the VRU the only queues which must scale are the
miss tags and the command queues. Both of theses resources are relatively
efficient. There is one miss tag for each in-flight cache line. The command
queues are very compact, since each command queue entry contains a vector
instruction and thus can encode over a hundred element accesses.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

51

VRU reduces need for hardware which
scale with number of in-flight elements

VLU- CmdQ

Miss Tags
Replay Queues Entries

VLDQ Entries

VSDQ
Entries

VRU- CmdQ

VEU- CmdQ

VSU- CmdQ

VLU- CmdQ

VEU- CmdQ

VSU- CmdQ

Miss Tags

VLDQ
Entries

VSDQ
Entries

Decoupled
Vector Machine

Decoupled
Vector Machine

with VRU

VSU

CP

VLU

VEU

VEU

VLU

VRU

CP

VSU

Throttling

Effective refill/access decoupling requires throttling between the VRU and the
VLU to help maintain an appropriate prefetch distance. Although throttling is an
important topic, I am not going to talk about it anymore in this presentation but
there is more information in the paper.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

52

Vector Segment Accesses

Vector segment memory accesses
explicitly capture two-dimensional access

patterns and thus make the memory
system more efficient

Unit Stride

Strided

Array of Structures

Neighboring Columns

1D Access Patterns 2D Access Patterns

Refill/access decoupling is one technique which makes it easier to turn access
parallelism into performance. We are now going to look at another technique
which is also going to make it easier to turn memory access parallelism into
performance, but it will do so by exploiting the structure found in certain types
of access patterns. Traditional vector machines exploit 1D access patterns such
as unit-stride and strided, but many applications include 2D access patterns as
well. For example, on the right we are accessing an array of RGB pixels or the
first two columns in an four column matrix stored in row-major order. We
propose vector segment memory accesses which explicitly capture two-
dimensional access patterns and thus make the memory system more efficient.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

53

Using multiple strided accesses
for 2D access patterns is inefficient

Vector Execution Unit

Memory

la r1, A
li r2, 3
vlbst vr0, r1, r2
addu r1, r1, 1
vlbst vr1, r1, r2
addu r1, r1, 1
vlbst vr2, r1, r2

FU

vr0
vr1
vr2

FU FU FU

Let’s look at an example to see how vector segment accesses work. Let’s
assume that the application wants to load an array of RGB pixels into the vector
registers, and it wants each functional unit to process a single pixel. A
traditional vector machine would use three strided accesses to load the data.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

54

Using multiple strided accesses
for 2D access patterns is inefficient

Vector Execution Unit

Memory

la r1, A
li r2, 3
vlbst vr0, r1, r2
addu r1, r1, 1
vlbst vr1, r1, r2
addu r1, r1, 1
vlbst vr2, r1, r2

FU FU FU FU

vr0
vr1
vr2

The first strided access would pull out the red data and write it into vector
register zero …

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

55

Using multiple strided accesses
for 2D access patterns is inefficient

Vector Execution Unit

Memory

la r1, A
li r2, 3
vlbst vr0, r1, r2
addu r1, r1, 1
vlbst vr1, r1, r2
addu r1, r1, 1
vlbst vr2, r1, r2

FU FU FU FU

vr0
vr1
vr2

… while the second strided access would pull out the green data. I have drawn
this figure with a four read port memory – often memories use banks to enable
multiple read ports, but a key disadvantage of strided accesses is that it is
common for these access to have bank conflicts which decrease performance.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

56

Using multiple strided accesses
for 2D access patterns is inefficient

Vector Execution Unit

Memory

la r1, A
li r2, 3
vlbst vr0, r1, r2
addu r1, r1, 1
vlbst vr1, r1, r2
addu r1, r1, 1
vlbst vr2, r1, r2

FU

vr0
vr1
vr2

FU FU FU

Multiple strided
access do not
capture the spatial
locality inherent in
the 2D access
pattern

A final strided access pulls the blue data into the vector register file. The
problem with using multiple strided accesses is that they do not capture the
spatial locality inherent in the 2D access pattern.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

