
Mondriaan Memory Protection

by

Emmett Jethro Witchel

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2004

c© Massachusetts Institute of Technology 2004. All rights reserved

MIT hereby grants you permission to reproduce and distribute publicly paper and

electronic copies of this thesis document in whole or in part.

Author .

Emmett Witchel

Department of Electrical Engineering and Computer Science

February, 2004

Certified by. .

Krste Asanović

Associate Professor

Thesis Supervisor

Accepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Mondriaan Memory Protection

by

Emmett Jethro Witchel

Submitted to the Department of Electrical Engineering and Computer Science
on February, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Reliability and security are quickly becoming users’ biggest concern due to the increasing
reliance on computers in all areas of society. Hardware-enforced, fine-grained memory
protection can increase the reliability and security of computer systems, but will be adopted
only if the protection mechanism does not compromise performance, and if the hardware
mechanism can be used easily by existing software.

Mondriaan memory protection (MMP) provides fine-grained memory protection for a
linear address space, while supporting an efficient hardware implementation. MMP’s use
of linear addressing makes it compatible with current software programming models and
program binaries, and it is also backwards compatible with current operating systems and
instruction sets.

MMP is well suited to improve the robustness of modern software. Modern software
development favors modules (or plugins) as a way to structure and provide extensibility
for large systems, like operating systems, web servers and web clients. Protection between
modules written in unsafe languages is currently provided only by programmer convention,
reducing system stability. Device drivers, which are implemented as loadable modules, are
now the most frequent source of operating system crashes (e.g., 85% of Windows XP crashes
in one study [Swift SOSP ’03]). MMP provides a mechanism to enforce module boundaries,
increasing system robustness by isolating modules from each other and making all memory
sharing explicit.

We implement the MMP hardware in a simulator and modify a version of the Linux
2.4.19 operating system to use it. Linux loads its device drivers as kernel module extensions,
and MMP enforces the module boundaries, only allowing the device drivers access to the
memory they need to function. The memory isolation provided by MMP increases Linux’s
resistance to programmer error, and exposed two kernel bugs in common, heavily-tested
drivers. Experiments with several benchmarks where MMP was used extensively indicate
the space taken by the MMP data structures is less than 11% of the memory used by the
kernel, and the kernel’s runtime, according to a simple performance model, increases less
than 12% (relative to an unmodified kernel).

Thesis Supervisor: Krste Asanović
Title: Associate Professor

3

4

Acknowledgments

This dissertation is dedicated to the memory of Joshua Cates (1977-2004). Josh’s clear
thinking and quick coding contributed greatly to our ASPLOS 2002 paper. He often saw
the gaps in my specification of a problem before I did. In addition to possessing great
technical skill, Josh also had a great attitude, which made him a pleasure to work with. I
was very happy to introduce him to the Jethro Tull album, Heavy Horses, which he enjoyed
with great relish. The world is a lesser place with his passing.

To the man who helped me find, define, refine and write-up the ideas in my thesis and
in several other projects, I would really like to thank my advisor, Professor Krste Asanović.
Krste is the man, as is obvious after a few minutes of conversation with him on a startling
range of topics. His ability to debug code when told of its failure conditions is scary, and
extends to bugs in hardware description languages. His ability to pursue ideas for hours on
end has extended beyond my body’s ability to maintain sufficient blood sugar levels to my
brain.

To my former advisor Professor Frans Kaashoek: who always impressed me with his
values system as a researcher, and whose enthusiasm is as impressive as it is infectious.
Frans’ comments on this thesis were detailed enough to have a permanent effect on my
writing style. He also ran the rootinest, tootinest rodeo of a group meeting I’ve ever been
to, which was the location of many memorable graduate student moments.

To Professor Mendel Rosenblum: who took a chance on an unknown, after I pestered him
enough; and whose keen intelligence and easy humor were always inspirational. Implement-
ing statistics collection in Embra with him sitting next to me was an amazing experience
in externally accelerated coding.

Graduate school is mostly about the other students and the environment, and I am thankful
for my time at MIT.

To Ronny Krashinsky: whose originality of thought is startling and whose wealth of
ideas makes him a potent ally.

To Chris Batten: who might have attended his lifetime limit of Mondriaan talks, but
who always had interesting comments.

To Andy Ayers: a man whose deep insight is only matched by his relaxed nature. He
made compiler technology a spiritual art. He taught me about the fat base class problem,
among many other gems.

To Chris Metcalf: who opened my eyes to the idea that most problems with UNIX shell
scripts and Makefiles come down to levels of quotation.

To Max Poletto: who inspired me with his humility and his use of ASCII pictures as
code comments.

To Eddie Kohler: whose scorching mental processes I was able to observe at close range.

To David Mazières: who taught me how to be grateful. I try to be grateful.

More thanks to Chuck Blake, Doug DeCouto, Dan Aguayo, Matt Frank, Mike Taylor, Frank
Dabek, Dawson Engler, Emil Sit, Russ Cox, Brian Ford, Michael Kaminsky, Heidi Pan,
Ken Barr, Seongmoo Heo, Albert Ma, Jessica Tseng, Michael Zhang, Mark Hampton, Felix
Klock, John Jannotti, Debbie Wallach, Fred Chung, John Bicket, Athicha Muthitacharoen,

5

Sanjit Biswas, Carty Castaldi, and Richard Schooler (“plans don’t work, but planning
does”).

Special thanks to Sam Larson and C. Scott Ananian for their collaboration on papers.

Extra thanks to Benjie Chen for reading a draft of my thesis and providing insightful
comments.

Much thanks to Professors Anant Agarwal, Anoop Gupta, Robert Morris, Saman Ama-
rasinghe, and Martin Rinard.

More extra thanks to Professor Barbara Liskov for reading and commenting on my thesis
and for sitting on my committee.

I would like to thank the following funding sources: NSF CAREER award CCR-0093354;
and DARPA PAC/C award F30602-00-2-0562.

And thank you to Neena Lyall and Shireen Yadollahpour for bringing some administrable
order to my unordered travel and reimbursement needs. Thanks to Cornelia Colyer, for
administrative help and discussion about France. MIT feels the loss of her death.

I view my dissertation as marking the end of my studenthood. I have long passed the
mystery of the 13th grade, and now find myself at the end of the student path. I’d like to
thank some of the teachers who got me here.

To Mr. Elfenbien: who taught me science in 5th grade and showed movies of his sky
diving adventures, who gave ungraded general knowledge quizzes, one of which contained
the question, “What is a female Czar called?” (Czarina).

To Mr. Kennefeck: who taught me English in 7th grade. He would record his lessons
before classes every day and then play the tape in each class, occasionally stopping the tape
to comment. This started my appreciation of academia’s tolerance of eccentricity. Despite
his unorthodox methods he was an excellent teacher.

To Mr. Cardinelli: who taught me English in 8th grade and tried to convince me that
infer and imply were synonyms. This began my frustration with misunderstanding.

To Dr. Bumby: who taught me math in 10th grade and introduced me to imaginary
numbers. I was hooked.

To Mr. New: who taught me physics and AP physics from a midwesterner’s perspective.
The man liked guns and took some interesting fast-exposure pictures. He gave me a battery
tester that I still use today.

To Steve Fisher: who taught my second programming class at Stanford, which was one
of the most fun intellectual experiences of my life. He talked fast and had a great feel for
the material. I remember him explaining null terminated strings.

To the professor who taught me Modern Algebra (Math 120) at Stanford during the
Autumn of 1993: who was human enough to break down in front of the class during the
proof of Sylow’s theorem and admit that the theorems we were proving were too abstract
to relate to anything real, but what he was actually trying to do was teach us how to think.

To my mother: who was involved in my education from the start, often taking a hands
on role e.g., by quizzing me on vocabulary words; who related to and encouraged my interest
in science; and who endured an extended period of my childhood where my mantra was, “I
don’t want to go to school,” with more patience than should be required of any parent.

6

To my father: who used to lie on the floor and read the encyclopedia on weekends; who
would read a book, listen to the radio and watch TV all at the same time.

To the ancestors: as they were, so I am.
To Dan Yaverbaum: with whom I have asked and answered more questions than anyone

else.
To Danielle Adler: with whom I plan to learn the rest of my days.
Special thanks for the inspiration of the art of the Grateful Dead and Bob Dylan.

For me, pushing myself is way more about, “It’s hard to make something that’s
interesting.” It’s really, really hard, and I’m sure we don’t succeed with every
story on every show. Basically, anything that anyone makes. . . It’s like a law of
nature, a law of aerodynamics, that anything that’s written or anything that’s
created wants to be mediocre. The natural state of all writing is mediocrity.
It’s all tending toward mediocrity in the same way that all atoms are sort of
dissipating out toward the expanse of the universe. Everything wants to be
mediocre, so what it takes to make anything more than mediocre is such a
fucking act of will. Anyone who makes something for a living, or even not for
a living, if they’re really excited about it. . . You just have to exert so much will
into something for it to be good. That feels exactly the same now as it did the
first week of the show. That hasn’t changed at all. That’s the premise of what
it takes to make something.

—Ira Glass (producer of National Public Radio’s This American Life) from an interview in
The Onion.

Songs are songs – I don’t believe in expecting too much out of any one thing.

—Bob Dylan

We can only see a short distance ahead, but we can see plenty there that needs
to be done.

—Alan Turing

7

8

Contents

1 Introduction 17
1.1 The problem of module safety . 18

1.2 Fine-grained protection domains . 19
1.3 MMP Overview . 20

1.4 Example and requirements . 22
1.5 Contributions of the thesis . 23

1.6 Thesis outline . 25

2 Memory Protection 27
2.1 Page-based protection . 27

2.1.1 Page sharing . 28
2.1.2 Grouping pages . 29

2.2 Segmentation . 29
2.3 Capabilities . 30

2.4 Embedded systems . 32
2.5 Software techniques . 32

2.5.1 Nooks . 32

2.5.2 Safe languages . 33
2.5.3 Software capability systems . 33

2.5.4 Single address space operating systems 34
2.5.5 Static analysis and model checking 34

2.5.6 Lightweight remote procedure call 34
2.5.7 Software fault isolation . 34

2.5.8 Proof-carrying code . 35
2.6 Protecting control flow . 35

2.6.1 Gates . 35
2.6.2 Protecting control flow with capabilities 36
2.6.3 Microkernels . 36

2.7 Summary . 37

3 MMP Permissions Table 39

3.1 Sorted segment table . 40
3.2 Trie . 41

3.2.1 Permission Vector Entries . 41
3.2.2 Run-length encoded entries . 42

9

3.3 Gate tables . 45
3.4 Possible table optimizations . 47

3.4.1 Extension to 64-bits addresses . 47
3.4.2 Sharing permission tables . 47
3.4.3 Alternate permissions encodings . 48

4 MMP Hardware 51
4.1 Lookaside Buffers . 51

4.1.1 Protection Lookaside Buffer (PLB) 51
4.1.2 Gate protections lookaside buffer (GPLB) 53

4.2 Sidecar registers . 53

4.3 Cross-domain calling . 54
4.3.1 Gate requirements . 54
4.3.2 Gate implementation . 55
4.3.3 Cross-domain call example . 56

4.4 Hardware implementation issues . 57
4.4.1 In-order pipeline implementation . 57
4.4.2 Out-of-order pipeline implementation 58

4.4.3 Mixing mapped and pinned memory 59
4.4.4 The problem with inlining code . 59
4.4.5 Approaches for multi-processors . 59

5 MMP Evaluation for User Programs 61
5.1 Evaluation Methodology . 61
5.2 Benchmark overview and methodology . 62
5.3 Coarse-Grained Protection Results . 63
5.4 Fine-Grained Protection Results . 65

5.5 Memory Hierarchy Performance . 67

6 MMP Memory Supervisor 69
6.1 Memory supervisor concepts . 69

6.2 Using the supervisor for a modular application 70
6.3 Memory supervisor overview . 71
6.4 Memory supervisor API . 72

6.4.1 Protection domain creation . 73
6.4.2 Protection domain deletion . 73
6.4.3 Changing memory permissions . 73

6.4.4 Setting gate permissions . 73
6.4.5 Dynamic memory allocation . 74
6.4.6 Naming domains . 74
6.4.7 Group protection domains . 75

6.5 Policy for memory ownership and permissions 76
6.6 Dynamic memory allocation . 78

6.6.1 Design of a generic memory allocator 78
6.6.2 Freeing memory . 79
6.6.3 Dynamically allocated memory and domain deletion 79

6.7 Memory supervisor data structures . 80

10

6.7.1 Tracking memory sharing across domains 80

6.7.2 Tracking group protection domains 80

7 Mondrix: the MMP-Enabled Linux Prototype 83

7.1 From system reset to kernel initialization 84

7.2 Loading modules into protection domains 85

7.2.1 Modifying insmod . 85

7.2.2 Domain creation with module loading 86

7.2.3 The mmp-kernel-symbols module 86

7.2.4 Setting permissions on kernel program sections 87

7.2.5 Communicating memory sharing patterns to MMP 88

7.2.6 Initial RAM disk . 90

7.2.7 The printk domain . 90

7.3 Dynamic memory allocation in Mondrix . 91

7.3.1 Background on Linux’s memory allocators 91

7.3.2 Integrating the memory supervisor with Linux’s memory allocators . 91

7.3.3 Executing the allocator and memory supervisor atomically 92

7.3.4 Providing length information to the memory supervisor 92

7.3.5 Reducing memory supervisor work during (de)allocation 92

7.3.6 Supporting custom allocators . 93

7.3.7 Trusting the caller of mmp mem free 93

7.4 Managing permissions in Mondrix . 93

7.4.1 EIDE disk driver . 94

7.4.2 NE2000 network driver . 94

7.4.3 Kernel stack/user area . 95

7.4.4 Optimizing PLB performance for kernel stack/user area 96

7.4.5 Optimizing function pointers . 96

7.4.6 Runtime adjustment of permissions 97

7.5 Cross-domain calling . 97

7.5.1 Interrupts . 97

7.5.2 Passing arguments . 98

7.5.3 Inlined functions and protection domains 98

8 Experimental Evaluation of Mondrix 99

8.1 MMP exposes an error . 99

8.2 Experimental methodology . 100

8.3 Limitations of model accuracy . 102

8.4 Results . 102

8.5 Evaluation of cross-domain calling in the Linux kernel 106

9 Enforcing Stack Permissions 107

9.1 Memory supervisor’s stack responsibilities 107

9.2 Managing stack permissions with extra registers 108

9.3 Stack allocated parameters . 109

9.4 Alternatives to sharing stack memory . 110

11

10 Adding Translation to MMP 111
10.1 Zero-copy networking background . 112
10.2 Memory translation . 112
10.3 Implementing zero-copy networking with MMPT 112
10.4 Translation hardware implementation . 113
10.5 Complications from byte-level translation 115

10.5.1 Adding translation to sorted segment table entries 115
10.5.2 Adding translation to run-length encoded entries 115

10.6 Evaluation . 117

11 Additional Applications, Future Work, and Conclusions 119
11.1 Additional applications for MMP . 119

11.1.1 Combining fine-grained protection and translation 120
11.2 MMP and programming languages . 121

11.2.1 Language-level interface to MMP . 121
11.2.2 Implementing exceptions and continuations in MMP 122

11.3 Conclusion . 122

A Interface file for Mondrix memory supervisor 125

12

List of Figures

1-1 A visual depiction of multiple memory protection domains within a single
shared address space. 19

1-2 The major components of the Mondriaan memory protection system. 21

2-1 Sharing memory at page granularity via mmap 28

2-2 Two example capabilities . 30

3-1 A sorted segment table (SST). Entries are kept in sorted order and binary
searched on lookup. In this example, there is a single read-only region from
0x00100020 – 0x0010003F. 40

3-2 How an address indexes the trie. 41

3-3 Pseudo-code for the trie table lookup algorithm. 42

3-4 A trie table entry consisting of a permissions vector. 43

3-5 The bit allocation for upper level entries in the permissions vector trie table,
and the implementation of the function used in trie table lookup. 43

3-6 The bit allocation for a run-length encoded permission table entry. 44

3-7 An example of segment representation for run-length encoded entries. . . . 44

3-8 Permissions minimality example. 45

3-9 How gates permissions are placed on instructions for cross-domain calling. . 46

3-10 The format of an entry in the gate permission table. 47

3-11 How independent tables for independent permissions values can yield efficient
entries. 48

4-1 The major components of the Mondriaan memory protection system, with
support for switch and return gates. 52

4-2 The layout of an address register with its sidecar register. 53

4-3 How MMP is used for cross-domain calling. 55

4-4 How the same code (e.g, interrupt stubs) can be mapped into every domain. 56

4-5 An in-order, five-stage pipeline. 57

6-1 Structuring a generic, modular application to use multiple domains. 70

6-2 An example of a group protection domain. 75

6-3 A partial order on permissions values. 78

6-4 A before and after picture for memory allocation. 79

7-1 How Mondrix loads different modules into different protection domains. . . 84

7-2 Finding the start and end of function implementations. 86

7-3 A before and after picture for domain creation with module loading. 87

13

7-4 Named and anonymous sharing of code and data. 88
7-5 Memory permissions corruption scenario if dynamic memory allocator and

memory supervisor do not execute atomically. 92
7-6 How MMP can protect the user area from the kernel stack. 95

9-1 Providing stack safety with three hardware registers. 108
9-2 The major components of the Mondriaan memory protection, including sup-

port for managing stack permissions. 109

10-1 An example of byte-level translation. 113
10-2 Using memory protection and segment translation to implement zero-copy

networking. 114
10-3 The layout of an address register with sidecar which has translation informa-

tion (shaded portion). 114
10-4 A sorted segment table (SST) with translation information. 116
10-5 The format for a record with a run-length encoded entry and translation

information. 116

14

List of Tables

3.1 Example permission values and their meaning. 39
3.2 The different types of trie table entries, and the implementation of the func-

tion used in trie table lookup. 45
3.3 Gate types and their associated data. 46

5.1 The reference behavior of benchmarks. 63
5.2 Coarse-grained protection results. 64
5.3 Comparison of time and space overheads with inaccessible words before and

after every malloced region. 66
5.4 Measurements of miss rates for a trie table with run-length encoded entries

and a 60 entry PLB. 67
5.5 Cache behavior of user applications using fine-grained protection 68

6.1 Memory supervisor policy for memory ownership and permissions. 77

8.1 The names and descriptions of the modules that Mondrix loads. 100
8.2 The names and descriptions of the benchmarks run by Mondrix to evaluate

MMP support in the Linux kernel . 101
8.3 Processor performance data for workloads running with an MMP-enabled

Linux kernel. 103
8.4 Permissions table data for workloads running with an MMP-enabled Linux

kernel. 104
8.5 OS characterization of workloads running on Mondrix. 104
8.6 Breakdown of instruction overheads for workloads running on Mondrix. . . 105
8.7 Performance data for the MMP permissions caching hardware for workloads

running on Mondrix. 105
8.8 Cross-domain calling behavior for workloads running with an MMP-enabled

Linux kernel. 106

15

16

Chapter 1

Introduction

Computer architects have been interested in building machines with fine-grained memory
protection since the early sixties, in part because of programmer demand. The match
between fine-grained memory protection and software engineering seems natural—if the
architecture can protect programmer data structures, the architecture (possibly with help
from the operating system) can detect and even recover from program errors. Computer
architects evolved several designs, none of which fulfilled the promise of fine-grained pro-
tection. Segment and capability based machines from the mid-60s to the mid-70s contained
ever more elaborate protection mechanisms, but they still failed to provide a satisfactory
programming model.

