
Ronny Krashinsky, Christopher Batten, Mark Hampton, 
Steve Gerding, Brian Pharris, Jared Casper, Krste Asanovic

MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, USA

ISCA 2004

The Vector-Thread
Architecture



Goals For Vector-Thread Architecture

• Primary goal is efficiency
­ High performance with low energy and small area

• Take advantage of whatever parallelism and locality is 
available: DLP, TLP, ILP
­ Allow intermixing of multiple levels of parallelism

• Programming model is key
­ Encode parallelism and locality in a way that enables a 

complexity-effective implementation
­ Provide clean abstractions to simplify coding and compilation



Vector and Multithreaded Architectures

• Vector processors provide 
efficient DLP execution
­ Amortize instruction control
­ Amortize loop bookkeeping 

overhead 
­ Exploit structured memory 

accesses 

• Unable to execute loops 
with loop-carried 
dependencies or complex 
internal control flow

• Multithreaded processors
can flexibly exploit TLP

• Unable to amortize common 
control overhead across 
threads

• Unable to exploit structured 
memory accesses across 
threads

• Costly memory-based 
synchronization and 
communication between 
threads 
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Vector-Thread Architecture

• VT unifies the vector and multithreaded compute models
• A control processor interacts with a vector of virtual 

processors (VPs)
• Vector-fetch: control processor fetches instructions for all 

VPs in parallel
• Thread-fetch: a VP fetches its own instructions
• VT allows a seamless intermixing of vector and thread 

control
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Outline

• Vector-Thread Architectural Paradigm
­ Abstract model
­ Physical Model

• SCALE VT Processor
• Evaluation
• Related Work



Virtual Processor Abstraction

• VPs contain a set of registers 
• VPs execute RISC-like instructions 

grouped into atomic instruction 
blocks (AIBs)

• VPs have no automatic program 
counter, AIBs must be explicitly 
fetched
­ VPs contain pending vector-fetch and 

thread-fetch addresses

• A fetch instruction allows a VP to 
fetch its own AIB
­ May be predicated for conditional branch

• If an AIB does not execute a fetch, 
the VP thread stops
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Virtual Processor Vector
• A VT architecture includes a control processor and a virtual 

processor vector
­ Two interacting instruction sets

• A vector-fetch command allows the control processor to fetch 
an AIB for all the VPs in parallel

• Vector-load and vector-store commands transfer blocks of 
data between memory and the VP registers
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Cross-VP Data Transfers

• Cross-VP connections provide fine-grain data operand 
communication and synchronization
­ VP instructions may target nextVP as destination or use prevVP as 

a source
­ CrossVP queue holds wrap-around data, control processor can 

push and pop
­ Restricted ring communication pattern is cheap to implement, 

scalable, and matches the software usage model for VPs
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Mapping Loops to VT

• A broad class of loops map naturally to VT
­ Vectorizable loops
­ Loops with loop-carried dependencies
­ Loops with internal control flow

• Each VP executes one loop iteration 
­ Control processor manages the execution
­ Stripmining enables implementation-dependent vector lengths

• Programmer or compiler only schedules one loop iteration 
on one VP
­ No cross-iteration scheduling



Vectorizable Loops

• Data-parallel loops with no internal control flow 
mapped using vector commands
­ predication for small conditionals
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Loop-Carried Dependencies

• Loops with cross-iteration dependencies 
mapped using vector commands with cross-VP 
data transfers
­ Vector-fetch introduces chain of prevVP receives and 

nextVP sends
­ Vector-memory commands with non-vectorizable 

compute
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Loops with Internal Control Flow

• Data-parallel loops with large conditionals or 
inner-loops mapped using thread-fetches
­ Vector-commands and thread-fetches freely 

intermixed
­ Once launched, the VP threads execute to 

completion before the next control processor 
command
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VT Physical Model

• A Vector-Thread Unit contains an array of lanes with physical 
register files and execution units

• VPs map to lanes and share physical resources, VP execution is 
time-multiplexed on the lanes

• Independent parallel lanes exploit parallelism across VPs and data 
operand locality within VPs
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Lane Execution