57

Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Now let’s see how vector segment accesses better capture this spatial locality.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

58

Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Conceptually, a segment access works by reading the first segment in memory.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

59

Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

And then writing this data into the first element of each vector register. The
segment instruction includes three fields which specify the number of elements
in a segment, the base vector register, and the base address. Unfortunately,
this diagram implies that the number of vector register write ports is equal to
the segment length. Obviously this is unreasonable, so an efficient
implementation of segment accesses will include segment buffers.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

60

Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Segment Buffers

So now on the first cycle we read a segment out and store it in a segment
buffer.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

61

Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Segment Buffers

On the second cycle we read out the second segment into the second buffer,
but at the same time we move the red element of the first segment into the
first vector register.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

62

Vector segment accesses perform
the 2D access pattern more efficiently

Vector Execution Unit

Memory

la r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Segment Buffers

We continue to overlap reading out segments into the buffers with moving the
data into the vector registers. Notice that we only need one wide read port into
the memory - this wide read port is the same one needed to efficiently handle
unit stride accesses. We also only need one vector register file write port per
lane.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

63

Vector segment accesses perform
the 2D access pattern more efficiently

Efficient encoding
– More compact

command queues
– VRU process

commands faster

Captures locality
– Reduces bank

conflicts
– Moves data in unit-

stride bursts

Vector Execution Unit

Memory

la r1, A
vlbseg 3, vr0, r1

FU FU FU FU

vr0
vr1
vr2

Vector segments have two fundamental advantages over multiple strided
access. First they offer a more efficient encoding which results in more compact
command queues and allows the VRU to process commands faster. And
secondly, vector segment accesses better capture the spatial locality inherent in
the 2D access pattern which reduces bank conflicts and moves data in and out
of the cache in unit-stride bursts.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

64

Cache Refill/Access Decoupling
for Vector Machines

• Intuition
– Motivation
– Background
– Cache Refill/Access Decoupling
– Vector Segment Memory Accesses

• Evaluation
– The SCALE Vector-Thread Processor
– Selected Results

In the first part of the talk, I have provided some intuition behind our proposed
techniques. It is important to note that cache refill/access decoupling is a
microarchitectural technique and thus could be applicable to any vector
machine, while vector segment memory accesses require an ISA change. In the
final part of the talk, I will briefly evaluate an implementation of these ideas
within the SCALE vector-thread processor.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

65

SCALE Vector Processor

Lane 0 Lane 1 Lane 2 Lane 3
Vector Execution Unit

Unit
Stride

VRU

Refill SEG SEG SEG SEG

Throttle
Logic

Control
Proc

Key Features
– 4 lanes, 4 clusters

– Cluster for
indexed accesses

– 4 segment
address
generators

– 4 VLDQs

– VRU includes
throttle logic,
refill address
generator

On this slide, I just want to highlight some of the key differences between the
SCALE vector-thread processor and the abstract decoupled vector machine we
have been talking about so far. First, we do not use any of the advanced
threading features of the vector-thread processor – in this work we are strictly
using the SCALE processor as a more traditional decoupled vector machine.
SCALE has four lanes and four clusters per lane. One cluster is able to do
indexed accesses and thus has its own load data queue. There are five address
generators in the vector load unit: one for unit stride and four for segment and
strided accesses. It is important to note that traditional strided accesses are
simply treated as segment accesses with a segment length of one both in the
ISA and in the implementation. There are four VLDQs – one per lane. The VRU
requires relatively little hardware – it requires its own address generator to
generate refill requests and some throttling logic. Throttling is an important
part of this work and it is discussed further in the paper.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

66

SCALE Cache

Cache Arbiter and Crossbar

Memory Port Arbiter and Crossbar

Seg
Buf

Tags

Data

MSHR

Tags

Data

MSHR

Tags

Data

MSHR

Tags

Data

MSHR

Seg
Buf

Seg
Buf

Seg
Buf

Key Features
– Unified I/D cache
– Two cycle hit latency
– Four 8 KB banks
– 32 way associative
– 32B cache lines
– 16B/cycle per bank
– Four 16B segment

buffers per bank

SCALE uses a unified 32 KB cache. The tag and data arrays as well as the
MSHRs are divided into four independent banks with a bank data bandwidth of
16 bytes per cycle. SCALE includes four 16 byte load segment buffers per bank.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