In 1975, Intel began design work on the iAPX 432, an ambitious processor that incorpo-
rated some of the most sophisticated architectural support ever conceived for fine-grained
protection and object-oriented programming. The processor schedule slipped, and Intel re-
leased the 8086 in 1978 as a stopgap. Intel’s 8086 (and the 8-bit version, the 8088) became
very popular, and when the iAPX 432 finally shipped, its performance was poor. When
microprocessors adopted the demand-paged virtual memory hardware pioneered in main-
frames in the 60s, they also inherited simple page-based protection schemes. Paging was
added to the 80386 in 1985, and page-based protection has been standard for commodity
processors ever since. Programmers have accepted the limitations of coarse-grained memory
protection, and worked around them, perhaps believing the impressive gains in processor
performance since 1985 were possible only with simplified memory protection hardware.
The huge volume of code written for a coarse-grained protection model has rendered non-
compatible solutions untenable, regardless of their attractive features.

Mondriaan 1 memory protection (MMP) provides architectural primitives for fine-grained,
hardware-enforced, memory protection that can be efficiently realized in modern processor
designs. This support is backwards compatible with existing architectures, operating sys-
tems and binaries. Legacy operating systems and software applications written in unsafe
languages can use MMP’s architectural mechanisms to address the problem of software
robustness: finding bugs in development, tolerating them in production, and providing a
basis for data security. This thesis contributes a hardware design, and an operating system
implementation which validate the long standing insight that fine-grained memory protec-
tion is useful to programmers, and which demonstrates the feasibility of efficient hardware

1We use the Dutch spelling with the double ‘a’

17

and software implementation.

1.1 The problem of module safety

Modern software development favors modules (or plugins) as a way to structure and provide
extensibility for large systems. For example, the Linux kernel has an elaborate module sys-
tem for device drivers and other kernel subsystems; the Apache web server has an entire web
site dedicated to modules (modules.apache.org), which provide such essential functionality
as the interpretation of Perl code in web pages [Apa03b]; and the Mozilla web browser sup-
ports a general plugin interface to extend the browser with additional functionality like the
ability to view documents in Adobe Acrobat format (PDF) [Ado02]. In each case, features
are encapsulated into a separate module, reducing the size and complexity of the “core”
code. By moving optional features into modules and out of the core, the core becomes
simpler. A simpler core is easier to make robust, maintain, and tune for performance. Fur-
thermore, open module interfaces allow third parties to insert their own functionality into
a modular system.

One problem with the modular architecture as currently implemented is that there is
no isolation between a plugin and the core for modules written in unsafe languages. Most
systems (like the ones mentioned) use a single address space and simply link the module into
the same address space as the core application. Using a single address space makes com-
munication between the core software and the plugin fast and flexible, but compromises
safety. Module boundaries are respected only by programming convention, not enforced
by a run-time mechanism. In the operating system, device drivers (implemented as load-
able modules) are now the most frequent source of operating system crashes (e.g., 85% of
Windows XP crashes in one study [SBL03]).

Without protection, a program error in a module can cause the failure of the entire
application. Wild reads, writes, and jumps from a faulty module can cause a system failure,
and many different kinds of programming errors in unsafe languages reveal themselves by
wild reads, writes, or jumps. The classic example in C, known to even casual programmers,
is the NULL memory dereference. Many pointer manipulation errors in C make the program
load or store a value to address zero (NULL), which is illegal. The operating system usually
halts a program which accesses NULL, and produces a dump of the process’ memory for
the programmer to analyze. While illegal accesses are frustrating, they provide a fail-stop
mechanism. Even more problematic are pointers to legal, but incorrect, addresses which
cause data corruption or resource leakage. For instance, buffer overrun attacks overwrite
memory locations that should not be writable, and instead of crashing an application, can
open a security hole in a web server. In current systems, one module’s bad access usually
means the entire application must be terminated because there is no way to know what
parts of the system have been damaged by the module’s failure.

Excessive resource consumption, API violations, and synchronization or locking errors
are other possible failure modes, and static analysis techniques can be effective at finding
these types of errors [MPC+02, EA03]. Memory corruption across separately loaded mod-
ules is one of the most common failure modes, and is not amenable to compile-time analysis.
A study of Unix bug databases (including CERT advisories [Sof03]), over the last 10 years
shows buffer overrun attacks, which can corrupt stack or heap memory, account for between
25% and 50% of reported vulnerabilities [WFBA00]. Defending against memory corruption
and wild jumps requires inspecting every load, store and instruction fetch.

18

Memory
Addresses

���
���
���

���
���
���

���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������
���������
���������

���������
���������
���������

�����������
�����������
�����������
�����������

None

Read−only

Read−write

Execute−read

Permissions Key

0

0xFFF...

PD 0 PD 1 PD 3PD2

Protection domains

Figure 1-1: A visual depiction of multiple memory protection domains within a single shared
address space.

The architects of module-based systems have rejected designs using the native architec-
ture and OS support for a separate address space per module because of the complexity and
run-time overhead of managing multiple address contexts. The page-based protection that
is ubiquitous in today’s hardware is too coarse-grained to support the fine-grained sharing
that occurs between modules. Previous hardware mechanisms for fine-grained memory pro-
tection, namely segmentation and capabilities, have been plagued by performance problems
and an awkward software programming model.

1.2 Fine-grained protection domains

MMP adopts Lampson’s term [Lam71], protection domain, to refer to a lightweight context
which determines permissions for executing code. MMP overlays an address space with
multiple, disjoint protection domains, each with a unique set of permissions (see Figure 1-1
which is based on diagrams in [Lam71] and [Lev84]). Each column represents one protection
domain, while each row represents a range of memory addresses. The address space can be
virtual or physical—protection domains are independent from how virtual memory transla-
tion is done (if it is done at all). A protection domain can contain any number of threads,
and every thread is associated with exactly one protection domain at any instruction in
its execution. Protection domains that want to share data with each other must share at
least a portion of their address space. There is no domain-specific portion of an address, a
pointer refers to the same memory location in any domain. The color in each box repre-
sents the permissions that each protection domain has to access the region of memory in
the box. An ideal protection system would allow each protection domain to have a unique
view of memory with permissions that can be set on arbitrary-sized memory regions, and
would raise a protection exception if the executing thread does not have permissions for an
attempted access.

MMP comes close to this ideal. MMP brings increased memory safety to large, legacy
systems written in unsafe languages, without decreasing performance significantly. MMP
allows a large system, like an operating system, to have several, independent, services
which can continue running, even if an individual service fails. Boundaries between services
are usually well defined, but often irregular. A service might export ten functions, but also

19

allow read access to a small, internal, data field for efficiency. MMP supports these irregular
interfaces without making programmers change their data layout or code structure.

For example, we modified Linux to run the low-level network driver as a separate service
in its own protection domain. If this service tries to violate the permissions it is given, it
can typically be killed and restarted; the high-level protocol will resend any packets lost
during the failure. A computer system that crashes or becomes unresponsive today could
use MMP to become a computer system that tolerated the failure and continued to provide
service to the user.

The application examined in detail in this thesis is bringing an increased level of memory
safety to the module system found in a modern operating system. Many program errors
manifest as memory protection violations, especially if a system is given only the minimal
amount of permissions it needs to complete a task. MMP is designed to protect software
services from bugs in other services, not malicious code, though it will prevent some mali-
cious attacks. It detects memory use violations, such as one module trying to write another
module’s unshared data structure, or one module calling another module’s private, internal,
function. How to recover from a protection violation is a problem that has been addressed
by other systems [SBL03], and will not be addressed by this thesis. MMP provides no
safeguard against resource exhaustion, thread capture, or denial of service attacks. There
are techniques to address all of these problems, but they are beyond the scope of this work.

MMP is not a security system, it is a permissions system. We have designed it to be
powerful enough to be the basis of a secure system, but this thesis does not address security
policies.

1.3 MMP Overview

MMP consists of hardware and software to provide fine-grained memory protection. MMP
modifies the processor pipeline to check permissions on every load, store, and instruction
fetch. It supports gate permissions so a service can only be called at an approved entry point
(see Chapter 4.3). MMP is designed to be simple enough to allow an efficient implementation
for modern processors, but powerful enough to allow a variety of software services to be
built on top of it.

The MMP hardware checks the memory accesses and instruction fetches of every thread
to see if that thread’s domain has appropriate access permissions. Each domain depicted in
Figure 1-2, has its own permissions table, stored in privileged memory, which specifies the
permission that domain has for each address in the address space. The permissions table
is similar to the permissions part of a page table, but permissions are kept for individual
words in an MMP system. The CPU also contains a hardware control register, which holds
the protection domain ID (PD-ID [KCE92]) of the currently running thread, and another
register that holds the base address of the active domain’s permissions table.

The MMP protection table represents each user segment, using one or more table seg-
ments. A user segment is a contiguous run of memory words with a single permissions value
that has some meaning to the user. For instance, a memory block returned from malloc
could be a user segment. A table segment is a unit of permissions representation convenient
for the permissions table. Different designs for the permissions table break user segments
into table segments in different ways.

MMP uses a protection lookaside buffer (PLB) to caches permissions information for data
accessed by the CPU, avoiding long walks through the memory resident permissions table.

20

Table
Permissions

Permissions Table Base

Protection

refill

MEMORY

CPU

Address Regs Sidecars

Buffer (PLB)
Lookaside

Protection Domain ID (PD−ID)

Program Counter
lookup

Figure 1-2: The major components of the Mondriaan memory protection system. On a
memory reference, the processor checks permissions for the effective address in the address
register sidecar. If the reference is out of range of the sidecar information, or the sidecar is
not valid, the processor attempts to reload the sidecar from the protection lookaside buffer
(PLB). If the PLB does not have the permissions information, either hardware or software
looks it up in the permissions table which resides in memory. The reload mechanism caches
the matching entry from the permissions table in the PLB and writes it to the address
register sidecar.

The PLB resides on-chip with the CPU, and hardware or software reads the permissions
table and caches its entries in the PLB. It uses the PLB to cache permissions table entries
like a TLB caches translation page table entries. As with a conventional TLB miss, a PLB
miss can use hardware or software to search the permission tables.

To further improve performance, and reduce energy consumption, MMP adds a sidecar
register for every architectural address register in the machine (in machines that have unified
address and data registers, a sidecar would be needed for every integer register). The sidecar
caches the last table segment accessed through its corresponding address register. The
sidecar contains base, bounds and permissions information, obviating the need to access the
PLB so long as the addresses generated using the sidecar’s address register stay within the
table segment. Sidecars save energy because they avoid the associative search performed by
the PLB. The sidecars can improve performance because they represent the address range of
a table segment exactly, while the PLB index is limited to a power-of-two sized subsegment
(see Section 4.2 for details). The information retrieved from the permissions tables on a
PLB miss is written to both the register sidecar and the PLB. Sidecars do not complicate
the programming model because they are not programmer visible.

MMP incurs both space and time overheads. The space overhead is for the permissions
table, which is in main memory and stores permissions information about the virtual address
space of a single protection domain. The time overhead is due to the memory references
to the permissions table, and instructions for table maintenance. The MMP design reduces

21

the space overhead by using an efficient multi-level table. The primary cost of the the
multi-level table is the number of protection bits per word. The prototype system has 2
protection bits for each 32-bit word. Time overhead is reduced by making the most of the
PLB. The permission table uses overlapping, run-length encoded entries. Each entry holds
permissions information for adjacent entries, maximizing the utility of loading an entry into
the PLB, and reducing the PLB miss rate. Permissions table entries are cached in the data
cache, so the main cost of permissions table accesses are cache misses to the table entries.

MMP preserves the user/kernel mode distinction, where kernel mode enables access to
privileged control registers and privileged instructions. Access to privileged memory areas
(like I/O space) is controlled with MMP. The CPU encodes whether a domain is user or
kernel mode using the high bit of the PD-ID control register (a zero high bit implies a kernel
domain). Protection domain 0 is used to manage the permissions tables for other domains.
It is special in that it can access all of memory without the mediation of a permissions table.

The software part of MMP is the memory supervisor, discussed in Chapter 6. The
supervisor writes the permissions tables, it enforces policy on memory use and sharing, and
it provides additional protection services.

1.4 Example and requirements

We provide a brief example to motivate the need for the MMP system, and the specific
features it supports. Consider a memory allocation service used by different protection
domains. The allocator gets a request for a certain sized memory region, it finds an ap-
propriate block, and then grants permissions on that memory to the calling domain. The
domain that allocated the memory can make the memory accessible to another domain.
When the memory is freed, the allocator revokes permissions on the region from every
domain that has permissions.

Implementing this example requires a memory system to support the following require-
ments:

• heterogeneous: Different protection domains need different permissions on the same
memory region to support flexible memory sharing. A domain should be able to give
a read-only copy of a dynamically allocated data item to another domain.

• small: Sharing granularity can be smaller than a page. Memory allocation sys-
tems often allocate a bit more memory than was requested to ease bookkeeping, but
page-based allocation would cause too much internal fragmentation to be acceptable
for most applications. In an operating system, such fragmentation causes physical
memory to go unused.

• revoke: A protection domain owns regions of memory and is allowed to specify the
permissions that other domains see for that memory, including the ability to revoke
permissions. A memory allocation service must revoke access permission when a client
frees memory.

• entry: A protection domain must be entered at a publicly exported entry point. The
called domain should return to the proper location in the caller’s domain. A memory
allocation service could fail or corrupt its own data structures if a client called a
private function that was not intended for public use.

22

Previous memory sharing models fail one or more of these requirements.

Conventional linear, demand-paged virtual memory systems can meet the heterogeneous
requirement by placing each thread in a separate address space and then mapping physical
memory pages to the same virtual address in each address context. These systems fail the
small requirement because permissions granularity is at the level of pages. Page-based
execute permissions are insufficient to enforce the entry requirement.

Page-group systems [KCE92], such as HP’s PA-RISC and IBM’s PowerPC, define pro-
tection domains by which page-groups (collections of memory pages) are accessible. Every
domain that has access to a page-group sees the same permissions for all pages in the
group, violating the heterogeneous requirement. They also violate the small requirement
because they work at the coarse granularity of a page or multiple pages. Domain-page sys-
tems [KCE92] are similar to our design in that they have an explicit domain identifier, and
each domain can specify a permissions value for each page. They fail to meet the small,
and entry requirement because permissions are managed at page granularity.

Capability systems [DH66, Lev84] are an extension of segmented architectures where
a capability is a special pointer that contains both location and protection information
for a segment. Although designed for protected sharing, some of these systems fail the
heterogeneous requirement for the common case of shared data structures that contain
pointers. Threads sharing the data structure share its pointers (capabilities) and therefore
see the same permissions for objects accessed via those capabilities. Some systems (e.g.,
EROS [Sha99]) remove this restriction by supporting a special capability modifier which
downgrades permissions when capabilities are read [Sha99].

Many capability systems fail to meet the revoke requirement, because revocation can
require an exhaustive sweep of the memory in a protection domain [CKD94]. Some capabil-
ity systems meet the heterogeneous and revoke requirements by performing an indirect
lookup on each capability use [HSH81, SSF99], which adds considerable run-time overhead.
Special capability types can enforce the entry requirement exactly.

1.5 Contributions of the thesis

The contribution of this thesis is to provide a hardware/software design for fine-grained
memory protection that has several attractive features:

• MMP memory protection primitives naturally fit software usage patterns.
The author’s ability to adapt quickly several major Linux subsystems to use MMP
provides evidence that MMP’s abstractions fit those already present in software.

• MMP is backwards compatible with current software. We did not change
most of Linux to enable it to use MMP, because MMP does not force us to change
code unrelated to protection. For most system utilities, the MMP-enabled Linux uses
the same binaries as Linux.

• MMP is compatible with current instruction sets. Our Linux prototype runs
on the x86, which is not a cleanly designed instruction set. However, MMP does
not need instruction set support, and it can cope with irregularities like byte-aligned
instructions.

23

• MMP is easily implemented in high-performance hardware. Memory pro-
tection checks are not on an instruction’s critical path, allowing the check to overlap
with instruction execution.

MMP succeeds where previous designs failed because it separates protection metadata
from program data, allowing permissions to be compressed and more effectively cached.
This is similar to paging hardware, where address translation separates the translation
metadata from program data and compresses it, representing an entire page’s offset with
a single value. MMP does not get in the way, maintaining backward compatibility with
instruction sets, operating systems, and programming models. It also does not contain any
confusing new programmer-visible abstractions, just permissions on words of memory.

In this thesis, the main application for fine-grained protection is bringing memory safety
to operating system modules written in unsafe languages, though Chapter 10 discusses many
other uses.

We validate our design of the permissions table and caching structures (PLB and side-
cars) by evaluating their performance on user-level applications written in C and Java. The
results from Chapter 5, show that MMP has little performance penalty when it is used
to protect large memory regions. We then use it for fine-grained protection by placing
inaccessible (guard) words before and after every dynamically allocated block of memory
(every call to malloc). We measure a space overhead of under 9%, while adding fewer than
8% additional memory references (application references and permissions table references
divided by application references).

We demonstrated MMP’s backwards compatibility and ease of use by adapting Linux
2.4.19, executing on Intel’s x86 architecture, to use it. Linux is a mature operating system,
and the x86 is a well-entrenched architecture. The parts of the kernel that deal with
memory permissions were the only ones modified, and these were modified to increase the
memory isolation between kernel subsystems. We modeled the MMP hardware, and built
the memory supervisor, which is the software that manages the hardware and provides a
useful interface to the rest of the kernel. We modified Linux’s memory allocators, and its
system utilities to isolate kernel modules in their own domain, and make kernel-module
(and inter-module) memory sharing explicit. We call this modified system Mondrix. That
a single programmer could adapt Linux to use MMP provides some evidence for our claim
that MMP provides a useful software abstraction. We then simulated the MMP hardware
within bochs [Sou03], which is a full x86 machine simulator, sufficient in detail to boot and
run an operating system.

Mondrix requires less than 11% additional memory space, and adds less than 12% execu-
tion cycles (according to a simple performance model) to a range of OS intensive workloads.
The evaluation details are in Chapter 7, and they show that OS support for MMP is effi-
cient, and that making memory sharing explicit with MMP, even in the context of a large
and complicated code base, carries a modest performance cost.

Fine-grained memory protection has been desired by researchers in commodity hard-
ware for years [AL91]. It is useful for stopping buffer overrun security attacks [WFBA00],
data watchpoints [Wah92], and generational garbage collectors [LH83]. These and other
applications are discussed in Section 11.1, but the most important uses might not yet have
been conceived. In the author’s experience, when told about MMP, most researchers con-
fess some interesting design idea they abandoned for lack of hardware and OS support for
fine-grained protection.

