
Ronny Krashinsky, Christopher Batten, Mark Hampton, 
Steve Gerding, Brian Pharris, Jared Casper, Krste Asanovic

MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, USA

ISCA 2004

The Vector-Thread
Architecture



Goals For Vector-Thread Architecture

• Primary goal is efficiency
 High performance with low energy and small area

• Take advantage of whatever parallelism and locality is 
available: DLP, TLP, ILP
 Allow intermixing of multiple levels of parallelism

• Programming model is key
 Encode parallelism and locality in a way that enables a 

complexity-effective implementation
 Provide clean abstractions to simplify coding and compilation



Vector and Multithreaded Architectures

• Vector processors provide 
efficient DLP execution
 Amortize instruction control
 Amortize loop bookkeeping 

overhead 
 Exploit structured memory 

accesses 

• Unable to execute loops 
with loop-carried 
dependencies or complex 
internal control flow

• Multithreaded processors
can flexibly exploit TLP

• Unable to amortize common 
control overhead across 
threads

• Unable to exploit structured 
memory accesses across 
threads

• Costly memory-based 
synchronization and 
communication between 
threads 

PE0

Memory

PE1 PE2 PEN

vector control

PE0

Memory

PE1 PE2 PEN
thread
control

Control
Processor



Vector-Thread Architecture

• VT unifies the vector and multithreaded compute models
• A control processor interacts with a vector of virtual 

processors (VPs)
• Vector-fetch: control processor fetches instructions for all 

VPs in parallel
• Thread-fetch: a VP fetches its own instructions
• VT allows a seamless intermixing of vector and thread 

control

Control
Processor

VP0

Memory

VP1 VP2 VP3 VPN
thread-
fetch

vector-fetch



Outline

• Vector-Thread Architectural Paradigm
 Abstract model
 Physical Model

• SCALE VT Processor
• Evaluation
• Related Work



Virtual Processor Abstraction

• VPs contain a set of registers 
• VPs execute RISC-like instructions 

grouped into atomic instruction 
blocks (AIBs)

• VPs have no automatic program 
counter, AIBs must be explicitly 
fetched
 VPs contain pending vector-fetch and 

thread-fetch addresses

• A fetch instruction allows a VP to 
fetch its own AIB
 May be predicated for conditional branch

• If an AIB does not execute a fetch, 
the VP thread stops

thread-
fetch

thread-fetch

thread-fetch

AIB
instruction

VP thread execution

fetch

fetch

Registers

VP

ALUs

vector-fetch



Virtual Processor Vector
• A VT architecture includes a control processor and a virtual 

processor vector
 Two interacting instruction sets

• A vector-fetch command allows the control processor to fetch 
an AIB for all the VPs in parallel

• Vector-load and vector-store commands transfer blocks of 
data between memory and the VP registers

Registers

VP0

ALUs

Registers

VP1

ALUs

Registers

VPN

ALUs

Control
Processor

Memory

Vector
Memory

Unit

vector-fetch

vector
-load

vector
-store



Cross-VP Data Transfers

• Cross-VP connections provide fine-grain data operand 
communication and synchronization
 VP instructions may target nextVP as destination or use prevVP as 

a source
 CrossVP queue holds wrap-around data, control processor can 

push and pop
 Restricted ring communication pattern is cheap to implement, 

scalable, and matches the software usage model for VPs

Registers

VP0

ALUs

Registers

VP1

ALUs

Registers

VPN

ALUs

crossVP-
push

Control
Processor

crossVP-
pop

vector-fetch

crossVP
queue



Mapping Loops to VT

• A broad class of loops map naturally to VT
 Vectorizable loops
 Loops with loop-carried dependencies
 Loops with internal control flow

• Each VP executes one loop iteration 
 Control processor manages the execution
 Stripmining enables implementation-dependent vector lengths

• Programmer or compiler only schedules one loop iteration 
on one VP
 No cross-iteration scheduling



Vectorizable Loops

• Data-parallel loops with no internal control flow 
mapped using vector commands
 predication for small conditionals