67

Methodology and Kernels
• Simulation methodology

– Microarchitectural C++ simulator of SCALE vector processor
and non-blocking multi-banked cache

– Main memory is modeled with a simple pipelined magic memory
– Benchmarks were compiled for the control processor with gcc

and key kernels were coded by hand in assembly

• 14 kernels with varying access patterns
– vvaddw Add two word element vectors and store result
– hpg 2D high pass filter on image with 8 bit pixels [EEMBC]
– rgbyiq RGB to YIQ color conversion with segments [EEMBC]

To evaluate our ideas we used a micro-architectural C++ simulator of both the
SCALE processor and the cache. For all of these results, main memory was
modeled as a simple pipelined magic memory. Benchmarks were compiled for
the control processor using g++ and then key kernels were hand coded in
assembly for the vector execution unit. There our 14 kernels with varying
access patterns in the paper, but in this talk I am only going to look at three
simple kernels to illustrate some of the basic concepts. VVADDW adds two
vectors together and stores the result. HPG is an EEMBC benchmark which does
a 2D high-pass filter on an image of 8 bit pixels. RGBYIQ is also an EEMBC
benchmark which does a color conversion from RGB to YIQ using segments.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

68

Normalized performance for
vvaddw with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Vector Load Data Queues

Configuration
– Limit study with very large

queue sizes except for queue
under consideration

– 8B/cycle bandwidth and
100 cycle latency main memory

– Normalized performance with
and without the vector refill unit

We began with several limit studies – in these experiments all queue and buffer
sizes are very large except for a specific queue under consideration. For
example, in this figure we are examining the impact of the VLDQ size on
performance. All of these experiments use a 8 B/cycle main memory with a 100
cycle latency. The performance is normalized to that application’s peak
performance. We examine two configurations: the black line is the baseline
decoupled vector machine while the red line is the decoupled vector machine
with the vector refill unit. So let’s first look at the black line - as we increase
the size of the VLDQ, performance also increases. This is to be expected since a
larger VLDQ means that the processor can get more accesses in-flight and can
thus better turn memory access parallelism into performance. Notice that when
we add the vector refill unit, we are able to achieve peak performance with
drastically fewer resources. For example, without the VRU we need 256 VLDQ
entries to achieve peak performance but with the VRU we only need four.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

69

Normalized performance for
vvaddw with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Maximum Queue Size

Vector Load Data Queues Replay Queues

In this plot we see a similar trend with the number of replay queue entries.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

70

Normalized performance for
hpg with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Maximum Queue Size

Vector Load Data Queues Replay Queues

The difference is even more clear with HPG since HPG has a moderate bit of
reuse – it loads each input element three times. This means that without the
VRU, the decoupled vector machine must queue up 96 secondary misses before
it can get to the next primary miss and thus issue the next refill request. So
even with 512 VLDQ entries, the baseline decoupled vector machine is unable
to achieve peak performance. With refill/access decoupling we only need 16
VLDQ entries and 8 replay queue entries. Notice that we cannot completely
eliminate the VLDQ and replay queues – we need a few entries for a bit of
pipelining and decoupling between the various units.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

71

Normalized performance for
rgbyiq with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Maximum Queue Size

Vector Load Data Queues Replay Queues

We see a similar trend for RGBYIQ with segments.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

72

Normalized performance for
rgbyiq with varying queue sizes

Decoupled Vector Machine

Maximum Queue Size

Decoupled Vector Machine with Vector Refill Unit

Maximum Queue Size

Vector Load Data Queues Replay Queues

Dashed lines indicate segments are turned into strided accesses

Here we also show the performance without segments. To emulate a traditional
vector machine we turn segment accesses into multiple strided accesses, and
you can see adding segments almost always increases the performance.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