24

1.6 Thesis outline

This thesis is structured as follows. Chapter 2 gives an overview of related work, examining
previous forms of architectural support for fine-grained memory protection, and software
solutions to memory safety and system extensibility.

Chapter 3 explains the MMP permissions table, the main data structure written by
software and read by hardware that provides the permissions information which is checked
on every load, store, and instruction execution. Its design is similar to a page table, but with
only protection information. Chapter 4 discusses the hardware structures, which cache the
permissions table entries. These two structures make a complete system, which Chapter 5
evaluates for different kinds of user-level programs written in C and Java.

Chapter 6 describes the MMP memory supervisor, which is the kernel code that manages
the permissions tables and provides additional memory protection services. Chapter 7
describes the Linux prototype, called Mondrix. We modified the bochs [Sou03] x86 emulator
to model the MMP hardware, and adapted the Debian distribution of Linux 2.4.19 to use
the modified hardware. We wrote a memory supervisor for Linux, and added inter-module
protection for the EIDE disc driver, the network driver, and other necessary kernel modules.
We present a detailed performance analysis of the prototype in Chapter 8.

Chapter 9 presents a design for extending MMP memory isolation to stack memory.
Chapter 10 discusses how the MMP framework can be extended to memory metadata
beyond permissions information. It explains and evaluates fine-grained translation which is
useful for zero-copy networking. Chapter 11 describes many additional applications for fine-
grained protection and translation. It goes on to discuss programming language support
for MMP, and concludes.

25

26

Chapter 2

Memory Protection

This chapter reviews how other systems provide memory protection. The page-based pro-
tection that is nearly ubiquitous today has shortcomings because of its coarse granularity.
Fine-grained protection has long been identified as useful [Bur61, DH66, Sal74], but previous
hardware support for it (segmentation and capabilities) have been plagued by performance
problems and an awkward software programming model. Software-only approaches gen-
erally restrict implementation to a single language; they cannot make use of legacy code
(especially code written in unsafe languages) and third party modules distributed in binary
form. They also often suffer from excessive CPU and memory usage.

2.1 Page-based protection

Memory protection was originally introduced to ensure safe multiprogramming of time-
shared computers in the late 1950s. Page-based virtual memory systems, introduced with
the Atlas [Fot61], have become the dominant form of memory management in modern
general-purpose computer systems. Modern architectures and operating systems have
moved towards linear addressing, in which each user process has a separate, linear, demand-
paged, virtual address space. Each address space has a single protection domain, shared by
all threads that run within the address space. A thread can only have a different protection
domain if it runs in a different address space. Sharing is only possible at page granularity;
a single physical memory page can be mapped into two or more virtual address spaces. A
user/kernel processor state bit provides protection between any user task and the kernel.

Although linear, page-based addressing is now ubiquitous in modern OS designs and
hardware implementations, it has significant disadvantages when used for protected sharing.
Pointer-based data structures can be shared only if all words on a page have the same
permissions, and the shared memory region resides at the same virtual address for all
participating processes. The interpretation of a pointer depends on addressing context, (i.e.,
addresses used by one context can be invalid in another) and any transfer of control between
protected modules requires a context switch, which is expensive in modern processors. The
coarse granularity of protection regions, the high cost of protecting memory via system calls,
and the overhead of inter-process communication limit the ways in which protected sharing
can be used by application developers. Although designers have been creative in working

27

Shared
File

�����������
�����������
���������
���������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������

�����
�����
�����
�����

Domain A Domain B

None

Read−only

Read−write

Execute−read

Permissions Key

Figure 2-1: Sharing memory at page granularity via mmap. A file is mapped into domain
A with read-write permissions, and into domain B with read-only permissions. In this
example, each domain is a process.

around these limitations to implement protected sharing for some applications [Chu96,
Lie95, HHL+97], each application requires considerable custom engineering effort to attain
high performance. In practice, designers of web browsers or kernel modules have sacrificed
robustness in favor of performance by foregoing hardware protection and placing all modules
in the same address space [Apa03a, Moz03, Tor03].

Figure 2-1 shows an example of page-based memory sharing using mmap. A single file
is mapped into two different domains, at different addresses. It is a strength of mmap that
Domain A can have read-write permissions and domain B has read-only permissions. The
shared region must be an integral number of pages, which rules out using page based pro-
tection to share most data structures found in an operating system without using additional
padding (which wastes physical memory). In this example, the two domains have mapped
their shared regions at different addresses, which means they cannot share pointers. While
mmap has a MAP FIXED option to allow a memory mapping at a fixed location, a programmer
might find it difficult to find a suitable shared location in two unrelated processes.

2.1.1 Page sharing

Some architectures support page sharing. Address space identifiers (ASIDs) in the MIPS
[KH92] and UltraSPARC [Sun96] architecture are process tags for TLB entries. This design
allows two different processes to have a mapping for the same virtual address in the TLB
at the same time—the ASID distinguishes them.

Every process in the UltraSPARC (and PA-RISC [Hew02]) has a set of ASIDs, which
provides support for groups of processes sharing a small number of pages or page groups. In
Figure 2-1, if the shared file were mapped at the same location and with the same permission
in domains A and B, the TLB entries for the shared file could have ASID C, which is an
extra ASID shared by both A and B. While memory sharing is important enough to warrant
architectural support in modern architectures, the page granularity limits its usefulness to
software.

28

2.1.2 Grouping pages

Several systems provide support for aggregating page-based protections. Domain-page sys-
tems [KCE92] can set permissions only at the granularity of a memory page. Page group
systems, such as HP PA-RISC and PowerPC, require that a collection of pages are mapped
together and with the same permissions across all domains (though each domain inde-
pendently might or might not have access at that fixed permission) [KCE92]. The Apple
Newton [SW92, WSW+94] has a form of page group system, where an active process has
access to a set of regions (called domains) which have the same access permissions across
all processes.

MMP can be considered a domain-segment system, because it allows permissions to be
set on arbitrary runs of words.

2.2 Segmentation

Segment-based schemes were among the first approaches to provide fine-grain cooperation
and information sharing between processes. The Burroughs B5000 [Bur61] was one of the
first machines to offer a segment-based protection scheme. An address is not simply an index
into a physical array of bytes, but rather the top bits of the address indexes a segment table,
which provides a base address of a segment, and the bottom bits of the address provide the
offset in that segment. Entries in the segment table include a field describing the protection
for the segment. A program can have many variable-sized code and data segments, and
a single stack segment. A hardware register points to a program reference table (PRT),
which holds an array of segment descriptors for the program. Every user code or data
reference must indirect through this table, and the processor checks accesses against the
base and bounds and access permissions held in the segment descriptor. Only operating
system code updates the PRT. Segments can be shared between processes by mapping the
same descriptors into two different PRTs, but the shared descriptor must reside at the same
offset in both PRTs. Fabry [Fab74] discusses the difficulties of allowing more flexible sharing
of segments between processes.

One disadvantage of segment-based schemes is the need to divide addresses between
segment numbers and segment offsets, requiring a trade-off between the number of segments,
and the maximum size of a segment. This static partitioning also complicates scaling the
architecture to a larger address space, as seen in the evolution of Intel’s x86 [Int02].

The systems built on segment hardware, preeminently Multics [Sal74], are similar to
the systems we hope to encourage with MMP. They feature hard modularity where “pro-
gramming errors related to using incorrect addresses tend to be immediately detected as
protection violations, and do not persist into delivered systems.” [Sal74] While the goal is
the same, MMP is different from segmentation; MMP maintains linear addressing and is
compatible with high performance, modern architectures.

One big drawback of using segmented addressing is that it exposes hardware detail to
programmers and compilers in an inconvenient way. The classic example is control transfer
on Intel’s x86. With 16-bit code segments, the programmer or compiler must know if
a procedure call could use a near pointer (within the segment) or a far pointer (outside
the segment). Foisting this addressing complexity on users is an unpopular feature of the
architecture. In MMP, the management of the protection structures is not seen by the user.

Modern architectures like PowerPC [IBM02] and HP’s PA-RISC 2.0 [Hew02] have adopted

29

1b

Capability bit Access rights

4b 6b

60b4b

Access rightsCapability bit

1b

Segment (object) identifier

Length (L) OffsetSegment

(54−L)b Lb

Figure 2-2: Two example capabilities. Both example capabilities contain a capabil-
ity bit, which distinguishes capabilities from non-capabilities, and is set or cleared
by privileged instructions. Both capabilities contains four bits of access rights (e.g.,
read/write/execute/enter), which indicate the operations on the object allowed by the ca-
pability. The top capability, common in older capability designs, contains a segment or
object identifier which must be interpreted by the hardware, and combined with an offset,
to generate a virtual address. The bottom capability (used in the M-machine [CKD94])
contains a virtual address, and features a variable division between segment identifier and
segment offset. The capabilities are 65 bits because the capability bit is not architecturally
visible.

segmentation as a way of expanding the virtual address space (from 32 to 64 or 96 bits in
PA-RISC). The expanded addresses facilitate sharing among cooperative processes and ob-
viates the need to flush the TLB on every context switch. These processors use the upper
bits of the address to choose the segment, which means that segments sizes are large (256MB
for PowerPC). Our segments are arbitrarily sized, and much of our interest is in the smaller
sizes.

2.3 Capabilities

Capability-based architectures [DH66, Lev84] are an evolution of segment-based schemes
[SS75], where a capability is a special pointer that contains both location and protection
information for a segment (for examples, see Figure 2-2). The data that a user program can
access is defined by the set of capabilities it possesses, and memory references are always
made relative to a given capability. Hardware-based capability systems require instruction
set support.

To protect their integrity, capabilities are modifiable only by the OS kernel. This prop-
erty is ensured either by using special bits to tag each memory word holding a capabil-
ity [WN79, CKD94] or by placing capabilities in protected memory segments (usually called
C-lists) [DH66]. Tagging wastes memory bits on non-pointers.

Figure 2-2 shows two styles of capability representation (both are tagged). The first
is common in early capability machines like the CAL-TSS system [Lev84], the Cambridge
CAP [Lev84], and Multics [Sal74]. Capabilities for these systems do not contain addresses,
but rather contain an identifier which is an offset into a global or local segment (or object)
table. The table contains the virtual (or physical) memory address, and length information
for a memory segment. Some machines (e.g., the Cambridge CAP) have user-invisible
registers which cache the result of resolving a capability to the memory address of the

30

segment it protects, so the resolution does not need to be performed on every memory
access (MMP’s sidecar registers are analogous to these registers). This style of capability
can contain base and length information, to enable a capability to grant access rights on a
subsection of the segment to which it refers. A register or instruction immediate provides
the offset within the segment referred to by the capability.

The bottom capability, used in the M-machine [CKD94] removes the extra levels of
indirection going from capability to address that are required by the top style of capability.
The M-machine capability contains a segment number and offset, which specifies a byte
location in memory. It allows a floating division between segment number and offset, so
memory can be divided into any number of power-of-two sized segments. Capabilities are
created to protect a segment of memory, so arithmetic operations on them check that the
resultant address still points within the original segment.

Most systems allow memory data to become persistent, so capability systems need
some way to make capabilities persistent. Capability-based access control is different from
the access control list (ACL) model used by traditional file systems, so many capability-
based systems [WCC+74, JJD+79, Ber80, SSF99] do away with traditional file systems.
The temptation to control everything: memory regions, disc storage, even I/O devices
with capabilities demonstrates their power, but it also makes resource management for
capability-based systems different from non-capability-based systems. Code written for a
non-capability system often must be redesigned and reimplemented for use in a capability
system, raising the barrier for entry.

Capabilities can be freely exchanged between processes, but once granted to a process
they are difficult to revoke. Revocation can require either an exhaustive sweep of the
memory in a protection domain [CKD94] or indirection on every pointer access [HSH81,
Lev84]. IBM’s AS400 provides revocable and non-revocable capabilities because of the
runtime cost of supporting the revocation of a specific capability. Even if a capability can
be revoked, if it is stored in a data segment shared by many processes, it is difficult to revoke
access rights for one process without affecting other processes sharing the same data.

Other disadvantages of capabilities are that they require more space than conventional
pointers because they often hold base and length information in addition to permissions.
This disadvantage can be mitigated if segment sizes and alignment are restricted, for exam-
ple, to power-of-two sizes [CKD94]. But the bits used for protection and other metadata
must come from somewhere, so they either increase the size of a pointer, or they reduces
the size of the address space (from 64 to 54 bits for the design in [CKD94]).

Capability systems have problems with allowing different domains to have different
permissions on a capability-based data structure. Since the capability itself holds the access
permissions, it requires additional capability permission types for a domain to export a read-
only version of a data structure containing capabilities (i.e., pointers), when the domain itself
wants to retain read-write permissions. This problem is solved in EROS [SSF99, Sha99], by
additional capability types. EROS is a software-based capability system, allowing it to add
capability types more easily than hardware implementations. It is discussed below under
software techniques.

MMP provides many of the same benefits of capabilities, primarily the ability to give
a task only the minimal set of memory permissions it needs, while avoiding most of their
disadvantages.

31

2.4 Embedded systems

Another important application area for single address space techniques is embedded systems,
which often have only a single small physical address space. These systems commonly
consist of several closely interacting threads. Protected sharing is important enough to merit
architectural support in these systems. The ARM940T is a recent embedded processor that
allows the active process to access 8 overlapping segments of the global physical address
space, but the segments must have power-of-2 size and alignment with a minimum size of
4 KB [ARM00]. The ARM 1156 decreases the minimum size to 32 bytes [Lev03], indicating
the need for embedded processors to support fine-grained memory protection.

2.5 Software techniques

There are a range of software techniques for memory protection. Most of them provide
higher-level safety guarantees than MMP, and all of them could use MMP facilities to
improve functionality or performance.

2.5.1 Nooks

Nooks [SBL03] provides device driver safety using conventional hardware. It shares the
MMP design goal of guarding against programmer error rather than malicious code, but it
achieves this goal without adding hardware mechanism, unlike the MMP system. Nooks uses
conventional paging hardware to isolate modules by putting them in different addressing
contexts (protection domains). All of these domains execute with full kernel privileges, but
they differ in their view of memory permissions.

Nooks is limited by the coarse-granularity of page-based protection, and the run-time
costs of switching addressing contexts. These factors sometimes force Nooks to place several
modules in the same protection domain. For example, many drivers are split into two
modules, a top half which manages device-independent algorithms, and a bottom half with
device dependent functionality. Nooks places both halves in the same domain, because
it must limit the number of Nook boundaries crossed during execution to maintain good
performance. MMP can enforce the natural module boundaries established by the Linux
kernel developers. MMP enables much finer-grained modules divisions, and defers to the
programmer, placing each module in its own domain. As a consequence, the frequency
of cross-domain calls in the MMP system (Section 8.5) is at least an order of magnitude
greater than Nooks [SBL03] without a decrease in performance, indicating that MMP offers
greater modularity and protection.

Nooks is an elegant solution to the specific problem of bringing safety to OS exten-
sions. MMP is a general purpose architectural mechanism applicable to the problem of
safe OS extensions, and also to safe user extensions, and a variety of other applications like
data watchpoints, optimistic compiler optimizations, and efficient write barriers for garbage
collection (see Section 11.1).

Nooks includes a recovery system, which tracks kernel objects and tries to reclaim
resources on a fault. Mondrix does not have a recovery mechanism. If recovery can be
done at a coarser level of granularity than isolation, Mondrix can use many of Nook’s
techniques.

32

2.5.2 Safe languages

SPIN [BSP+95] is perhaps the largest OS project to have examined a safe language as the
primary extensibility mechanism. SPIN shows how an operating system written in a safe
language (Modula-3) can be made efficient in terms of CPU and memory consumption.
But device drivers in SPIN are written in C, because rewriting existing driver code is too
much work. Also, because of their low-level nature, many device drivers require unsafe
programming language features [BSP+95]. One advantage of MMP is that it supports
legacy code, written in unsafe languages.

Another problem with language-only safety is the size of the system that must be trusted.
A complete language compiler and runtime, especially an optimized system which employs
complex analyzes to improve runtime efficiency, is a large and complicated code base, all
of which must be trusted. For an MMP system, one need only trust the MMP hardware
and the MMP supervisor software. These components are likely to be simpler and more
amenable to verification than a complete language compiler and runtime.

There are other safe language approaches (e.g., [JMG+02], [vECC+99]) for OS extensi-
bility and they generally have the same problems—excessive CPU and memory consumption
is common in safe languages or unsafe languages retrofitted with type information. A safe
language restricts an implementation to a single language; it ignores a large base of existing
code; the analysis needed to establish type-safety can be global and thus difficult to scale;
and type-safe languages often need unsafe extensions to manage devices.

2.5.3 Software capability systems

EROS [SSF99, Sha99] is a capability system built on the Intel x86 architecture, whose
emphasis is on software security. Capabilities allow for careful analysis of access rights, and
Shapiro provides a formal model that allows programmers to prove that a given capability
system implements a specified security policy [Sha99].

EROS uses the memory protection mechanisms of the x86. Its capabilities protect
coarse-grained objects, (e.g., processes), short capability lists (called nodes), or memory
pages. Unlike capability systems with a primarily hardware implementation, EROS does
not have fine-grained memory protection as a design goal. If EROS were implemented on
an MMP-enabled processor, it could support finer-grained memory objects.

EROS addresses some longstanding problems with capability systems. It supports a
variety of capability types, because its software implementation allows this kind of flexibility.
EROS has a take capability, which confers the right to read a capability from another
domain, and a diminished take capability, which confers the right to read a capability from
another domain, but read-write capabilities are downgraded to read-only capabilities as
they are read. This allows one domain to export a read-only copy of a data structure to
another domain. EROS also supports the opaque modifier on capabilities, which allows
domains to use metadata, like mapping tables, without being able to read or write them.

Capabilities are efficiently implemented on the x86 by having an optimized represen-
tation for capabilities that are in memory. Global revocation for a capability is efficient
because the capability has a version number which can be incremented to invalidate all on-
disc copies. Selective revocation is accomplished by translucent forwarding [Red74] where
forwarding occurs only across compartment (protection domain) boundaries. Forwarding
cycles are prevented by setting a fixed limit to the length of a forwarding path.

33

2.5.4 Single address space operating systems

Single-address space operating systems (SAS OSes) place all processes in a single large
address space [Cha95, HEV+98], and many use protection domains to specify memory
permissions for different thread contexts [KCE92]. The granularity of protection in single-
address space systems is usually a page to match the underlying paging hardware. MMP
builds upon the SAS OS protection domain approach but extends it to word granularity.

2.5.5 Static analysis and model checking

Modern static analysis [WRBS00] and model checking tools [ECC01, MPC+02] can scale
sufficiently to deal with large OS codes. These systems can find many important bugs
without flooding the user with false positives. Model checking is primarily useful for checking
consistent use of APIs, such as locking primitives, and does not try to guarantee memory
safety at runtime.