<<
vector-fetch

vector-load

x

+

ld

vector-load ld

vector-store st

VP0 VP1 VP2 VP3 VPN
Control

Processor

<< x

+

ld

ld

st

<< x

+

ld

ld

st

<< x

+

ld

ld

st

<< x

+

ld

ld

st

<< x

+

ld ld

st

vector-fetch

vector-load ld
vector-load ld

ld

ld

ld

ld

ld

ld

ld

ld

loop iteration DAG
operation



Loop-Carried Dependencies

• Loops with cross-iteration dependencies 
mapped using vector commands with cross-VP 
data transfers
 Vector-fetch introduces chain of prevVP receives and 

nextVP sends
 Vector-memory commands with non-vectorizable 

compute

<< x

+

ld ld

st

<< x

+

vector-store st

<< x

+

st

<< x

+

st

<< x

+

st

<< x

+

st

vector-load ld

vector-load ld

VP0 VP1 VP2 VP3 VPN
Control

Processor
ld

ld

ld

ld

ld

ld

ld

ld

vector-fetch



Loops with Internal Control Flow

• Data-parallel loops with large conditionals or 
inner-loops mapped using thread-fetches
 Vector-commands and thread-fetches freely 

intermixed
 Once launched, the VP threads execute to 

completion before the next control processor 
command

ld

vector-load ld

vector-store st

VP0 VP1 VP2 VP3 VPN
Control

Processor

ld

st

ld

==

br

==

br

ld

==

br

ld

ld

st

==

br

ld

ld

st

==

br

ld

ld

st

==

br

ld

==

br

ld

ld

st

==

br

ld

==

br

vector-fetch



VT Physical Model

• A Vector-Thread Unit contains an array of lanes with physical 
register files and execution units

• VPs map to lanes and share physical resources, VP execution is 
time-multiplexed on the lanes

• Independent parallel lanes exploit parallelism across VPs and data 
operand locality within VPs

Lane 0 Lane 1 Lane 2 Lane 3

VP0

VP4

VP8
VP12

ALU

VP1

VP5

VP9
VP13

ALU

VP2

VP6

VP10
VP14

ALU

VP3

VP7

VP11
VP15

ALU

Memory

Control
Processor

Vector-Thread Unit

Vector 
Memory 

Unit



Lane Execution

• Lanes execute decoupled from each 
other

• Command management unit handles 
vector-fetch and thread-fetch 
commands

• Execution cluster executes 
instructions in-order from small AIB 
cache (e.g. 32 instructions) 
 AIB caches exploit locality to reduce 

instruction fetch energy (on par with 
register read)

• Execute directives point to AIBs and 
indicate which VP(s) the AIB should 
be executed for 
 For a thread-fetch command, the lane 

executes the AIB for the requesting VP
 For a vector-fetch command, the lane 

executes the AIB for every VP
• AIBs and vector-fetch commands 

reduce control overhead
 10s—100s of instructions executed per 

fetch address tag-check, even for non-
vectorizable loops

Lane 0

thread-fetch

VP0

VP4

VP8
VP12

AIB
tags

vector-fetch

ALU

execute
directive

vector-fetch

miss 
addr

AIB 
fill

miss

VP

AIB
address

AIB
cache

AIB instr.



VP Execution Interleaving

Lane 3Lane 2Lane 1
VP0 VP4 VP8 VP12

Lane 0
VP1 VP5 VP9 VP13 VP2 VP6 VP10VP14 VP3 VP7 VP11VP15

time-multiplexing

time

• Hardware provides the benefits of loop unrolling by interleaving VPs
• Time-multiplexing can hide thread-fetch, memory, and functional unit 

latencies

thread-
fetch

vector-fetch

vector-fetch

AIB
vector-fetch



VP Execution Interleaving

Lane 3Lane 2Lane 1
VP0 VP4 VP8 VP12

Lane 0
VP1 VP5 VP9 VP13 VP2 VP6 VP10VP14 VP3 VP7 VP11VP15

vector-fetch

AIB

• Dynamic scheduling of cross-VP data transfers 
automatically adapts to software critical path (in contrast to 
static software pipelining)
 No static cross-iteration scheduling
 Tolerant to variable dynamic latencies

time-multiplexing

time



SCALE Vector-Thread Processor

• SCALE is designed to be a complexity-effective all-purpose 
embedded processor
 Exploit all available forms of parallelism and locality to achieve high 