73

Performance with refill/access decoupling
scales well with longer memory latencies

vvaddw

rgbyiq
hpg

Memory Latency in Cycles

Configuration
– Includes the VRU
– Reasonable queues

and buffering
– 8B/cycle mem bandwidth
– VLDQ and replay queues

are a constant size
– Command queues and

miss tags are scaled
linearly with latency

Finally, I would like to look at how the performance of these kernels scale with
longer memory latencies. For this experiment we use reasonable queue and
buffering sizes and again the main memory bandwidth is 8 bytes per cycle. The
VLDQ and replay queues are kept at a constant size. As we discussed earlier in
the talk, the only resources which must scale when we add the VRU are the
command queues and the miss tags. Overall this is a pretty boring plot, but
that actually is a good thing. It means that these kernels are able to achieve
close to peak performance even with an 800 cycle main memory latency. From
the previous limit studies, it should be clear that a decoupled vector machine
without the refill/access decoupling would scale drastically worse if given the
same amount of resources.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

74

Paper includes additional
results and analysis

• 14 kernels with varying access patterns

• Performance versus number of miss tags

• Performance versus memory latency and bandwidth

• Comparison with an approximation of a scalar machine

• Various VRU and VLU throttling schemes

There are many more results and additional analysis in the paper. The paper
includes fourteen kernels and examines …

… the performance versus the number miss tags

… the performance versus memory latency and bandwidth

… a comparison with an approximation of a heavily decoupled scalar machine

… and various VRU and VLU throttling schemes

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

75

Related Work
• Refill/Access Decoupling

– Software prefetching
– Second-level vector register files [NEC SX, Imagine]

– Speculative hardware prefetching [Jouppi90, Palacharla94]

– Run-ahead processing [Baer91, Dundas97, Mutlu03]

• Vector Segment Memory Accesses
– Streaming loads/stores [Khailany01, Ciricescu03]

I want to just very quickly touch on some related work - first with respect to
refill/access decoupling. Software prefetching requires an intimate knowledge
of the memory system at compile time and thus is not performance portable
across different architectures. Refill/access decoupling is a microarchitectural
technique and is transparent to the application. Many vector machines include
second-level vector register files and essentially prefetch into this extra
buffering. Although second-level vector register files avoid the tag overhead of
caches they are significantly less flexible and waste storage for subword
elements. …

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

76

Related Work
• Refill/Access Decoupling

– Software prefetching
– Second-level vector register files [NEC SX, Imagine]

– Speculative hardware prefetching [Jouppi90, Palacharla94]

– Run-ahead processing [Baer91, Dundas97, Mutlu03]

• Vector Segment Memory Accesses
– Streaming loads/stores [Khailany01, Ciricescu03]

… Speculative hardware prefetching uses stream buffers between the cache
and main memory and on a miss prefetches extra cache lines into these
buffers. These techniques usually do poorly on short vectors and can waste
bandwidth on mispredictions. Run-ahead processing runs ahead after a cache
miss and attempts to find additional cache misses which it can overlap with the
first miss. Decoupling is a similar yet more efficient way of achieving the same
effect. Refill/access decoupling should perform just as well as all of these other
techniques but it does so in a simple and elegant way by exploiting the specific
characteristics of vector machines. Vector segment memory accesses are
similar in spirit to the streaming loads and stores found in Imagine and RSVP
but are implemented in SCALE in a very different way.

Cache Refill/Access Decoupling for Vector Machines, Christopher Batten, Ronny Krashinsky, Steven Gerding,
and Krste Asanovic, 37th International Symposium on Microarchitecture, Portland, Oregon, December 2004

77

Conclusions
• Saturating large bandwidth-delay memory

systems requires many in-flight accesses and
thus a great deal of access management state
and reserved element data storage

• Refill/access decoupling and vector
segment accesses are simple techniques
which reduce these costs and improve
performance

I would like to conclude with two take away points. First, saturating large
bandwidth delay memory systems requires many in-flight elements and thus a
great deal of access management state and reserved element buffering.
Second, refill/access decoupling and vector segment accesses are simple
techniques which reduce these costs and improve performance.