Static analysis can reveal some memory use problems like reading uninitialized memory,
but classic static analysis suffers from finding problems that never actually happen (since
it’s not possible to enumerate the feasible paths). They are also notably limited in their
ability to deal with concurrent behavior.

The ability of static analysis to verify dynamically changing roles for memory is limited.
For instance, after the network driver copies an incoming packet to a kernel-supplied buffer,
the Mondrix networking code in the kernel takes away write permissions from the network
driver on the packet memory. If the driver code saved a pointer to the old packet buffer,
it would be very difficult to prove statically that the driver code does not accidentally
dereference the saved pointer when it is called to receive the next packet. With MMP, the
kernel revokes the driver’s ability to write the old packet, so any attempt to do so will cause
a memory fault. Proving that kind of safety property statically is beyond the means of
current techniques.

Finally, modern static analysis packages try to focus on feasible execution paths, sacri-
ficing soundness for scalability. These systems suffer from false negatives. False negatives
from static analysis could be caught by the dynamic checking done by the MMP system.

2.5.6 Lightweight remote procedure call

Lightweight remote procedure call (LRPC) [BALL89] enables modular boundaries for unsafe
languages, using a software-enforced discipline for protected calling. It allows the partition-
ing of an OS into different protection domains whose interactions are protected, but LRPC
achieves this protection by using data marshaling and copying, a costly process which MMP
avoids. Data copying is inefficient, and imposes a minimum size on a protection domain so
calls to the domain can be amortized. MMP cross-domain calls (Chapter 4.3) are analogous
to light-weight remote procedure calls, though cross-domain calls do not require copying
data for protection, or an argument stack per domain pair, as LRPC does.

2.5.7 Software fault isolation

Software fault isolation [WLAG93] is a general technique that restricts the address range of
loads and stores by modifying a program binary. Purify [Rat02] is a commercial software
product for memory bounds checking based on executable rewriting. It has gained wide

34

acceptance, however it can’t be used in an OS kernel, or in some embedded development
environments. These environments lack required system services (like files), and the alloca-
tors for these systems tend to have individual, non-standard semantics. Purify can degrade
performance considerably (9 to 29 times according to one report published by Rational
Software, the company that makes Purify [Nat97]).

2.5.8 Proof-carrying code

Proof-carrying code [Nec97] is a system where software carries its own proof of safety. The
proof is checked at run-time. A proof checker is simpler than the system which produces the
proof, and a client of the system need only trust the checker, avoiding the complexity and
performance problems of safe language systems and software fault isolation. It can prove
that a native code program, compiled from Java, is correctly typed according to the Java
type system, and correctly uses dynamic dispatch and exception handling. This approach
scales to Java programs up to a half a million lines [SN02]. The proofs in proof-carrying
code are verified statically, so they are limited to the same class of safety properties that
static analysis can verify.

2.6 Protecting control flow

An important function of a protection system is to enable protected subsystems [Sal74],
which are collections of code and data that can be called only at exported entry points.
In Linux, modules are protected subsystems, and so are the parts of the kernel that deal
with formatted output, like printk, sprintf, etc. Subsystems expect other subsystems to
call only certain functions, though the set of exported functions is not uniform across all
other subsystems. For instance, a device-independent Linux network driver might expect
the kernel to call a few of its functions, but it might expect the device-dependent portion
of the driver to call many more of its functions.

Mechanisms for protected control transfer allow one subsystem to call another only at
approved entry points, and they make some provision for the callee to have permissions on
function arguments. Heap-based function arguments are usually protected by the standard
mechanism of the system: segment descriptors for segmented architectures; capabilities for
capability-based architectures; marshaling for inter-process communication based systems
(e.g., microkernels); and protection tables for MMP. Several systems allow function argu-
ments allocated from stack memory, and a protected call mechanism must make special
provision for these function arguments.

2.6.1 Gates

Several architectures [Int97, Hew02], use gates to change protection domains. Gates are a
hardware mechanism to transfer control between different protection domains. For example,
they are used by HP-UX to implement system calls. Intel’s x86 and Itanium architecture use
gates as a general call mechanism, but one primarily intended to allow inter-privilege-level
calls. The segment selector for the call specifies the privilege level and the call gate, which
holds the new code segment and program counter value. The x86 call gate also switches

35

stacks if the call changes privilege level, and it copies arguments from the old stack to the
new stack.

The x86 call gate is unpopular with operating system developers because its performance
is equivalent to a software implementation, but it lacks software’s flexibility. Most operating
systems use a simple interrupt instruction to implement a system call, and most use only
two of Intel’s four protection levels.

Multics [Sal74] is built on hardware that supports call gates, and the gates are used
to build protected subsystems in a style similar to what MMP enables. Multics gates are
enforced using segmentation; part of a segment’s access bits specify that code from one
segment can call code from a different protected subsystem. Multics limits the number of
subsystems in a process to 8, and only allows a subsystem to call another with a higher
identifier.

2.6.2 Protecting control flow with capabilities

The Cambridge CAP computer has enter capabilities, which allows the holder to call a
service at a given entry point. It also has a hardware managed cross-domain call stack, and
instruction set support for protected control transfer [Lev84]. EROS [Sha99] also has enter
capabilities. When code executes an enter capability, a resume capability is synthesized
by the system, which allows the processor to return to the correct location in the caller’s
subsystem. Resume capabilities can be copied, but whenever a thread uses any of them,
they are all revoked, insuring that each call has only a single return.

In capability-based systems, all pointers are capabilities, so all parameters are capabili-
ties. No special handling for stack allocated storage is required.

2.6.3 Microkernels

Microkernels use different address spaces for different subsystems, ensuring isolation, but
increasing the cost to move from one subsystem to another. In these systems, inter-process
communication (IPC), moves a thread from one subsystem to another. IPC is usually
implemented as a remote procedure call [Nel81] (RPC) optimized for a single machine. The
RPC mechanism insures that control is transfered only to a subsystem’s exported entry
point. All arguments, whether allocated from stack or heap memory, are marshaled. Most
of the time, marshaling arguments means the caller copies them into a message buffer, and
the callee copies the message buffer to its own data structures. Copying is not necessary
if the RPC system places the arguments in registers, or uses page remapping to make the
argument memory available directly to the callee address space.

L4 and related systems showed that an IPC with register arguments can be as fast as
180 cycles on an Intel Pentium III, 450MHz [HHL+97, HLP+00]. While this performance
penalty is low, it is not low enough to put each kernel module in its own protection domain.
Nooks (see Section 2.5.1) uses an even more highly optimized IPC mechanism, which can
be more efficient because unlike L4’s IPC mechanism, it is not safe (the kernel protection
domains can subvert the protection mechanism). While Nook’s IPC mechanism is efficient,
as we noted above, Nooks often places several drivers in the same Nook to reduce the cost
of cross-domain transfers.

36

2.7 Summary

This chapter positions MMP in the taxonomy of hardware support for fine-grained memory
permissions. MMP offers finer granularity and a more flexible sharing model than page-base
protection. MMP is similar to segmentation and capabilities in that it allows the user to
manipulate permissions on memory regions of very different sizes, but it maintains linear
addressing and compatibility with current ISAs, programing models, and even program
binaries. As a simple hardware mechanism, it avoids the complexity and performance
problems with all-software approaches to memory safety.

37

38

Chapter 3

MMP Permissions Table

This chapter discusses the format of the permissions tables. A permissions table specifies a
permissions value for every word of an address space. The chapter starts with descriptions
of different table organizations, and concludes with possible refinements on our design.

The main operation the permissions table must support is finding the access permissions
for a given address. The goal in the design of the permissions table is to balance the efficiency
of the lookup with the extra storage needed for the table. The permissions table specifies
the actions (execute, read, write, none) that may be performed on each 32-bit word in
memory (see Figure 1-1). MMP checks that every word loaded, stored or executed by the
processor has load, write, or execute permission (respectively) in the permissions table. In
addition, MMP checks that entry to and exit from protected procedures occurs at properly
marked instructions.

Permission Value Meaning

00 no perm

01 read-only

10 read-write

11 execute-read

Table 3.1: Example permission values and their meaning.

All the designs discussed in this chapter provide two bits of protection information per
32-bit word, whose interpretation is shown in Table 3.1. Although we focus on 32 bit words
and 2 permission bits, MMP works for any chosen set of permission values, and any address
size. However, space and access time are likely to increase if more protection bits, or longer
addresses are used. We discuss alternatives for more protection bits and longer addresses
in Section 3.4.3.

While two bits of permissions can protect data, and can distinguish code form data,
MMP provides gate permissions for safe cross-domain calls. Gates [Sal74, Int96, Hew02,
Int02] are a mechanism which allows control to flow from one privilege level to another.
An MMP gate marks an instruction as a valid entry or exit for cross-domain control flow.
Proper use of gates by the programmer allows the hardware to check that cross-domain
control flow only happens to the entry point of exported functions, and the hardware can
check that if the function returns, it returns to the location and domain where it was called.

39

Binary
Search

Address (30)

Address (30)

0x00100020

0x0

Perm (2)

00

01

...
000x00100040

Figure 3-1: A sorted segment table (SST). Entries are kept in sorted order and binary
searched on lookup. In this example, there is a single read-only region from 0x00100020 –
0x0010003F.

Reducing the number of protection bits per word stored in the protection table is the
main technique for reducing its size. Consequently, gate permissions are not represented
as another permissions value, since that would increase the number of protection bits per
word to three. Other properties of gates, primarily their sparsity, and the additional data
they require, further justify segregating them from the main protection table. Section 3.3
discusses the gate tables.

The permissions table resides in protected system memory (like a page table), and it is
cached by the processor’s data cache (if the processor has a data cache).

The first encoding we study is the sorted segment table (SST), which is easy to under-
stand, and it is used by the MMP software described in Chapter 6. When it has many
entries, looking up a particular entry is slow, so we next examine a trie, which does not
have this problem since a lookup accesses at most a fixed number of table entries. We
present a trie with two different entry formats—bitvectors and run-length encoded entries.
Finally, the chapter concludes with possible enhancements to the table encoding.

3.1 Sorted segment table

A simple design for the permissions table is a linear array of segments ordered by segment
start address. A segment is any number of contiguous words (starting on a word boundary)
with the same permissions value. MMP segments are simply a data structure for the
MMP permissions table, they are not part of the user-visible architecture, as they are in
segmented address architectures (described in Section 2.2). Figure 3-1 shows the layout
of the sorted segment table (SST). Each entry is four bytes wide, and includes a 30-bit
start address (permissions granularity is a 4-byte word, so only 30 bits are needed) and a
2-bit permissions field. The start address of the next segment implicitly encodes the end
of the current segment, so segments with no permissions are used to encode gaps and to
terminate the list. To find the permissions of an address, MMP uses binary search to locate
the segment containing the demand address.

The SST is a compact way of describing user segments, especially when the number
of user segments is small. A user segment requires only 32 bits to represent, if it abuts
another segment. If it does not abut, two entries can represent it, e.g., <0x00100020, 01>

and <0x00100040,00> in Figure 3-1. The problem with the SST is that it takes O(log(N))

40

memory references to find the entry for a given address, where N is the number of user
segments in the table. Because the entries are contiguous, they must be copied when a new
entry is inserted, requiring O(N) memory references on every table update. Finally, the
SST table can only be shared between domains in its entirety, i.e., domains either share no
entries from their SST tables, or they share their entire tables.

3.2 Trie

A trie stores data like a traditional forward-mapped page table (which itself is an instance
of the more general trie data structure). The top bits of an address index into a table,
whose entry can be a pointer to another table which is indexed by the most significant bits
remaining in the address.

Mid Index (10) Leaf Index (6)

Effective address (bits 31−0)

Bits (21−12) Bits (11−6) Bits (5−0)Bits (31−22)

Leaf Offset (6)Root Index (10)

Figure 3-2: How an address indexes the trie.

The trie table is organized like a conventional forward mapped page table, but with an
additional level. Three loads are sufficient to find the permissions for any address. Figure 3-
2 shows which bits of the address are used to index the table, and Figure 3-3 shows the
lookup algorithm. Entries are 32-bits wide. The root table has 1024 entries, each of which
maps a 4 MB block. Entries in the mid-level table map 4 KB blocks. The leaf level tables
have 64 entries which each provide individual permissions for 16 four-byte words.

We next examine different formats for the entries in the trie table.

3.2.1 Permission Vector Entries

A simple format for a trie table entry is a vector of permission values, where each leaf entry
has 16 two-bit values indicating the permissions for each of 16 words, as shown in Figure 3-4.
User segments are represented with the tuple < base addr, length, permissions>. Addresses
and lengths are given in bytes unless otherwise noted. The user segment <0xFFC, 0x50,

RW> is broken up into three permission vectors, the latter two of which are shown in the
figure. We say an address range owns a permissions table entry if looking up any address
in the range finds that entry. For example, in Figure 3-4, 0x1000–0x103F owns the first
permission vector entry shown.

Upper level trie table entries could simply be pointers to lower level tables, but to reduce
space and run-time overhead for large user segments, we allow an upper level entry to hold
either a pointer to the next level table or a permissions vector for sub-blocks (Figure 3-5).
Permission vector entries in the upper levels contain only eight sub-blocks because the upper
bit is used to indicate whether the entry is a pointer or a permissions vector. For example,
each mid-level permissions vector entry can represent individual permissions for the eight
512 B blocks within the 4 KB block mapped by this entry.

User segments can be any number of words starting at any word-aligned address, but
these might be broken into one or more table segments, according to the size and alignment

41

PERM_ENTRY trie_table_lookup(addr_t addr) {

PERM_ENTRY e = root[addr >> 22];

if(is_tbl_ptr(e)) {

PERM_TABLE* mid = e<<2;

e = mid[(addr >> 12) & 0x3FF];

if(is_tbl_ptr(e)) {

PERM_TABLE* leaf = e<<2;

e = leaf[(addr >> 6) & 0x3F];

}

}

return e;

}

Figure 3-3: Pseudo-code for the trie table lookup algorithm. The table is indexed with
an address and returns a permissions table entry. The base of the root table is held in a
dedicated CPU register. The implementation of is tbl ptr depends on the encoding of
the permission entries.

restrictions of the trie table. This process is completely transparent to the user, but it
has performance implications. For instance, if a 9 word segment is granted read-write
permissions, then two bottom-level entries must be updated. If the user segment started on
an 8-word aligned address, then the permissions information for 8 words would be in the
first table segment, and information for one word would be in the second table segment. If
an address indexes into the second segment, the loaded entry only has permissions for one
word, not the entire nine word user segment. In the next section we introduce a new entry
type to address this limitation.

3.2.2 Run-length encoded entries

A permissions value boundary is where word N has one permissions value and word N + 1
has a different value. Most user segments are longer than a single word, so any run of N
words is likely to have fewer than N permission value boundaries. We can take advantage
of this property by run-length encoding permissions values in a table entry, to make a
run-length encoded (RLE) entry.

The sorted segment table demonstrated a compact encoding for abutting segments—
only base and permissions are needed because the length of one segment is implicit in the
base of the next. A run-length encoded entry uses the same technique to increase the
encoding density of an individual trie table entry. The result looks like a small version of
a sorted segment table, where the base for one entry implicitly defines the length of the
previous entry.

Figure 3-6 shows the bit encoding for a run-length encoded entry, which can represent
up to four table segments crossing the address range that owns the entry. As with the
SST, start offsets and permissions are given for each segment, allowing length (for the first
three entries) to be implicit in the starting offset of the next segment. We chose four table
segments because our measurements of the malloc behavior of the programs in Table 5.1
showed that the size of heap allocated objects is usually greater than 16 bytes (4 words).
A single run-length encoded entry can represent 4 adjacent 4-word protection regions.

42

������

���
���
���
���
�����
�����
�����
�����

0x1080

0x1040

0x1000

Address
Space

4 bytes

<0x1060, 0x8, RO>
<0x1068, 0x20, RW>

<0xFFC, 0x50, RW>

User segments

10 10 10 00 00 00 00 00 01 01 10 10 10 10 10 10

1010 10 10 10 10 10 10 10 10 10 10 10 10 1010

Leaf table entries

Permission Vector Owned By 0x1040−0x107F

Permission Vector Owned By 0x1000−0x103F

Figure 3-4: A trie table entry consisting of a permissions vector. User segments are broken
up into individual word permissions.

Type (1)

1 Perm for 8 sub−blocks (8x2b)Unused (15)

0 Unused (1) Ptr to lower level table (30)

bool is tbl ptr(PERM ENTRY e){return(e>>31)==0;}

Figure 3-5: The bit allocation for upper level entries in the permissions vector trie table,
and the implementation of the function used in trie table lookup.

Run-length encoded entries represent permissions for a larger region of memory than
just the 16 words (or 16 sub-blocks at the upper table levels) that own it. The first

segment has an offset which represent its start point as the number of sub-blocks (0–31)
before the base address of the entry’s owning range. Segments mid0 and mid1 must begin
and end within the entry’s 16 sub-blocks. The last segment can start at any sub-block in
the entry except the first (a zero offset means the last segment starts at the end address
of the entry) and it has an explicit length that extends up to 31 sub-blocks from the end of
the entry’s owning range. The largest span for an entry is 79 sub-blocks (31 before, 16 in,
32 after).

The example in Figure 3-4 illustrates the potential benefit of storing information for
words beyond the owning address range. If the entry owned by 0x1000–0x103F could
provide permissions information for memory at 0x1040, then we might not have to load the
entry owned by 0x1040.

Figure 3-7 shows a small example of run-length encoded entry use. Segments within
an SST entry are labeled using a <base, length, permission> tuple. Lengths shown in
parentheses are represented implicitly as a difference in the base offsets of neighboring table
segments. The entry owned by 0x1000-0x103F has segment information going back to
0xFFC, and going forward to 0x104C. The address range 0x1000-0x103F is split across the
first and last run-length encoded table segments. The middle entries are not needed (both
specify an offset of 15, which give them an implicit length of zero).

Run-length encoded entries can contain overlapping address ranges, which complicates

43

Perm (2) Offset (4)Offset (5) Perm (2) Offset (4) Perm (2) Offset (4) Perm (2)

mid0 mid1 lastfirstType (2)

1 1 Len (5)

Figure 3-6: The bit allocation for a run-length encoded permission table entry.

RLE segment
owned by
0x1000−0x103F

RLE segment
owned by
0x1040−0x107F

Mid1 = <8, (2), RO> ����������
�����
�����

�����
�����
���
���

0x1080

0x1040

0x1000

User segments
Address
Space

4 bytes

<0x1060, 0x8, RO>
<0x1068, 0x20, RW>

<0xFFC, 0x50, RW>

Last =

First =
Mid0 =
Mid1 =

<15, (0), RW>
<15, (1), RW>

<−1, (17), RW>

<16, 3, RW>

Mid0 = <3, (5), NONE>

Last = <10, 8, RW>

First = <−17, (20), RW>

Figure 3-7: An example of segment representation for run-length encoded entries.

table updates. When a user of MMP changes the entry for one range, MMP must update
any other entries that overlap with that range. For example, if a user of MMP frees part
of the user segment starting at 0xFFC by protecting a segment as <0x1040, 0xC, NONE>,
MMP must read and write the entries for both 0x1000–0x103F and 0x1040–0x107F even
though the segment written by the user does not overlap the address range 0x1000–0x103F.