performance and low energy

• Constrained to small area (estimated 10 mm2 in 0.18 µm)
 Reduce wire delay and complexity
 Support tiling of multiple SCALE processors for increased 

throughput

• Careful balance between software and hardware for code 
mapping and scheduling
 Optimize runtime energy, area efficiency, and performance while 

maintaining a clean scalable programming model



SCALE Clusters

• VPs partitioned into four clusters to exploit ILP and allow lane
implementations to optimize area, energy, and circuit delay
 Clusters are heterogeneous – c0 can execute loads and stores, c1 can execute 

fetches, c3 has integer mult/div

 Clusters execute decoupled from each other

Lane 0 Lane 1 Lane 2 Lane 3
Control

Processor

L1 Cache

AIB
Fill
Unit

c0

c1

c2

c3

c0

c1

c2

c3

c0

c1

c2

c3

c0

c1

c2

c3

c0

c1

c2

c3

SCALE VP



VP24VP12

SCALE Registers and VP Configuration

• Number of VP registers in each cluster is configurable
 The hardware can support more VPs when they each have fewer 

private registers
 Low overhead: Control processor instruction configures VPs before 

entering stripmine loop, VP state undefined across reconfigurations

cr0 cr1

• Atomic instruction blocks allow VPs to share 
temporary state – only valid within the AIB
 VP general registers divided into private and shared
 Chain registers at ALU inputs – avoid reading and 

writing general register file to save energy

VP0 VP0
VP4
VP8
VP12
VP16
VP20

VP4
VP8

4 VPs with 
0 shared regs
8 private regs

shared7 VPs with 
4 shared regs
4 private regs

25 VPs with 
7 shared regs
1 private reg  

c0

shared

VP0
VP4
VP8

shared



SCALE Micro-Ops

• Assembler translates portable software ISA into hardware micro-ops
• Per-cluster micro-op bundles access local registers only
• Inter-cluster data transfers broken into transports and writebacks

add cr0,cr1→pr0c1→cr1
c0→cr0→c2sll cr0,2c0→cr0→c1,c2xor pr0,pr1

tpcomputewbtpcomputewbtpcomputewb

Cluster 2Cluster 1Cluster 0

→ pr0add cr0, cr1c2
→ c2/cr1sll cr0, 2c1
→ c1/cr0, c2/cr0xor pr0, pr1c0 

destinationsoperationcluster

Software VP code:

Hardware micro-ops:

cluster micro-op bundle Cluster 3 not shown



SCALE Cluster Decoupling

• Cluster execution is decoupled
 Cluster AIB caches hold micro-op 

bundles
 Each cluster has its own execute-

directive queue, and local control
 Inter-cluster data transfers 

synchronize with handshake 
signals

• Memory Access Decoupling 
(see paper)
 Load-data-queue enables 

continued execution after a cache 
miss

 Decoupled-store-queue enables 
loads to slip ahead of stores

AIB
cache

ALU

VP

Regs

compute

writeback

transport

AIBs compute
writeback

transport

Cluster 2

Cluster 3

AIBs compute
writeback

transport

Cluster 1

AIBs compute
writeback

transport

Cluster 0



SCALE Prototype and Simulator

• Prototype SCALE processor in development
 Control processor: MIPS, 1 instr/cycle
 VTU: 4 lanes, 4 clusters/lane, 32 registers/cluster, 128 VPs max
 Primary I/D cache: 32 KB, 4x128b per cycle, non-blocking
 DRAM: 64b, 200 MHz DDR2 (64b at 400Mb/s: 3.2GB/s)
 Estimated 10 mm2 in 0.18µm, 400 MHz (25 FO4)

• Cycle-level execution-driven microarchitectural simulator
 Detailed VTU and memory system model

4 mm

2.5 m
m

sh
ft

r
A

LU M
D

C
P

0

L
/SR
F

ctrl

b
y

p

P
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r

A
LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r

A
LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r

A
LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r

A
LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r

A
LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

R
F

ct
rl

sh
ft

r
A

LU

la
tc

h
m

ux
/

IQ
C

ct
rl

L
D

Q
ct

rl
L

D
Q

ct
rl

L
D

Q
ct

rl
L

D
Q

Memory 
Interface / 
Cache 
Control

M
em

ory U
nit

Cache
Bank 
(8KB)

Cache
Bank 
(8KB)