• Lanes execute decoupled from each 
other

• Command management unit handles 
vector-fetch and thread-fetch 
commands

• Execution cluster executes 
instructions in-order from small AIB 
cache (e.g. 32 instructions) 
­ AIB caches exploit locality to reduce 

instruction fetch energy (on par with 
register read)

• Execute directives point to AIBs and 
indicate which VP(s) the AIB should 
be executed for 
­ For a thread-fetch command, the lane 

executes the AIB for the requesting VP
­ For a vector-fetch command, the lane 

executes the AIB for every VP
• AIBs and vector-fetch commands 

reduce control overhead
­ 10s—100s of instructions executed per 

fetch address tag-check, even for non-
vectorizable loops
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VP Execution Interleaving
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time-multiplexing

time

• Hardware provides the benefits of loop unrolling by interleaving VPs
• Time-multiplexing can hide thread-fetch, memory, and functional unit 

latencies
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VP Execution Interleaving
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• Dynamic scheduling of cross-VP data transfers 
automatically adapts to software critical path (in contrast to 
static software pipelining)
­ No static cross-iteration scheduling
­ Tolerant to variable dynamic latencies
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SCALE Vector-Thread Processor

• SCALE is designed to be a complexity-effective all-purpose 
embedded processor
­ Exploit all available forms of parallelism and locality to achieve high 

performance and low energy

• Constrained to small area (estimated 10 mm2 in 0.18 µm)
­ Reduce wire delay and complexity
­ Support tiling of multiple SCALE processors for increased 

throughput

• Careful balance between software and hardware for code 
mapping and scheduling
­ Optimize runtime energy, area efficiency, and performance while 

maintaining a clean scalable programming model



SCALE Clusters

• VPs partitioned into four clusters to exploit ILP and allow lane
implementations to optimize area, energy, and circuit delay
­ Clusters are heterogeneous – c0 can execute loads and stores, c1 can execute 

fetches, c3 has integer mult/div

­ Clusters execute decoupled from each other
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VP24VP12

SCALE Registers and VP Configuration

• Number of VP registers in each cluster is configurable
­ The hardware can support more VPs when they each have fewer 

private registers
­ Low overhead: Control processor instruction configures VPs before 

entering stripmine loop, VP state undefined across reconfigurations

cr0 cr1

• Atomic instruction blocks allow VPs to share 
temporary state – only valid within the AIB
­ VP general registers divided into private and shared
­ Chain registers at ALU inputs – avoid reading and 

writing general register file to save energy
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SCALE Micro-Ops

• Assembler translates portable software ISA into hardware micro-ops
• Per-cluster micro-op bundles access local registers only
• Inter-cluster data transfers broken into transports and writebacks

add cr0,cr1→pr0c1→cr1
c0→cr0→c2sll cr0,2c0→cr0→c1,c2xor pr0,pr1

tpcomputewbtpcomputewbtpcomputewb

Cluster 2Cluster 1Cluster 0

→ pr0add cr0, cr1c2
→ c2/cr1sll cr0, 2c1
→ c1/cr0, c2/cr0xor pr0, pr1c0 

destinationsoperationcluster

Software VP code:

Hardware micro-ops:

cluster micro-op bundle Cluster 3 not shown



SCALE Cluster Decoupling

• Cluster execution is decoupled
­ Cluster AIB caches hold micro-op 

bundles
­ Each cluster has its own execute-

directive queue, and local control
­ Inter-cluster data transfers 

synchronize with handshake 
signals

• Memory Access Decoupling 
(see paper)
­ Load-data-queue enables 

continued execution after a cache 
miss

­ Decoupled-store-queue enables 
loads to slip ahead of stores

AIB
cache

ALU

VP

Regs

compute

writeback

transport

AIBs compute
writeback

transport

Cluster 2

Cluster 3

AIBs compute
writeback

transport

Cluster 1

AIBs compute
writeback

transport

Cluster 0



SCALE Prototype and Simulator

• Prototype SCALE processor in development
­ Control processor: MIPS, 1 instr/cycle
­ VTU: 4 lanes, 4 clusters/lane, 32 registers/cluster, 128 VPs max
­ Primary I/D cache: 32 KB, 4x128b per cycle, non-blocking
­ DRAM: 64b, 200 MHz DDR2 (64b at 400Mb/s: 3.2GB/s)
­ Estimated 10 mm2 in 0.18µm, 400 MHz (25 FO4)