One restriction we impose to simplify table update is that an upper level entry cannot
overlap with memory owned by an entry which is a pointer to a lower level table. Without
this restriction, MMP must search surrounding entries at every level in the table to update
any possibly overlapping entries. The cost of these extra table accesses is not justified by
the benefit of the overlap, so such overlap is disallowed.

We can design an efficient trie table using run-length encoded entries as our primary
entry type. The run-length encoded format reserves the top two bits to encode an entry’s
type tag; Table 3.2 shows the four possible types of entry. The upper tables can contain
pointers to lower level tables. Any level can have a run-length encoded entry, and any level
can contain a pointer to a vector of 16 permissions. This restriction is necessary because run-
length encoded entries can represent only up to four abutting segments. If a region contains
more than four abutting segments, we represent the permissions using a permission vector
held in a separate word of storage, and pointed to by the entry. So four memory references
are sufficient to find the permissions for any address using the trie with run-length encoded
entries. Finally, the format specifies a pointer to a record that has a run-length encoded
entry and additional information. We use this extended record to implement translation as
discussed in Section 10.2.

44

Type

00 Pointer to next level table.

11 Run-length encoded entry (4 segments spanning 79 sub-blocks).

01 Pointer to permission vector (16x2b).

10 Pointer to run-length encoded+ (e.g., translation (6x32b)).

bool is tbl ptr(PERM ENTRY e){return(e>>30)==0;}

Table 3.2: The different types of trie table entries, and the implementation of the function
used in trie table lookup. Type is the type code. Leaf tables do not have type 00 pointers.

Less minimal,
but more efficient

���
���
���
���

Minimal Permissions

Permissions Key

Read−only

Read−write
���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

	�	
	�	
	�	
	�	

�

�

�

�

���
���
���
���

���
���
���
���

Figure 3-8: Permissions distribution for five words. On the left, write permission is only
granted on the word which needs it. On the right, the entire read-write area has been
coalesced.

Balancing minimal permissions and performance with RLEs

MMP provides word-level memory protection so a software service can have permissions
on the smallest subset of memory necessary for the service’s function. However, run-length
encoded entries can only represent a limited number of permissions regions for a given block
of memory. Consider the permissions distribution of the five words in Figure 3-8. On the
left, the words have the minimum level of permissions needed for the program to function
properly. However, there are four permissions value boundaries, which is the limit of what
can be represented with a run-length encoded entry.

In the picture on the right, the middle word has been given read-write permissions
even though it does not need to be (and should not be) written. There are now only two
permissions value boundaries. Sometimes being generous with permissions will allow the
MMP system to be more efficient by allowing a single table entry to hold permissions about
a larger region of memory.

3.3 Gate tables

Up to this point, the permissions table have held two bits of permissions information per
word. This is sufficient to protect data, and to distinguish code from data, but it is insuf-
ficient to represent gate permissions. MMP uses gates to allow the hardware to guarantee
that cross-domain control transfer to a domain only happens at a location approved by that
domain. MMP gates are simpler than those present in the x86, IA-64, or PA-RISC because
they do not cause a stack switch.

Table 3.3 shows the two gate types in the MMP system, the switch gate and the return
gate. These gate permissions values are placed on instructions by the MMP system at the
behest of the user. For instance, during a module’s initialization, the module’s code would
place gates on its exported functions. The initialization code places a switch gate on the first

45

Gate type Gate data

switch destination PD-ID

return

Table 3.3: Gate types and their associated data. Switch gates are used to change protec-
tion domains, and they specify their destination protection domain. Return gates need no
additional data.

instruction of an exported function, and a return gate on the control flow instruction that
returns from the procedure. For most compilers, the procedure return is the last instruction
of the function.

��

���

B

��������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

��

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�

�

�

������
���

��

��������������������

Return gate
Switch gate
Execute permissions
No permissions

foo:

PD−ID A PD−ID B

������������������

ret

call foo

BB

Figure 3-9: How gate permissions are placed on instructions for cross-domain calling. In
the example, domain B exports the routine named foo.

When an exported function is called, MMP uses the switch gate from the caller’s domain
and the return gate from the callee’s domain. Consider the example in Figure 3-9. For a
thread executing in domain A to call the routine foo implemented by domain B, the thread
transfers control to the first instruction of foo, probably using the function call instruction
for the given architecture. As seen in the figure, the first instruction of foo has the switch
gate permission value, so the processor will initiate a domain switch to the domain specified
by the gate, in this case domain B. When the routine returns, the return gate notifies the
processor that it must switch back to domain A.

The switch gate is placed on the first instruction of the function, not on the call instruc-
tion (as is done in the x86 and PA-RISC architectures), which is why we call it a switch
gate instead of a call gate. Placing the permissions on the first instruction of the routine
means that call sites don’t have to be identified when a function is exported, and a single
instruction can call exported and non-exported routines. Like the x86 and PA-RISC, the
domain switch happens before the first instruction of the exported routine is executed.

There are many ways to represent gate permissions in the permissions tables. If they are
considered permissions values in addition to the values in Table 3.1, then the permissions
table would need 3-bit entries to represent the 6 possible values. However, switch gates
require additional storage for the destination protection domain identifier. Architectures
with byte-aligned call and return instructions (e.g., x86) would require two extra bits to
encode the gate location because the permissions tables hold entries for words, not bytes.

Instead, we store gate information in its own table. The number of gates, even for a

46

Address (32b) Switch/Return (1b) Unused (15b) Destination PD−ID (16b)

Figure 3-10: The format of an entry in the gate permission table.

large system, is low (less than 1,000 in Mondrix), because modules tend to have many more
internal functions than exported entry points. We store the gates in an open hash table.
The format of an entry is shown in Figure 3-10. It consists of a byte address, which is
the location of the gate instruction (for architectures that specify 32-bit instructions, this
would be a word address). The second word of the entry specifies the gate type, and if it is
a switch gate, the destination protection domain.

We considered using bits in the upper level entries to classify regions as code or data.
The two bits of permissions data would be interpreted as in Table 3.1 for data pages, and
as no-access, execute-read, switch-gate, return-gate for code pages. Each page could have
a single destination PD-ID, also specified in the upper level entry (this would require a
different encoding from the one presented in Table 3.2).

3.4 Possible table optimizations

The space of possible permissions encoding is large, so we present possible improvements
that would reduce the size of the permissions table, or would require fewer memory accesses
to find a particular entry.

3.4.1 Extension to 64-bits addresses

We can extend the multi-level MMP table to accommodate a 64-bit address, using many of
the same techniques that were used to extend page tables to a wider address space [THK95].
Because MMP supports arbitrary-sized regions, it requires forward-mapped indexing. A
forward-mapped scheme requires five levels of table lookup, where the top 3 level tables
have 4K entries, and the last two levels have 2K entries. To make lookups faster, the
hardware or software that reads the permissions table hashes the top 42 bits of the address.
This hash is used as an index into a table which has either permission entries or pointers to
the lowest two level tables used by the five table lookup path. The hardware or software that
reads the permissions table also updates the hash table whenever a lookup fails, with the
entry retrieved from searching the five level tables from the root. The space consumption
for this strategy will be larger than the 32-bit case, but we believe the time consumption
could be tuned to be close to the 32-bit case.

3.4.2 Sharing permission tables

Permissions tables are potentially large because they contain permissions information for
an entire address space. The trie table organization allows domains that have identical
permissions values for a region of their address space to share permissions tables, subject
to alignment constraints.

For instance, in Mondrix, several domains have the same permissions on the page that
contains a task’s user area. This page contains several permissions regions at odd locations

47

Write table permissions entry

Read table permissions entry

User segment ���
���
���
���

Permissions Key

Read−only

Read−write

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

	�	
	�	
	�	
	�	

�

�

�

�

Figure 3-11: How independent tables for independent permissions values can yield efficient
entries.

and sizes, so it is contained in a leaf level table. Instead of replicating that table for
each domain that uses it, it can be filled in once, and pointed to by several domains. This
optimization requires additional bookkeeping to determine when the table is no longer being
used.

3.4.3 Alternate permissions encodings

In this section we briefly discuss alternative formats for table entries.

64-bit permissions entries

The run-length encoded entries in Section 3.2.2 occupy 32 bits. A 64-bit entry could be
superior, because it is easier to amortize more status bits in larger table entries. More status
bits allow specialized entry types which can increase lookup efficiency. For instance, upper
level entries could be redesigned to handle a small number of regions that are not multiples
of their sub-block length. Easing the alignment restriction for upper level sub-blocks would
bring more upper level entries into use, and reduce the average number of memory accesses
required for permissions lookups. The entries can also take advantage of a wide data path
to memory.

Multiple 1-bit tables

The design we present encodes 4 permission values using 2 bits. We could use 3 tables, each
with 1 bit of permissions for each word. One table would be for execute permissions, one for
write, and one for read. If a word has no permissions in all tables, it cannot be accessed. This
encoding is very efficient at representing read permissions on large regions which alternate
read and read-write permissions. Figure 3-11 shows an example user segment, and how it
would be represented in the read permission table and the write permission table. With
the 2-bit encoding, there are 4 permissions value transitions. With multiple 1-bit tables,
there are 4 permissions value transitions in the write permission table, but there are no
transitions in the read permission table, possibly allowing the read table to use an entry
which covers more memory (e.g., an entry in an upper level table).

48

Since read-only permissions are often an acceptable alternative to no permissions, a
system with an independent read permissions table might be more efficient in terms of time
and space. By eliminating permission transitions between read-only and read-write, more
upper level entries might be used.

Global table (unified entries)

The MMP design specifies that each protection domain has its own permissions table. As the
number of protection domains grows, the amount of storage dedicated to protection tables
might grow as well. MMP reduces the space consumed by multiple domains by efficiently
supporting large regions, and by allowing some sharing of permission table between domains.

If a system has many domains, but domains tend to have permissions on disjoint memory
regions, a single table could be used for all domains, where the entry for an address indicates
which domains have access permissions. The global table would track which domain has
permissions on each word of memory. Each entry in such a table would contain some number
of protection domain identifiers, and the permissions each domain has on a given range of
memory.

A global table makes global entries (entries that are the same for every domain) easy to
implement. The tension with a global table is that for space efficiency, the entries should
be small. But a small entry may only accommodate a limited number of protection domain
identifiers and their permissions. For efficient lookup, every domain that is sharing a word
of memory should be listed in the entry, which requires larger entries. Directories for cache-
coherence have the same tension between exact sharing information and entry size, and the
trade-off has been addressed by such diverse mechanisms as: sharing lists, coarse bitvectors,
and adaptive schemes where sharing lists degrade to coarse bitvectors.

49

50

Chapter 4

MMP Hardware

The MMP hardware must check every instruction fetch, and the address of every load and
store instruction. In order to make the permissions check efficient, the processor caches
the permissions information on chip. The cache should minimize trips to permission table
memory, it should not slow the processor’s critical path, and it should not unduly increase
the CPU’s energy consumption.

This chapter presents a design to achieve all of these objectives. The design uses two
levels of on-chip cache, the first level (the protection lookaside buffer or PLB) eliminates
trips to the permissions table in memory, the second level (sidecar registers) avoids the
energy cost of searches in the PLB.

Intuitively, MMP can be implemented efficiently because it caches a range of permissions
in a single entry. Just as a page of words shares a translation value, allowing it to be
efficiently cached by a TLB, MMP can cache permissions more effectively by representing
permissions for many words in a single entry. The performance of TLBs and page tables
has kept pace with the rigorous performance demands of current computing systems, so we
can expect MMP do to the same.

4.1 Lookaside Buffers

Figure 4-1 is a more detailed version of Figure 1-2, which shows all of the major components
of the Mondriaan system, including the support for switch and return gates. The gate PLB is
refilled by a hardware state machine that reads the gate table in a way similar to the hashed
page table search in the PowerPC architecture [IBM02]. The gate table is structured as an
open hash table, that the hardware indexes when a program counter value is not present in
the gate PLB.

4.1.1 Protection Lookaside Buffer (PLB)

The protection lookaside buffer (PLB) caches protection table entries just as a TLB caches
page table entries. The PLB hardware uses a conventional ternary content addressable
memory (CAM) structure to hold address tags that have a varying number of significant
bits (as with variable page size TLBs [KH92]). The PLB tags have to be somewhat wider

51

Domain ID

Buffer

Gate
Lookaside

Buffer

Protection
Lookaside

Gate Table Base

Permissions Table Base

Permissions
Table

Switch & Return
Gate Table

lookup
Program Counter

refill

CPU

MEMORY
refill

SidecarsAddress Regs

Figure 4-1: The major components of the Mondriaan memory protection system, with
support for switch and return gates.

than a TLB because they support finer-grain addressing (26 tag bits for our example design).
Entries are also tagged with protection domain identifiers (PD-IDs).

The ternary tags stored in the PLB entry can contain low-order “don’t care” address
bits to allow the tag to match address ranges. For example, the tag 0x10XX, where XX are
don’t care bits, will match any address from 0x1000–0x10FF. On a PLB refill, the tag is set
to match addresses within the largest naturally aligned power-of-two sized block for which
the entry has complete permissions information. Referring to the example in Figure 3-7, a
reference to 0x1000 will pull in the entry for the block 0x1000–0x103F and the PLB tag
will match any address in that range. A reference to 0x1040 will bring in the entry for
the block 0x1040–0x107F, but this entry can be stored with a tag that matches the range
0x1000–0x107F because it has complete information for that naturally aligned power-of-two
sized block. This technique increases effective PLB capacity by allowing a single PLB entry
to cache permissions for a larger range of addresses.

When a program changes the permissions for a region in the permissions tables, the
MMP system must flush any out-of-date PLB entries. Permissions modification occurs
much more frequently than page table modifications in a virtual memory system. To avoid
excessive PLB flushing, we use a ternary search key for the CAM tags to invalidate po-
tentially stale entries in one cycle. The ternary search key has some number of low order
“don’t care” bits, to match all PLB entries within the smallest naturally aligned power-of-
two sized block that completely encloses the region we are modifying (this is a conservative
scheme that may invalidate unmodified entries that happen to lie in this range). A similar
scheme is used to avoid having two tags hit simultaneously in the PLB CAM structure. On
a PLB refill, the hardware or software doing the refill must first invalidate all PLB entries

52

that overlap with the range of the entry being fetched before writing the new entry into
the PLB. The invalidation process takes a single cycle using low-order “don’t care” bits to
match a power-of-two sized address range.

There is an algorithm that allows two ternary CAMs to represent an arbitrary address
range [PS03]. The CAMs are searched in parallel to allow a single cycle lookup. If the
PLB used this two CAM structure, it could index an exact range, not the largest enclosed
power-of-two sized region.

4.1.2 Gate protections lookaside buffer (GPLB)

Just as gate permissions have their own table (Section 3.3), they also have their own looka-
side buffer, the GPLB. Mondrix uses a large set-associative lookaside buffer rather than a
small, fully associative buffer. The gate PLB could be a simple CAM with an address and
PD-ID tag and the gate type and data, but experiments with Mondrix show a less than 10%
hit rate with a 64-entry CAM. For the Mondrix evaluation in Chapter 8 uses a 512-entry,
4-way set associative cache for gate permissions.

4.2 Sidecar registers

Lookups in the PLB’s associative store can consume a significant fraction of on-chip energy,
because associative lookups broadcast the key value to all storage cells. Arm’s low-power
StrongARM architecture dissipates 17% of its on-chip energy in TLB lookups [MWA+96]
(the StrongARM has fully-associative instruction and data TLBs). MMP has an additional,
optional, level of cache, called sidecar registers which eliminate the energy cost of accessing
the PLB.

Addr (32)

Address register Sidecar

Valid (1) Base (32) Bound (32) Perm (2)

Figure 4-2: The layout of an address register with its sidecar register.

Each architectural address register in the machine has an associated sidecar register,
which holds information for one table segment as depicted in Figure 4-2. The program
counter has its own sidecar used for instruction fetches.

On a PLB miss, the hardware or software miss handler looks up the demand address
in the permissions table, and writes the permissions table entry for that address into the
PLB. It also writes the table segment into the sidecar of the address register that the
processor used to calculate the effective address of the memory load or store. All fields of
the table segment descriptor are represented in uncompressed form in the address sidecar to
facilitate fast checking of base, bounds and permissions. The base and bounds information
is constructed by combinational logic based on the demand address, the level of the table
from which the entry was read, and the entry itself.

For each subsequent load or store using that base register, the processor compares the
effective address against the base and bounds in the register’s sidecar. If the address lies
within the range, the processor uses the sidecar permissions value. If the range check
fails or the sidecar is invalid, the processor searches the PLB for the correct permissions

53

information. The PLB might miss, causing the refill mechanism to access the permissions
table in memory.

Sidecars also increase the permissions hit rate by caching an entire table segment. The
PLB can often index only part of the permission table entry because the PLB’s index
range must be a naturally aligned power-of-two sized block. For example, in Figure 3-7 a
reference to 0x1040 will load the segment <0xFFC, 0x50, RW> into the register sidecar. If
that register is used to access location 0xFFC we will have a permissions check hit from the
sidecar. Sending 0xFFC to the PLB will result in a permissions check miss because it only
indexes the range 0x1000–0x107F.

To guarantee consistency, MMP invalidates all sidecars when any protections are changed
so the sidecars never cache stale permissions values. The processor invalidates all sidecars
on protection domain switches. If sidecars had PD-ID tags (which might be useful for the
stack pointer, a global data pointer or cross-domain argument pointers), invalidation on
domain switch would not be necessary. But the processor can refill sidecars rapidly from
the PLB, so domain ID tags are not part of the design.

Register sidecar information is like a capability in that it has protection and range
information, but it is not managed like a capability because it is ephemeral and not user
visible. Sidecars are similar to the resolved address registers in the IBM System/38 [HSH81],
where an address such as the base of an array would be translated, cached and then reused
to access successive array elements.

4.3 Cross-domain calling

This chapter provides additional detail on how cross-domain function calls are protected in
MMP, explaining the cross-domain call stack, the handling of interrupts, and how to pass
arguments.

4.3.1 Gate requirements

When a thread executes an instruction with a switch or return gate permission, the archi-
tecture must perform certain operations. We list the abstract operations, and then show
how to realize these operations efficiently, and with minimum modification, to an existing
architecture.

A cross-domain switch has the following requirements:

• Store and protect the call information (e.g., the return address and the caller’s pro-
tection domain identifier).

• Make the callee’s protection domain the current domain, and start execution at the
called instruction.

A cross-domain return has the following requirements:

• Look up the saved return address and caller’s protection domain identifier.

• Verify that control is returning to the proper return address.

• Make the caller’s domain the current domain, and start execution at the saved return
address.

54

If any of the checks fail, the call or return does not succeed, the hardware generates
a fault, and restarts execution in the memory fault handler (implemented as part of the
supervisor, discussed in Section 6.1).