Cache
Bank 
(8KB)

Cache
Bank 
(8KB)

Control Processor

C
rossbar

Cache
Tags

Mult
Div

Lane

Cluster



Benchmarks

• Diverse set of 22 benchmarks chosen to evaluate a range of 
applications with different types of parallelism
 16 from EEMBC, 6 from MiBench, Mediabench, and SpecInt

• Hand-written VP assembly code linked with C code compiled for 
control processor using gcc
 Reflects typical usage model for embedded processors

• EEMBC enables comparison to other processors running hand-
optimized code, but it is not an ideal comparison
 Performance depends greatly on programmer effort, algorithmic changes are 

allowed for some benchmarks, these are often unpublished

 Performance depends greatly on special compute instructions or sub-word SIMD 
operations (for the current evaluation, SCALE does not provide these)

 Processors use unequal silicon area, process technologies, and circuit styles

• Overall results: SCALE is competitive with larger and more complex 
processors on a wide range of codes from different domains
 See paper for detailed results

 Results are a snapshot, SCALE microarchitecture and benchmark mappings 
continue to improve



Mapping Parallelism to SCALE

• Data-parallel loops with no complex control flow
 Use vector-fetch and vector-memory commands

 EEMBC rgbcmy, rgbyiq, and hpg execute 6-10 ops/cycle for 12x-32x speedup 
over control processor, performance scales with number of lanes

• Loops with loop-carried dependencies
 Use vector-fetched AIBs with cross-VP data transfers

 Mediabench adpcm.dec: two loop-carried dependencies propagate in parallel, on 
average 7 loop iterations execute in parallel, 8x speedup

 MiBench sha has 5 loop-carried dependencies, exploits ILP

0

10

20

30

40

50

60

70

S
pe

ed
up

 v
s.

 
C

o
n

tr
o

l P
ro

ce
ss

o
r

0
1
2
3
4
5
6
7
8
9

1 Lane
2 Lanes
4 Lanes
8 Lanes

adpcm.dec sha

prototype

rgbcmy rgbyiq hpg



Mapping Parallelism to SCALE

• Data-parallel loops with large conditionals
 Use vector-fetched AIBs with conditional thread-fetches
 EEMBC dither: special-case for white pixels (18 ops vs. 49)

• Data-parallel loops with inner loops
 Use vector-fetched AIBs with thread-fetches for inner loop
 EEMBC lookup: VPs execute pointer-chaising IP address lookups in routing table

• Free-running threads
 No control processor interaction
 VP worker threads get tasks from shared queue using atomic memory ops
 EEMBC pntrch and MiBench qsort achieve significant speedups

0

2

4

6

8

10

S
pe

ed
up

 v
s.

 
C

o
n

tr
o

l P
ro

ce
ss

o
r

dither lookup qsortpntrch

1 Lane
2 Lanes
4 Lanes
8 Lanes



Comparison to Related Work

• TRIPS and Smart Memories can also exploit multiple types of 
parallelism, but must explicitly switch modes

• Raw’s tiled processors provide much lower compute density than 
SCALE’s clusters which factor out instruction and data overheads and 
use direct communication instead of programmed switches

• Multiscalar passes loop-carried register dependencies around a ring 
network, but it focuses on speculative execution and memory, whereas 
VT uses simple logic to support common loop types

• Imagine organizes computation into kernels to improve register file 
locality, but it exposes machine details with a low-level VLIW ISA, in 
contrast to VT’s VP abstraction and AIBs

• CODE uses register-renaming to hide its decoupled clusters from 
software, whereas SCALE simplifies hardware by exposing clusters
and statically partitioning inter-cluster transport and writeback ops

• Jesshope’s micro-threading is similar in spirit to VT, but its threads 
are dynamically scheduled and cross-iteration synchronization uses 
full/empty bits on global registers



Summary

• The vector-thread architectural paradigm unifies the 
vector and multithreaded compute models

• VT abstraction introduces a small set of primitives to 
allow software to succinctly encode parallelism and 
locality and seamlessly intermingle DLP, TLP, and ILP
 Virtual processors, AIBs, vector-fetch and vector-memory 

commands, thread-fetches, cross-VP data transfers

• SCALE VT processor efficiently achieves high-
performance on a wide range of embedded applications