• Cycle-level execution-driven microarchitectural simulator
­ Detailed VTU and memory system model
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Benchmarks

• Diverse set of 22 benchmarks chosen to evaluate a range of 
applications with different types of parallelism
­ 16 from EEMBC, 6 from MiBench, Mediabench, and SpecInt

• Hand-written VP assembly code linked with C code compiled for 
control processor using gcc
­ Reflects typical usage model for embedded processors

• EEMBC enables comparison to other processors running hand-
optimized code, but it is not an ideal comparison
­ Performance depends greatly on programmer effort, algorithmic changes are 

allowed for some benchmarks, these are often unpublished

­ Performance depends greatly on special compute instructions or sub-word SIMD 
operations (for the current evaluation, SCALE does not provide these)

­ Processors use unequal silicon area, process technologies, and circuit styles

• Overall results: SCALE is competitive with larger and more complex 
processors on a wide range of codes from different domains
­ See paper for detailed results

­ Results are a snapshot, SCALE microarchitecture and benchmark mappings 
continue to improve



Mapping Parallelism to SCALE

• Data-parallel loops with no complex control flow
­ Use vector-fetch and vector-memory commands

­ EEMBC rgbcmy, rgbyiq, and hpg execute 6-10 ops/cycle for 12x-32x speedup 
over control processor, performance scales with number of lanes

• Loops with loop-carried dependencies
­ Use vector-fetched AIBs with cross-VP data transfers

­ Mediabench adpcm.dec: two loop-carried dependencies propagate in parallel, on 
average 7 loop iterations execute in parallel, 8x speedup

­ MiBench sha has 5 loop-carried dependencies, exploits ILP
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Mapping Parallelism to SCALE

• Data-parallel loops with large conditionals
­ Use vector-fetched AIBs with conditional thread-fetches
­ EEMBC dither: special-case for white pixels (18 ops vs. 49)

• Data-parallel loops with inner loops
­ Use vector-fetched AIBs with thread-fetches for inner loop
­ EEMBC lookup: VPs execute pointer-chaising IP address lookups in routing table

• Free-running threads
­ No control processor interaction
­ VP worker threads get tasks from shared queue using atomic memory ops
­ EEMBC pntrch and MiBench qsort achieve significant speedups
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Comparison to Related Work

• TRIPS and Smart Memories can also exploit multiple types of 
parallelism, but must explicitly switch modes

• Raw’s tiled processors provide much lower compute density than 
SCALE’s clusters which factor out instruction and data overheads and 
use direct communication instead of programmed switches

• Multiscalar passes loop-carried register dependencies around a ring 
network, but it focuses on speculative execution and memory, whereas 
VT uses simple logic to support common loop types

• Imagine organizes computation into kernels to improve register file 
locality, but it exposes machine details with a low-level VLIW ISA, in 
contrast to VT’s VP abstraction and AIBs

• CODE uses register-renaming to hide its decoupled clusters from 
software, whereas SCALE simplifies hardware by exposing clusters
and statically partitioning inter-cluster transport and writeback ops

• Jesshope’s micro-threading is similar in spirit to VT, but its threads 
are dynamically scheduled and cross-iteration synchronization uses 
full/empty bits on global registers



Summary

• The vector-thread architectural paradigm unifies the 
vector and multithreaded compute models

• VT abstraction introduces a small set of primitives to 
allow software to succinctly encode parallelism and 
locality and seamlessly intermingle DLP, TLP, and ILP
­ Virtual processors, AIBs, vector-fetch and vector-memory 

commands, thread-fetches, cross-VP data transfers

• SCALE VT processor efficiently achieves high-
performance on a wide range of embedded applications