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������������������
���������������������
���������������������
�������������������
�������������������
������������������� ����������������

����������	�		�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���

���������������������
���������������������
���������������������
���������
���������
���������

���
���

���
���

���
���

���
���

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���
���

���
���

���
���

retret

ret ret

No permissions
Execute permissions
Switch gate to B
Return gate

BB B

B B B B

B

call stack
Cross−domain

CDST

PD X

x_ret:

foo_ret:

PD A

CDST
PD X
x_ret:

CDST
PD X
x_ret:

CDST

PD X

x_ret:

foo_ret:

PD A

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!

""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
"

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#

$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$

%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%

call foo

PC3

PC4
foo_ret:foo_ret:

call foo

foo:

call foo

foo:

(4)(3)

PC2

foo_ret:foo_ret:

PC1
(2)(1)

PD−ID A

foo:

PD−ID A

call foo

foo:

PD−ID BPD−ID B

&�&�&�&�&'�'�'�'�'�'

(�(�(�(�(

Figure 4-3: How MMP is used for cross-domain calling. PC1 – PC4 indicate the program
counters during four points in a cross-domain call. The program starts in domain A in
the portion of the figure labeled (1). The CDST (cross-domain stack top) register points to
the record for the call to A. Domain A was called by some domain (which we call X), at
some program point (whose return address we denote by the label x ret). The processor
implementation of the call instruction finds the switch gate in domain A (in the portion of
the figure labeled (1)), and switches to domain B to execute the first word of foo (labeled
(2)). The destination domain of the switch gate (B) is part of the gate. Execution of the
switch gate causes the processor to store the return address, and the PD-ID of the caller
protection domain on the cross-domain call stack. On execution of the return gate (labeled
(3)) the processor verifies that it is returning to the caller’s protection domain at the proper
address (labeled (4)).

4.3.2 Gate implementation

The cross-domain call stack is an ordinary area of memory that the hardware can write,
but most software can only read. For operating systems that maintain a kernel stack per
process, each process has its own cross-domain call stack. We add an additional hardware
register, the CDST, or cross-domain stack top register, which holds the memory address of

55

the current record on the top of the cross-domain call stack. The memory supervisor (the
software part of the MMP system) saves and restores this register on a context switch. It
relies on the OS to notify it about scheduling events.

To implement a switch gate, the processor checks the target PC for every control flow
instruction. If a switch gate is present on the target instruction, the call state is saved on
the cross-domain call stack, and the CPU state is changed to a new protection domain (the
PD-ID is changed, along with the base pointer to the domain’s permissions table, as seen
in Figure 1-2).

In parallel with instruction fetch, the processor checks for a return gate on a return
instruction. If found, the processor reads the cross-domain call stack to find the saved
return address. It checks that the return address for the return instruction matches the
saved address. Then, it changes the protection domain to the stored value, and resumes
execution at the return address.

On a cross-domain switch, the processor increments CDST by the size of a PD-ID and
a return address, and then it writes the current PD-ID and return address into the new
location specified by CDST. On a cross-domain return, the processor reads the call record
from the location in CDST, and decrements the register.

Our gate implementation is applicable to RISC and CISC architectures and a variety of
function call instructions, because it only involves a permissions check and pushing a call
record on the cross-domain call stack.

4.3.3 Cross-domain call example

A thread calling and returning from another protection domain is shown in Figure 4-3.
Any control flow instruction can initiate a cross-domain call, though it will usually be a
standard subroutine call instruction. PC1 shows the program counter about to execute the
call instruction. After the pipeline stage where the control-flow instruction determines the
new PC, the processor checks for a gate on that location. In the example, the thread
executing in Domain A finds the switch gate on foo within domain A. Before the processor
executes the first instruction of foo, it changes protection domain from A to B. So PC2

shows the processor executing the first instruction of foo in domain B. When the processor
executes the last instruction of foo (PC3), it changes the domain changes back to A, and
sets the PC to the instruction after the call (PC4).

Addresses

Memory

PD 3PD2 PD 1PD 0
Protection domains

Figure 4-4: How the same code (e..g, interrupt stubs) can be mapped into every domain.

56

The hardware must store both the caller’s return address and protection domain iden-
tifier. A set of domains can share code (depicted in Figure 4-4), so the protection domain
identifier is needed to determines the return domain—the return address is insufficient.
Sharing code among multiple protection domains is useful; the kernel requires all modules
to share interrupt handling code (see Section 7.5.1).

The processor executes return gates in the callee’s domain, which causes problems if a
domain calls a function that it exports. Consider, for example, kmalloc. The core kernel
exports this routine to modules, so it must place a return gate on its last instruction. If
the kernel were to call it via a regular function call, the instruction with the return gate
would fault because a regular function call does not establish the state needed for a cross-
domain return. Therefore a domain must either mark the entry points to exported functions
with a switch gate, or it must duplicate exported functions. We chose to mark exported
functions with a switch gate, avoiding the task of classifying function calls into domain-
crossing and non-domain-crossing. However, this decision has the unfortunate consequence
of approximately doubling the number of cross-domain calls (see the data in Section 8.5).
Fortunately, cross-domain calls that don’t change PD-ID require less micro-architectural
work because the processor does not need to invalidate the sidecar registers, and the control
registers don’t change.

The presence of a switch gate to domain B within B itself is shown in Figure 4-3. Switch
gates are read in the caller’s domain, so B’s switch gate is only read by calls originating
within B itself.

4.4 Hardware implementation issues

MMP protection checks must be efficient for today’s processor designs, and the extra mech-
anism needed for MMP should require few changes to the processor implementation. We
consider adapting an in-order and an out-of-order issue processor to implement MMP.

4.4.1 In-order pipeline implementation

Access

Memory
Decode

Fetch

Instruction

Addr. gen

Execute/

Write back

Register

Figure 4-5: An in-order, five-stage pipeline.

Figure 4-5 shows the stages of a five-stage pipeline for an in-order processor. During the
address generation phase of the pipeline (Execute/Addr. gen in Figure 4-5), the processor
checks the address sidecar corresponding to the base register specified in the instruction.
If the sidecar does not provide the permissions information for the current address (either
because it is invalid or because it contains protection information for an address range that
does not include the effective address), the processor looks up the address in the PLB, and
writes the result into the sidecar. The processor checks for a fault before the register write
back stage of the pipeline.

57

The entire pipeline is flushed on a cross-domain call, just as it is flushed on a system
call. For short, in-order pipelines, the performance overhead of flushing the pipeline is low.

4.4.2 Out-of-order pipeline implementation

For an out-of-order (OOO) issue machine, the MMP permissions check need only complete
just before instruction graduation, allowing the latency of the check to overlap with instruc-
tion execution. Overlapping the permissions check with instruction execution means the
permissions check adds no latency to an instruction in the common case, and it indicates
that MMP will not increase processor cycle time because it is out of the critical path to
instruction completion.

An OOO issue processor contains support for speculatively loading and storing data.
They will execute loads that occur after a predicted branch, and will roll back execution if
the branch was mispredicted. They also contains a store buffer for speculative stores. MMP
permissions checks use the mechanisms already present in an OOO issue processor. The
processor may use speculative load data before permissions are verified. Similarly, store
data is only committed out of the speculative store buffer once the processor verifies that
the address being stored has write permissions.

Sidecars are primarily an energy optimization, so their presence might be more com-
pelling in a simpler machine, rather than a complex out-of-order issue machine which already
consumes a lot of on-chip energy. If sidecars are used in an out-of-order processor, they are
physically located by the load/store unit and only need as many read ports as the number
of simultaneous load and store instructions supported. The processor uses the architec-
tural register number (not the renamed physical register number) to index into the sidecar
register file. A misspeculated load can bring in the wrong table segment, but this causes
subsequent accesses only to miss in the sidecar, and to retrieve their permissions from the
PLB. Protection breaches are not possible, even if sidecar updates are not done in program
order. The information in the sidecar must always be valid, but it need not be relevant to
the current access.

OOO issue processors could incur large performance penalties if cross-domain calls
caused a serialization of instruction execution Domain switches can be made considerably
faster by associating protection domain ID values with each instruction in the pipeline,
eliminating the need to flush the pipeline on a cross-domain call. Multiple protection do-
mains in MMP can share the reorder buffer using almost the same mechanism that multiple
addressing contexts use to share the reorder buffer in a processor that supports simulta-
neous multi-threading (SMT) [TEL95] (called “hyper-threading” by Intel). In both cases,
instructions from different contexts share the execution resources of the machine. In MMP,
each thread has its own PD-ID, in SMT, each thread has its own ASID.

A cross-domain call should be higher performance than a context switch. Context
switches change the address translation context, and any miss to the address translation
cache (TLB) stalls the execution of that instruction (and its dependents). Cross-domain
calls change the protection context, and misses to the protection translation cache (PLB)
do not stall the execution of an instruction, because the instruction speculates that the
protection check will succeed. The processor should be able to overlap the execution of
more instructions from two different protection contexts than from two different addressing
contexts.

58

4.4.3 Mixing mapped and pinned memory

Most operating systems place their code and much of their data in physical memory. This
memory is not paged, it is “pinned,” because it never resides on disk. Most operating
systems map their code and data into every user process. However, to conserve physical
memory, many operating systems (e.g., Linux and Solaris) support kernel operation with a
mix of pinned and mapped memory. The bottom half of the kernel is pinned, while the top
half, usually containing the user page tables, is mapped.

Mixing mapped and pinned memory poses a difficulty for MMP, because a single virtual
address can refer to different memory locations at different times during execution. So
long as kernel mapped memory tracks the user context (as it does when it contains the
user page tables), MMP can make the address space identifier (ASID) part of the PD-
ID, so each mapped context has a different PD-ID. If the use of mapped memory in the
kernel is not so stylized, the mapping code must inform the MMP system when and how
mappings change, creating an additional bookkeeping burden on the MMP system. To
simplify OOO superscalar processor design, instructions are tagged only with the PD-ID,
and all instructions in the reorder buffer share an ASID.

User address spaces consist solely of mapped memory, so this problem does not arise for
them.

4.4.4 The problem with inlining code

MMP protection domains assume contiguous code all belongs to a single domain. In-
lining frustrates that assumption. Compiler frameworks which make heavy use of inlining
(e.g., [ASG97]) would need a new approach, or might frustrate MMP entirely. A fine-grained
interleaving of instructions from different protection domains is difficult to represent. Gates
at all transition instructions would require too many bits, because a gate entry contains the
instruction address for the gate, and the switch gate contains the destination PD-ID. For
instance, on a 32-bit RISC machine, if every 5th instruction came from a different protec-
tion domain, the gate permissions overhead would be 50%, and the hit rate of the GPLB
would be poor.

Systems that inline code at runtime (e.g., using a just-in-time (JIT) compiler) are com-
patible with MMP. The domain in which new code is inserted is called the target domain.
So long as a JIT can identify the data accessed by the code it inlines, it simply marks that
data as shared by the target domain, and marks the code as part of the target domain.
MMP provides mechanism for data sharing, but can not represent finely-interleaved code
from different protection domains.

4.4.5 Approaches for multi-processors

Permissions tables have the same coherence issues as page tables in a multi-processor system.
If a thread modifies the permissions tables, any processor which might be caching the data
must invalidate its sidecar registers and the relevant portions of the PLB. If the PLB
maintains inclusion with the second level cache, it will be notified if an entry it is caching is
evicted from the cache. This reduces the effectiveness of the PLB because any permissions
table entry it caches must be resident in the second level cache, but it provides a way to
keep PLB’s coherent by piggybacking on existing coherence hardware.

59

60

Chapter 5

MMP Evaluation for User

Programs

We have presented a complete MMP design. To validate our design, we built a simulator of
the MMP hardware, and measured a variety of user-level applications as they used MMP
for different purposes. The purpose of the experiments is to evaluate permissions table
designs, and verify that our MMP system can efficiently provide real applications with
useful memory protection services.

We present a detailed performance analysis of the tables. When an application uses
MMP for coarse-grained protection, MMP’s space consumption is small (<1% of the ap-
plication memory usage), and it adds few additional memory references (<1% of the ap-
plication memory references). When an application uses fine-grained memory protection,
MMP’s space cost is under 9% and the number of extra memory references it adds is under
8%.

5.1 Evaluation Methodology

Fine-grain memory protection is useful, but comes at a cost in both space and time. The
permission tables occupy additional memory and accessing them generates additional mem-
ory traffic. The time and space overheads depend on three issues: where the compiler and
memory allocator place data in memory, how the programmer protects that data, and how
the program accesses that data.

We evaluated both C and Java programs. C programs were compiled with gcc version
egcs-1.0.3a for a 32-bit MIPS target using -O3 optimization and static linking to generate
an ELF binary. The malloc from the newlib library was used. The linker and malloc
libraries were used unmodified. The results would be better if the linker was modified to
align and pad program sections, and if malloc was modified to try to align addresses and to
place its internal management state away from the returned memory. The Java programs
were compiled for a MIPS target using MIT’s FLEX Java-to-native compiler [RAB+03].
FLEX’s output was also linked with the newlib malloc library. The garbage collector in
FLEX was disabled for all of our runs to put a heavier load on the memory allocator.

61

A big challenge in evaluating MMP is trying to predict how programmers would take
advantage of word-granularity protection. In this evaluation, we considered two extreme
cases. In the first case, we assumed light use of the protection facilities. We ran the programs
in a single protection domain with the standard protection regions for Unix processes: read-
only program text, read-only data, read-write data, and stack. This level of protection is
what is provided by most current operating systems. In the second case, we assume that
every object allocated by malloc is in a separate user segment and that the surrounding
words are inaccessible because they hold malloc internal state. The malloc implementation
is one protection domain, and the program is another. However, gate permissions were
not used for these experiments because there are only a few entry points to malloc, so any
caching scheme would work well.

5.2 Benchmark overview and methodology

To gather data on how programs access data, we chose a mix of benchmarks that were both
memory reference and memory allocation intensive. Table 5.1 lists the benchmarks used
and their reference properties. Benchmark names prefixed with a “j-” are Java programs.
Benchmarks crafty, gcc, twolf and vpr are from SPEC 2000, and vortex is from SPEC
95. The tr suffix indicates the training input, and test suffix indicates the test input.
Names prefixed “o-” are from the Olden [Car96] benchmark suite. Names prefixed with
“m-” are from the Mediabench benchmark suite. Table 5.1 includes the number of memory
references per table update. Only malloc, realloc, and free update the permissions table,
and the results show a wide variation in how frequently objects are created and deleted.

The programs were run on a MIPS simulator modified to trace data memory references
as well as calls to malloc, realloc, and free. We considered only data references because
the instruction reference stream remains inside a single text segment for these codes, but
we put the protection information for the text segment in the permissions table. These
traces were fed to our model implementations of the SST and the trie which keep track of
size of the tables, and the memory accesses needed to search and update the tables. The
implementation also models all invalidates of sidecars and PLB required for consistency
with table updates, and to prevent multiple hits in the PLB after refills.

We measure space overhead by measuring the space occupied by the protection tables
and dividing it by the space being used by the application for both program text and data
at the end of a program run. We determine the space used by the application by querying
every word in memory to see if it has valid permissions. As a result, the space between
malloced regions is not counted as active memory even though it contributes to the address
range consumed by malloc and to the protection table overhead. The stack starts at 64 KB
and is grown in 256 KB increments. Each call to brk returns 1 MB.

We approximate the effect on runtime by measuring the number of additional memory
references required to read and write the permission tables. We report overhead as the
number of additional references divided by the number of memory references made by
the application program. The performance impact of these additional memory references
varies greatly with the processor implementation. An implementation with hardware PLB
refill and a speculative execution model should experience lower performance overheads
because these additional accesses are not latency critical. A system with software PLB refill
and a simple pipeline should have higher relative time overhead. In addition to counting
additional memory references, we also fed address traces containing the table accesses to a

62

Benchmark Refs ·106 Segments Refs/Update Cs

crafty test 3,088 96 64,327,162 6

gcc tr 1,684 20,796 161,944 26

twolf train 11,537 938,844 24,576 8

vpr test 506 6,274 161,191 6

vortex tr 1,291 211,630 12,200 16

j-compress 561 6,430 174,554 14

j-db 109 249,104 876 12

j-jack 402 1,622,330 496 34

j-jess 245 215,460 2,275 10

j-raytrace 1,596 1,243,052 2,567 20

m-jpeg dec 1 58 45,785 6

m-mpeg2 dec 30 46 1,307,794 6

o-em3d 608 131,598 9,240 22

o-health 142 846,514 336 14

Table 5.1: The reference behavior of benchmarks. The Refs column is total number of
loads and stores in millions. The Segments column is the number of segments written to
the table during the fine-grained experiments (which is twice the number of calls to malloc

since each call effectively creates two segments). The next column is the average number of
memory references between updates to the permissions table. Cs is the number of segments
when running with coarse-grained protection. There are a variable number of coarse-grained
segments because each call to brk (extending the heap), and each OS extension of the stack
creates a new segment.

cache simulator to measure the increase in miss rate caused by the table lookups.

For the permissions caching hierarchy, we placed register sidecars on all 32 integer
registers. The results used either a 64-entry or 128-entry PLB with 4 entries reserved for
the supervisor and a random replacement policy. We do not model the supervisor code
in our experiments, and so we report just the number of PLB entries available to the
application (60 or 124).

5.3 Coarse-Grained Protection Results

Table 5.2 shows the space and time overhead results for the coarse-grained protection model.
We present the results only for the trie with run-length encoded entries and a 60-entry PLB.
We contrast the overheads of the permissions table with a model of a page table and TLB.
The page table and TLB provides four regions, executable code, read-only data, read-write
data, and stack. The linker pads the program sections to page boundaries. The MMP
system uses the true lengths of the program sections, not their rounded values. It also
distinguishes read-write static data from bss data. Using the real length of the program
sections is significant because their length is almost always an odd number of words, which
requires leaf level tables, and therefore more space. Also, MMP uses a new region for each
additional chunk of memory returned by the OS in response to a brk system call in a new
segment, and each chunk of new stack memory demand mapped by the OS. Stack and
heap extension account for the variable number of coarse-grained segments (column Cs in

63

Benchmark Trie RLE 60 PLB PAGE+TLB

X-ref Space l/k X-ref Space l/k

crafty test 0.56% 0.41% 2.1 2.59% 0.15% 2

gcc tr 0.01% 0.08% 2.0 0.17% 0.03% 2

twolf train 0.00% 0.31% 2.0 0.76% 0.11% 2

vpr test 0.00% 0.62% 2.6 0.00% 0.22% 2

vortex tr 0.02% 0.10% 2.0 0.77% 0.04% 2

j-compress 0.00% 0.11% 2.1 2.16% 0.04% 2

j-db 0.32% 0.17% 2.0 0.98% 0.06% 2

j-jack 0.00% 0.04% 2.2 0.04% 0.02% 2

j-jess 0.06% 0.18% 2.1 0.59% 0.06% 2

j-raytrace 0.00% 0.07% 2.2 0.01% 0.03% 2

m-jpeg dec 0.27% 0.61% 2.8 0.12% 0.22% 2

m-mpeg2 dec 0.01% 0.61% 2.3 0.01% 0.22% 2

o-em3d 0.00% 0.07% 2.1 0.02% 0.03% 2

o-health 0.02% 0.12% 2.1 0.07% 0.05% 2

Table 5.2: The extra memory references X-ref and extra storage space Space required for
a run-length encoded permissions table and 60 entry PLB used to protect coarse-grain
program regions. We compare to a traditional page table with a 60 entry TLB. The l/k
column gives the average number of loads required for a table lookup, which is a measure
of how much the mid level entries are used for permission information.

Table 5.2).

The overheads are small in both space and time for both MMP and a TLB system.
The trie space overhead is bigger than the page table overhead, but it is less than 0.7%
for all of the benchmarks, compared with the application’s memory usage without MMP.
The trie uses additional space because of the leaf level tables that accommodate program
sections whose start or end addresses are not divisible by 256 B. If the program segments
were aligned, and grew in aligned quantities, the trie and page table would consume the
same space.

The trie adds fewer than 0.6% extra memory references compared to the application
running without MMP, and requires fewer table accesses than the page table for every
benchmark except Mediabench’s mpeg2. The mpeg2 run is so short that writes to set up the
permission table make up a large part of the table accesses. The advantage of the trie is
the reach of its mid-level run-length encoded entries. These entries are for 4 KB of address
space, but they can contain information for a 20 KB region. A conventional page table
entry has information only for 4 KB ranges. For instance, compress, a benchmark known
to have poor TLB performance, mallocs a 134 KB hash table which is accessed uniformly.
This table requires 33 TLB entries to map, but only requires 8 entries in the worst case for
the PLB. The number of loads per lookup is close to 2 indicating that mid-level entries are
heavily used.

We also simulated an SST with a 60-entry PLB. This configuration performs much better
that either of the previous schemes, with both time and space overheads below 0.01% on
all benchmarks, compared to the application running without MMP. The ability of the SST
table segments to represent large regions results in extremely low PLB miss rates. Given
the number of segments listed in Table 5.1, all of the benchmark’s coarse-grained segments

64

probably fit into the PLB at the same time. Because there are so few coarse grain segments,
the lookup and table update overhead is small.

These results show that the overhead for MMP word-level protection is less than 1%,
compared with an application that does not use MMP, when MMP is used for large seg-
ments.

5.4 Fine-Grained Protection Results

We model the use of fine-grain protection with a standard implementation of malloc which
puts 4–8 bytes of header before each allocated block. We remove permissions on the malloc
headers and only enable program access to the allocated block. We view this as an extreme
case, as a protected subsystem will typically only export a subset of all the data it accesses,
not its entire address space.

Table 5.3 shows the results for the fine-grain protection workloads. While the SST
organization performs well for some programs, its time and space overhead balloons on
other programs. For o-health the space overhead reaches 44%. The binary search lookup
has a heavy, but variable, time cost, which can more than double the number of memory
references. For j-jack, it averages 20.8 loads per table lookup, but for mpeg2 it is only
4.8. Because SST must copy half the table on an update on average, updates also cause
significant additional memory traffic. But SST does have significantly lower space and
time overheads than the trie table for some applications like gcc and crafty. The gcc

code mallocs a moderate number of 4,072 byte regions for use with its own internal memory
manager. This odd size means the trie table must use leaf tables which have limited reach in
the PLB, while the SST represents these segments in their entirety. More flexible mid-level
table entries (see Section 3.4.3 might be able to represent these odd-sized regions.

All trie table organizations take almost exactly the same space and so their space over-
head is reported together in one column. The space overhead for the trie table is less than
9% for all permission entry types. Because the run-length encoded format must use an
escape to a bitvector when the number of permission regions in one entry is greater than
4, it can require a little more space than the permission vector format. Five of the bench-
marks required permission vector escapes, but only two required more than 30 escapes.
The health benchmark required 4,037 pointers to permissions vectors in the leaf entries,
and j-jess 332. Although is not likely to represent real program behavior [Zil01], health
provides a stress test for our system because it allocates many small segments.

We garbage collect trie permission tables when they become unused. This keeps memory
usage close to the overhead of the leaf tables, which is 1/16 = 6.25% because information for
16 words is held in a 32-bit permissions table entry. Some overheads are higher than 6.25%
because of non-leaf tables. Each table has a counter with the number of active entries.
When this counter reaches zero, the table can be garbage collected. The reads and writes
to update this counter are included in the memory reference overhead.

The run-length encoded organization is clearly superior to the permission vector format
(compare columns vec 60 PLB to RLE 60 PLB). Every benchmark performs better and
the highest time overhead (vpr) is more than halved, dropping from 19.4% to 7.5%. Lookups
dominate the additional memory accesses, as expected. jpeg and mpeg from Mediabench
are small programs that don’t run for long so updating the tables is a noticeable fraction of
table memory references for these benchmarks. j-jack has high update overhead because
it performs many small allocations with little activity in between (from Table 5.1 it does

65

Benchmark SST 60 PLB Space vec 60 PLB RLE 60 PLB RLE 124 PLB

Space X-ref upd ld/lk X-ref upd ld/lk X-ref upd ld/lk X-ref upd ld/lk

crafty test 0.0% 0.0% 49% 7.4 0.6% 3.2% 1% 2.1 0.6% 1% 2.1 0.0% 1% 2.1

gcc tr 0.2% 0.7% 36% 13.4 4.0% 3.6% 4% 2.8 1.5% 13% 2.9 1.0% 19% 2.9

twolf tr 22.2% 141.0% 63% 16.5 6.6% 10.6% 1% 3.0 7.5% 1% 3.0 6.3% 1% 3.0

vpr test 0.1% 0.7% 96% 11.2 4.5% 19.4% 1% 2.9 7.5% 1% 2.9 1.4% 1% 2.9

vortex tr 0.8% 105.0% 95% 16.0 4.5% 4.3% 3% 2.8 2.4% 7% 2.8 1.2% 13% 2.9

j-compress 0.2% 0.0% 54% 12.8 0.4% 3.1% 1% 2.2 0.1% 9% 2.4 0.0% 59% 2.7

j-db 16.3% 69.1% 5% 19.2 4.9% 7.4% 7% 2.9 6.4% 8% 3.0 5.6% 9% 3.0

j-jack 23.5% 20.0% 31% 20.8 6.9% 4.8% 18% 2.9 3.0% 27% 2.9 2.1% 39% 2.9

j-jess 12.7% 22.0% 7% 18.7 4.8% 3.4% 6% 2.9 2.6% 8% 2.9 2.1% 10% 3.0

j-raytrace 30.5% 10.1% 11% 21.4 6.8% 1.1% 12% 3.0 1.0% 14% 3.0 0.8% 17% 3.0

m-jpeg dec 0.0% 0.0% 75% 4.8 6.3% 3.1% 9% 2.9 0.5% 64% 3.0 0.4% 86% 3.0

m-mpeg2 dec 0.0% 0.0% 71% 5.2 7.2% 0.1% 18% 2.8 0.0% 71% 2.8 0.0% 85% 2.7

o-em3d 3.2% 16.2% 2% 18.7 6.5% 2.6% 8% 3.0 2.1% 9% 3.0 1.7% 12% 3.0

o-health 44.0% 75.3% 12% 20.0 8.3% 7.6% 13% 3.0 6.1% 17% 3.0 5.7% 18% 3.0

Table 5.3: Comparison of time and space overheads with inaccessible words before and after every malloced region. The Space column
is the size of the permissions table as a percentage of the application’s active memory. The last three organizations are all trie tables
and all occupy about the same space. The X-Ref column is the number of permissions table memory accesses as a percentage of the
application’s memory references. The upd column indicates the percentage of table memory accesses that were performed during table
update. The remainder of the references are made during table lookup. The ld/lk column gives the average number of loads required for
a table lookup.

66

less than 500 memory reference in between table updates). When we increase the number
of available PLB entries to 124 (column RLE 124 PLB), the worst case memory reference
overhead drops to 6.3%, with some benchmarks, like vpr, benefiting greatly.

The format of the trie table entries is important because some encodings can represent
information about a larger address range. The PLB contains permissions information for
a fixed amount of memory known as its reach. The reach of a TLB without super-page
support is the number of entries times the page size. The reach of the PLB depends on
the format of the permission table entries. Bitvector entries always have the same reach,
but run-length encoded entries can have a larger reach. While their reach is variable, on
average it is higher than the bitvector entries. Run-length encoded entries are superior to
bitvectors because a larger PLB reach means fewer PLB misses, which reduces costly data
cache misses to the permissions table.

In the trie organization, leaf table entries are undesirable because their entries have
a limited range, and so many of them must be resident to cover a large address range.
The SST’s direct representation of the user segment is an advantage because user segments
don’t get broken up when they are placed into the permission table. If they fit application
allocation behavior, flexible mid-level table entries (see Section 3.4.3), where a large memory
range is broken into a small number of protection regions on odd boundaries, would cover
permissions for more memory than a leaf table entry.

5.5 Memory Hierarchy Performance

Coarse Fine
Benchmark SCar SCar PLB SCar Elim

crafty test 28.5% 28.5% 0.3% 1.0%

gcc tr 9.4% 11.4% 0.4% 3.3%

twolf train 15.5% 17.8% 2.5% 1.7%

vpr test 37.3% 42.5% 2.6% 7.2%

vortex tr 12.4% 15.0% 0.8% 2.4%

j-compress 5.6% 22.9% 0.0% 11.4%

j-db 14.2% 18.4% 2.0% 2.6%

j-jack 7.3% 9.8% 0.8% 1.9%

j-jess 8.3% 16.6% 0.8% 1.1%

j-raytrace 0.8% 2.5% 0.3% 0.6%

m-jpeg dec 7.0% 13.2% 0.1% 10.9%

m-mpeg2 dec 7.4% 7.4% 0.0% 4.2%

o-em3d 12.8% 13.1% 0.7% 7.0%

o-health 5.6% 8.6% 1.7% 3.8%

Table 5.4: Measurements of miss rates for a trie table with run-length encoded entries and
a 60 entry PLB. SCar is the sidecar miss rate. PLB is the global PLB miss rate (PLB
misses/total references). SCar Elim is the number of references to the permissions table
that were eliminated by the use of sidecar registers for the fine-grained protection workload.
For coarse-grained protection, the PLB miss rates were close to zero on all benchmarks and
so are not shown here.

67

Table 5.4 shows the performance of the permissions caching hierarchy including the
sidecar miss rate and the PLB global miss rate for the fine-grained protection workload. The
sidecar registers normally capture 80–90% of all address accesses, while the PLB captures
over 97% of all address accesses for all benchmarks.

We also show the percentage reduction in references to the permissions tables as a
result of using sidecar registers. The principal motivation for using sidecars is to reduce
traffic to the PLB, but there is a significant performance gain also (more than 10% for two
benchmarks) because some sidecar hits would be PLB misses, as explained in Section 4.2.

As another indirect measure of performance cost, we measured the increase in miss rate
caused by the additional permissions table accesses. The results for a typical L1 cache
(16 KB) and a typical L2 cache (1 MB) are shown in Figure 5.5. Both caches are 4-way set
associative. For the L1 cache, at most an additional 0.25% was added to the miss rate, and
for the L2 cache, at most 0.14% was added to the global miss rate but most applications
experienced no difference in L2 miss rates.

The miss rates do not increase more than the 8% increase in memory references, so the
references to the permission table exhibit a locality commensurate with the applications.
In general the increase in miss rate is small, and even negative in two cases. Set associative
caches that use LRU replacement often do not implement an optimal cache replacement pol-
icy [SA93]. Small perturbations in a reference stream can lower the miss rate by improving
the replacement policy.

Benchmark 16 KB, 4-way 1 MB, 4-way

App MMP ∆ App MMP ∆

crafty test 1.86% 1.87% 0.01% 0.01% 0.01% 0.00%

gcc tr 4.25% 4.30% 0.06% 0.22% 0.22% 0.00%

twolf train 2.82% 3.04% 0.21% 0.00% 0.00% -0.00%

vpr test 3.37% 3.62% 0.25% 0.00% 0.00% 0.00%

vortex tr 0.71% 0.72% 0.02% 0.10% 0.10% 0.00%

j-compress 2.82% 2.82% 0.00% 0.12% 0.12% 0.00%

j-db 2.25% 2.39% 0.14% 0.50% 0.53% 0.03%

j-jack 0.54% 0.55% 0.01% 0.24% 0.24% 0.01%

j-jess 0.84% 0.86% 0.02% 0.07% 0.07% 0.00%

j-raytrace 0.22% 0.23% 0.00% 0.03% 0.03% 0.00%

m-jpeg dec 0.43% 0.43% -0.00% 0.09% 0.09% 0.00%

m-mpeg2 dec 0.20% 0.20% -0.00% 0.04% 0.04% 0.00%

o-em3d 0.42% 0.42% 0.01% 0.19% 0.20% 0.00%

o-health 2.44% 2.58% 0.14% 2.41% 2.55% 0.14%

Table 5.5: App is the cache miss rate of the application benchmark, while MMP is the
combined cache miss rate for the references of the benchmark and the MMP protection
structures. ∆ is their difference. A trie table was used with run-length encoded entries
and a 60 entry PLB. This table holds results from two experiments, differing only in cache
size—16 KB and 1MB. The cache was a 4-way set-associative with 32-byte lines. -0.00
means the miss rate decreased slightly. Reference streams were simulated for a maximum
of 2 billion references.

68

Chapter 6

MMP Memory Supervisor

Like a traditional memory management unit, MMP hardware needs system software to
present a useful abstraction to the user. The software side of MMP is the memory supervisor,
which provides software support for MMP’s permissions abstractions.

This chapter presents an abstract description of the supervisor, but one informed by
Mondrix. In particular, the supervisor design tries to be minimal, to make slipping it
“under” an existing operating system as easy as possible.

The supervisor manages the permissions tables, and controls how domains are created,
named, and destroyed. It establishes policy on how domains can share memory, and provides
an interface to memory allocators that allows allocators to give permission on memory blocks
to client domains. Finally, it provides the new abstraction of group protection domains,
which manage permissions on multiple disjoint memory regions.

One important design principle for the supervisor is that it cannot trust the parameters
passed to it by other system software. It guards against buggy code, so it must verify
pointers, and check that requested operations are legal. Its relationship to the rest of the
kernel is analogous to the kernel’s relationship to user programs.

This chapter first explains the concepts that the memory supervisor manages. Then
it shows the protection domain structure for the supervisor and a modular application,
followed by a comprehensive overview of the supervisor. Then Section 6.4 reviews the
supervisor’s application programming interface (API). Section 6.5 describes the memory
supervisor’s policies. Section 6.6 discusses how the supervisor works with a memory alloca-
tion service to broker permissions efficiently without replicating the work that the allocator
does. Finally, Section 6.7 discusses two important data structures that the supervisor uses.

6.1 Memory supervisor concepts

An understanding of the memory supervisor begins with understanding the abstractions
the supervisor implements and manages. Access permissions describe what a domain can
do with memory, i.e., the kinds of permissions discussed up to this point, e.g., read-write,
or return gate. A protection domain’s permissions table describes its memory access per-
missions. We call memory accessible if there is some way for a program to access it without
causing a fault (i.e., by reading, writing, or executing it). Export permissions describe how

69

a domain can export permissions to another domain. If a domain only has read-only export
permissions on a region, it cannot export read-write permissions on it to another domain.
Memory is shared when it is accessible by more than one domain.

Each word in memory is owned by exactly one protection domain. A protection domain
has rights on memory it owns, for instance it can assign access permissions on it.

A group protection domain is a collection of memory segments, each with a specified
permission. Code executing in a protection domain creates a group protection domain
and exports memory segments with a specified permission value to the group domain. A
protection domain gains the permissions specified by the segments in a group protection
domain when it adds the group domain. (The domain which creates a group domain can
also add it.) Group domains are useful for data that has a single function, but the memory
segments that serve that function change with time. In Mondrix, read-write kernel stacks
are in a group protection domain. The memory regions in this group domain change as
processes are created and destroyed. The memory supervisor regulates which protection
domains can add a group.

6.2 Using the supervisor for a modular application

The MMP hardware checks every load, store and instruction fetch for proper permissions.
Protection domain zero (PD 0) is exempt from this checking so it can read and write the
permissions tables themselves. The memory supervisor runs in PD 0 so it can maintain the
protection tables; but the high privilege granted to code in PD 0 provides motivation to
keep that code as small as possible.

Protection domain identifiers (PD−IDs)

C
or

e
ap

pl
ic

at
io

n

M
od

ul
e

0

M
od

ul
e

1

T
op

 o
f

m
em

or
y

su
pe

rv
is

or

43210

B
ot

to
m

 h
al

f
of

 m
em

or
y

su
pe

rv
is

or

Figure 6-1: Structuring a generic, modular application to use multiple domains. The bot-
tom half of the memory supervisor is resident in protection domain 0 (PD 0), which has
unmediated access to all of memory. The top half is in PD 1. The core of the application
is in PD 2, and modules are loaded in PD 3, and its successors.

Figure 6-1 shows how the supervisor is used by a generic, modular application. To
minimize the amount of code in PD 0, the memory supervisor is split into two parts. The
bottom half writes permissions tables, updates the MMP hardware, and accepts memory
faults, providing a hardware-independent view of the permissions table to the users of the

70

MMP hardware. These low level operations must be exempt from the hardware checking
done by the MMP hardware. Fortunately this list of low-level operations is short, and the
operations are simple.

All of the supervisor software entry points and most of the supervisor code is in PD
1. The core application (such as an OS kernel) goes in the next domain with modules or
other subsystems loaded into subsequent domains. By loading its modules into different
domains, the application isolates its modules, forcing them to make their memory shar-
ing patterns explicit. MMP enforces the modular boundaries that are already present in
software systems.

6.3 Memory supervisor overview

The memory supervisor serves several functions; we discuss each in turn to give an intuitive
understanding of its operation. All of these functions are implemented by the code in PD
1, except for the code which changes access permissions by writing protection tables. That
code is in PD 0.

The memory supervisor serves several functions:

1. It provides a hardware independent abstraction of the permissions tables.

2. It checks requests for memory access permissions, determining if a protection domain
has the right to change the access permission for a region of memory.

3. It implements memory ownership.

4. It implements, and checks requests for memory export permissions.

5. It implements creation and deletion of protection domains.

6. It tracks memory sharing across domains, supporting permissions revocation for dy-
namically allocated memory or protection domain deletion.

7. It implements group protection domains.

The first task of the memory supervisor is to manage the protection tables to provide
a higher-level, hardware-independent interface for permissions to the users of the MMP
hardware. Only the low-level supervisor code knows about table entry encoding, the rest of
the system simply manages protection information on arbitrary runs of contiguous words.

When users request additional access permissions, (e.g., by putting a switch or return
gate on an instruction), or when they downgrade their permissions (e.g., making a data
buffer read-only), the memory supervisor checks their request. Our design does not allow
users to manipulate their own permissions tables—the supervisor manages all permission
requests, allowing it to enforce a policy for memory use.

The supervisor implements memory ownership. Every address space is divided into non-
overlapping regions, where each region is owned by exactly one protection domain. When
a protection domain owns a memory region, it is responsible for how that memory region is
used in the system. Specifically, an owner can set arbitrary access permissions on memory
that it owns (just like the owner of a file in the Unix file system can add or take away
file permissions at will). A protection domain can also export arbitrary permissions on
memory that it owns to other domains. While memory access permissions are intended for

71

fine-grained use, memory ownership is intended to be more coarse-grained. Coarse-grained
ownership reduces the implementation complexity of the supervisor, without compromising
performance. The supervisor maintains a sorted list (the SST described in Section 3.1) of
memory regions and their owners. This data structure has a small number of large entries
that change infrequently, making an SST an appropriate data structure.

The supervisor implements export memory permissions, which are the rights a domain
has to grant other domains access permissions to its memory. Ownership conveys unlimited
export permissions, but non-owning domains can have limited export permissions. For
instance, an owning domain can give another domain (call it domain X) read-write access
permissions on a buffer, but only read-only export permissions. Domain X can read and
write the buffer, but cannot grant read-write permissions on the buffer to domain Y.

The supervisor manages the creation and deletion of protection domains. The creation
of a domain consists of specifying the memory that it owns, and the deletion of a domain
consists of finding a new owner for memory owned by the deleted domain. The supervisor
maintains a tree of protection domains to track the parental relationships between domains.
Most of the work for domain creation and deletion is to enforce policy. For example, the
Mondrix supervisor only allows a domain to create another domain using memory it owns,
and when a domain is deleted, it revokes permissions from all domains on memory owned
by the deleted domain.

The supervisor tracks memory regions that are shared among domains. When access or
export permissions on these regions must be revoked, (e.g., because a program frees a piece
of dynamically allocated memory, or because a protection domain is deleted), the supervisor
revokes permissions only from domains which can access the memory. The supervisor could
revoke permissions on shared memory from every domain, but permissions revocation is
done as part of freeing dynamically allocated memory, which is a frequent event in the
kernel (and in most applications), and so it must be done efficiently. Writing permissions
tables is an expensive operation, so only writing the tables of the domains that can access
the memory being freed is an important optimization. Having the supervisor track memory
sharing (as opposed to having the owning domain do it) insures that memory is properly
reclaimed, preventing resource leakage.

The supervisor implements group protection domains, which are collections of memory
regions, with specified permissions, that are united by a common use. For instance, inodes
are a kernel data structure that record metadata information for file system objects. Several
modules (such as the EIDE disc driver and the interpreter loader) need read access to inodes.
The kernel creates a read-only group of inodes that a module can add to get read permissions
on these memory areas. The memory locations that hold inodes change over time as inodes
are allocated and deleted, and the kernel keeps the group protection domain of inodes up
to date by adding the new ones to the group, and deleting the old ones from the group.

6.4 Memory supervisor API

This section reviews the supervisor API (printed in Appendix A) for domain maintenance,
and memory permissions manipulation, dynamic memory allocation, naming protection
domains, and group protection domains.

72

6.4.1 Protection domain creation

The supervisor provides the function pd subdivide(struct mmp req*), which allows a
protection domain to divide itself, creating a new domain. It takes a list of requests, each
specifying a memory region and permission value, and it returns the protection domain ID
of the new domain in which the memory is placed. The steal flag indicates if the region is
supposed to be owned by the new protection domain. If steal is true, the memory region
is no longer owned by the original owner, but is owned by the new protection domain.

6.4.2 Protection domain deletion

Protection domains are created hierarchically, and they are destroyed hierarchically. The
supervisor tracks the entire protection domain hierarchy, allowing parents to call
mmp free pd(pd id, recursive) on their children. If the recursive flag is true, all of the
deleted protection domain’s children are also deleted. Otherwise, they are re-parented to
the closest surviving parent remaining in the tree. The hierarchical structure mimics the
Unix process structure because we thought it would be appropriate for tracking domains.
However, domains could have any relationship to each other, the system just needs to be
able to assign a new owner for the memory owned by a deleted protection domain.

6.4.3 Changing memory permissions

The basic operation for setting permissions is provided by the mmp mprot(ptr, len, prot,

pd id) call. The ptr parameter is the start address of the region, and the len parameter
is the length. The start address is rounded down to the nearest 4-byte address, and the
length has the low 2 bits of the address added to it, and it is then rounded up to the
nearest multiple of 4. The prot parameter is the protection value, which can be one
of PROT NONE, PROT READ, PROT READ|PROT WRITE, and PROT EXECUTE|PROT READ. Finally,
the pd id parameter identifies the target protection domain. This function is analogous to
mprotect, but works at word granularity, and it has the additional, pd id parameter, which
specifies the target domain for the permissions.

This function lets a protection domain set permissions on its memory, and lets it export
permissions to another protection domain. For example, the ide-disk domain makes this
call:
mmp mprot(&idedisk driver, sizeof(ide driver t), PROT READ, kern pd);

which exports a structure called idedisk driver read-only to the kernel domain.

6.4.4 Setting gate permissions

Gate permissions values are stored in a separate structure from the standard permissions
table (see Section 3.3), and the interface for setting gate permissions is different as well.
The supervisor exports the routine, mmp func gate(func, pd id), which takes a function
pointer and a protection domain. A program should set gate permissions only on the first
and last instruction of a routine, and the supervisor enforces this policy. The supervisor
verifies that the function pointer has execute permissions and that it is a function entry
point (using symbol information, see Section 7.2.1). If the pd id parameter is equal to the
owner of the function pointer, then a switch gate is set on the first instruction of the routine,
and a return gate is set on the last instruction. If the given protection domain is not equal

73

to the owner of the function, then a switch gate to the owner’s protection domain is set on
the first instruction of the routine. The supervisor determines the owner of the routine by
searching its list of owners for the entire address space.

For example, the real-time clock domain sets gate permissions during initialization like
this:
mmp func gate(&rtc open, rtc pd);

mmp func gate(&rtc open, kern pd);.
These calls make the function rtc open a valid entry point for the kernel, and allows the
rtc domain to call the routine itself via a cross-domain call.

The memory supervisor, and occasionally a domain itself, might want to know the
permissions a domain has on a piece of memory. This information is provided by the
function: mmp get prot(ptr, pd id, prot*). This function reads the protection value on
the word at location ptr, and stores it in the variable pointed to by the prot parameter.

6.4.5 Dynamic memory allocation

A memory allocator’s allocation function (e.g., kmalloc or vmalloc in Mondrix) calls
mmp mem alloc(ptr, len), and the allocator’s free function (e.g., kfree or vfree) calls
mmp mem free(ptr, len), passing them the location and length of the memory block be-
ing allocated or freed. These functions are similar to mmp mprot, but the target protection
domain is set to the caller’s caller. The allocator domain calls these functions using a cross-
domain call to the supervisor, so the caller on the cross-domain call stack is the allocator’s
domain; the caller’s caller is the requesting domain. The supervisor obtains the request-
ing protection domain identifier by reading the cross-domain call stack, because hardware
guarantees its correctness.

The protection value granted to the requesting domain is implicit, and set by the memory
supervisor. For memory the allocating domain owns, the supervisor sets the permissions
on allocation to read-write (justification is in Section 6.6.1). For memory the domain does
not own, the supervisor sets the permissions on allocation to the access permissions value
the allocator domain has on the memory. The supervisor reads the allocator’s domain to
determine its access permissions. The supervisor revokes permissions when memory is freed.
The mmp mem free call requires a length parameter, which is provided by the allocator.

6.4.6 Naming domains

There are several ways to name protection domains. The domain identifier of the calling
domain is available to the caller by reading the cross-domain call stack, which lets a service
safely and efficiently determine who called it.

The supervisor maintains a sorted list of owners for regions of memory. This allows
code addresses, and addresses of static data to be attributed to protection domains via the
function mmp code to pd(const void*), which takes a pointer and returns the protection
domain that owns the pointer. This routine performs a binary search of all owned memory
regions, so it cannot be called in circumstances that require a constant time operation.

Finally, the supervisor maintains a collection of protection domain identifiers whose
names correspond to a certain module. For example, rtc pd is the protection domain for
the rtc.o module (the real-time clock). If the value of this variable is zero, the module

74

domains

protection

Group

domains

protection

Group

������������������������������������
������������������������������������ ������������������

������������������

������������������������������������	�	�	�	�		�	�	�	�	
�
�
�
�

�
�
�
�

������������������������������������

AFTERBEFORE

Read−write ��
������������

GPD 1 GPD 1PD 3PD 2PD 1

Protection domainsProtection domains

PD 1 PD 2 PD 3

Permissions Key

None

Read−only

Execute−read

Figure 6-2: An example of a group protection domain. In this case, protection domain 1
has read-write permissions on two regions of memory. It exports read-only permissions on
both to group protection domain 1. On the right of the legend, protection domain 3 has
added group protection domain 1, so it gains read-only permissions to the two pieces of
memory.

has not been loaded. This simple mechanism is convenient, and is similar to the current
practice in the kernel of naming domains by a string containing their name.

6.4.7 Group protection domains

Group protection domains are virtual protection domains that contain a group of memory
segments, each with an associated permission. The memory supervisor tracks which memory
locations belong to a group, and regulates which modules can join a group. Group protec-
tion domains are created by calling mmp gpd create(const char* name, int nregions),
which takes the name of the group and an estimate of the number of memory segments the
group will contain and returns a group protection domain identifier (gpd id). The program
uses the gpd id to identify the group in subsequent calls. Groups are destroyed by calling
mmp gpd destroy(gpd id).

A real protection domain can add (or join) a group protection domain by calling
mmp gpd add(gpd id). If the supervisor allows the domain to add the group, permissions
to the group’s memory regions are added (or ORed into) the calling domain. This process
is shown in Figure 6-2, where PD 1 exports two memory regions read-only to a group
protection domain that is added by PD 3. A protection domain can quit a group domain
by calling mmp gpd unadd, making all of the group’s memory locations inaccessible to the
calling domain.

A group’s collection of memory locations grows when a domain exports memory to
the group using mmp gpd export, and it shrinks when a domain revokes a memory region
using mmp gpd unexport. When a domain exports or unexports to a group, the memory
supervisor adds or revokes permissions on the new memory for every member of the group.
The supervisor sanity checks these calls, making sure that they refer to a group domain
which has been created, and that memory unexported from a group was previously exported
to the group.

Global permissions (i.e., permissions for all protection domains) are provided by a group

75

with unrestricted membership. The supervisor can use its knowledge of the permission table
layout to share underlying permissions tables if the sharing region meets certain size and
alignment restrictions (as discussed in Section 3.4.2). For instance, if a third level table
holds information about a 4KB block of memory that has no restrictions on sharing, mid-
level trie tables in other domains can simply point to the owning domain’s protection table.
The hardware or software that refills the PLB inserts the entry with a PD-ID tag of the
currently running domain, not the domain which owns the permissions table from which the
entry is loaded. A different table structure (like the one described in Section 3.4.3) would
provide support for more efficient global permissions.

Group protection domains were useful in Mondrix and straightforward to implement,
even though they were not intended when the hardware was designed. Group domains, like
any access control mechanism with groups [SS75], must address difficult issues of how group
membership is managed. The memory supervisor would enforce the policy chosen by the
system designer, but we defer to the literature for possible policies, and simply present the
group mechanism.

6.5 Policy for memory ownership and permissions

The memory supervisor policy for memory ownership and permissions is given in Table 6.1.
The function names in Table 6.1 do not correspond exactly to the function names in the ap-
pendix. The mmp prefix has been dropped to shorten the name so it would fit into the table.
The mmp mprot function was split into two logical parts, depending on whether it set per-
missions for the calling domain (mprot in the table), or some other domain (mprot export

in the table). The supervisor determines the target protection domain of an mmp alloc

or mmp free by reading the cross-domain call stack (as explained in Section 6.6). The
arguments to mmp pd subdivide are simplified.

While there are many details in the table, the supervisor policy follows a few general
rules. Export permissions are not explicitly manged, but are folded into ownership and
access. An owner can export permissions freely, while a non-owner can export only up to
its access permissions level, i.e., a domain’s access permissions are its export permissions if
it does not own the memory. A non-owner can never dictate permissions to an owner
(this policy and its reverse are consistent with the rest of the policy). A non-owning
domain cannot downgrade the permissions of another domain. This rule also means that a
domain cannot call mmp mem free on memory it does not own because that call downgrades
permissions of the target domain. Because of this restriction, allocator domains must own
the memory they allocate, or they must retain access permission in order to retain export
permission. If an allocator domain does not own the memory pool that it allocates, then
it cannot drop its access permissions on memory it allocates to another domain. The
principle of least privilege would dictate that the allocator domain drop its access privileges
on allocated memory, since the allocator does not need to access that memory until the
domain using it frees it. The lack of explicit export permissions makes the MMP system
simpler to implement, but it prevents this application of the principle of least privilege.
Finally, a domain must own the memory it uses to create a new domain.

In Mondrix, the only way for a domain to cede ownership of memory is to create a new
domain from that memory. The supervisor could provide an mmp chown call, which would
allow a domain to give ownership of a memory region to another domain, but it was not
necessary.

76

Before Call After Comments

Caller Target Caller Target

own? access own? access own? access own? access

y X mprot(ptr, len, A); y A
An owner can grant itself arbitrary permissions.

n B n
A≤B
? A :

ERROR

A non-owner can only downgrade his/her per-
missions.

y X n X
mprot export(ptr,
len, C, target);

y X n C An owner can override a domain’s permissions.

n X y X n X y ERROR
It is an error for a non-owner to override an
owner’s permissions.

n D n E n
C≤D
? D :

ERROR
n

C≥E
? C :

ERROR

A non-owner can only export at his/her access
level, and can only upgrade another non-owner’s
permissions.

y X n none
pd subdivide(ptr,
len, E);

n none y E
A domain can only subdivide with memory it
owns and does not share.

n X n ERROR
A domain cannot subdivide with memory it does
not own.

y/n X y X pd free(target); n/? none

The supervisor revokes permissions on memory
owned by a deleted domain from all other do-
mains. The memory owned by the deleted do-
main becomes owned by its parent, which may or
may not have been the caller. (see Section 6.4.2).

y X n none mem alloc(ptr, len); y X n RW
When the allocator owns memory, it allocates it
with read-write permissions.

n X y X n ERROR
A domain cannot allocate memory to the mem-
ory’s owner.

n F n G n G n
F≥G
? F :

ERROR

A non-owning domain allocates at the access per-
mission it has, and cannot downgrade the per-
missions of another non-owning domain.

y X n X mem free(ptr, len); y X n none
A free revokes permission from all sharing do-
mains.

n X n ERROR A non-owning domain cannot free memory.

Table 6.1: Memory supervisor policy for memory ownership and permissions. The Before column shows the state of the calling domain and the target domain
before the supervisor call, identified by the Call column. The After column shows the state after the call. A ‘y’ (or ‘n’) in the own? column indicates the
domain owns (or does not own) the memory being manipulated. An ‘X’ in an access column indicates an arbitrary memory access permission, though an ‘X’ in
the before and after columns indicates the value has not changed. Other uppercase letters indicate a specific (but arbitrary) permissions value; “none” indicates
no permissions; “RW” indicates read-write permissions. Columns for domains not involved in a particular call are left empty. An ERROR outcome anywhere in
a row indicates the supervisor call returns an error for that call. The operator ? :, borrowed from the C language, indicates conditional state.

77

Switch/Return gate

Read−only

No access

Execute−ReadRead−Write

Figure 6-3: A partial order on permissions values.

Table 6.1 refers to an ordering on permissions values. Figure 6-3 shows the partial order
that Mondrix uses. Read-write, execute-read and gate permissions all compare as equal, so
a non-owning domain can convert among these permissions values (this is the meaning of
the line in Table 6.1 for mprot with a non-owning caller).

6.6 Dynamic memory allocation

This section describes how the memory supervisor interacts with the system’s dynamic
memory allocators. The supervisor manages permissions, and the allocator manages mem-
ory regions, and these functions should be kept separate. The challenge is to reduce the
amount of work the memory supervisor must do during memory allocation and dealloca-
tion for efficiency, but give the supervisor enough information and control to set policy for
memory use.

A key division of labor between the supervisor and the allocator comes from who tracks
the length of allocated memory. The allocators track the length, so the user does not
need to provide it when memory is freed. The supervisor should not duplicate the length
information which is tracked by the allocator.

6.6.1 Design of a generic memory allocator

Figure 6-4 shows one design for a generic memory allocation service. In the before picture
on the left of the legend, there are two domains: a client domain, which owns its code
and data, and an allocator domain that has only has code (in practice it would have some
static data). The allocator domain owns the memory pool it manages (labeled, “pool” in
the figure), but it cannot access the memory in the pool. The state of the system after a
successful memory request is shown on the right of the legend. The client has been given
read-write permissions by the allocator PD on a block of memory taken from the allocator’s
pool.

Table 6.1 specifies that a domain which calls mmp mem alloc on memory it owns, ex-
ports read-write permissions on that memory to its caller. The supervisor implements this
policy so that it need check only ownership to allow allocation or deallocation to proceed.
Memory allocation and deallocation happens frequently. Checking ownership is compu-
tationally cheaper than checking export permissions by reading the permissions table (it
also requires fewer memory references). Having an allocator own its memory pool enables
efficient dynamic memory allocation with the expected semantics that a domain which al-
locates memory also gains read-write permission on that memory. As a consequence of this

78

BEFORE AFTER

���������������������������
��������������������������� ����������������������

����������������������

����������������

poolpool

Allocator PDClient PD Allocator PDClient PD

Permissions Key

Execute−read

Read−write

Read−only

None

O
w

ne
rs

hi
p

O
w

ne
rs

hi
p

O
w

ne
rs

hi
p

O
w

ne
rs

hi
p

Figure 6-4: A before and after picture for memory allocation. In this example, the allocating
domain maintains ownership of allocated memory, but no access permissions. Protection
and ownership information is shown. The small spot of read-write permissions in the allo-
cator domain after the allocation is for the allocator to record meta-data into the memory
that directly precedes the allocated region

design, the allocator owns all dynamically allocated memory.

6.6.2 Freeing memory

One policy that supports the standard memory allocation model is that all permissions on
a region of memory is revoked for all domains when that memory is freed. The memory
supervisor revokes the permissions, because it cannot trust the domain freeing the memory
to do so. If the program has a bug and fails to revoke permissions on a memory block that
it frees, then when the memory is reused, it could access the new block (so could anyone
who shared the original), creating a protection breach. In addition, it requires too much
additional code to retrofit a legacy application to track what memory it has exported, to
whom, and its length information. The supervisor, or the supervisor and the allocator
should track this information

The supervisor could simply revoke permissions on memory that is freed from every
domain, but that would require writing every domain’s protection table. Instead, the su-
pervisor maintains a data structure to track permissions sharing across domains, so it must
write the permissions table only of domains that have permissions on the memory region
being freed. Section 6.7.1 has a description of the data structure the supervisor uses to
track inter-domain sharing.

6.6.3 Dynamically allocated memory and domain deletion

When a program deletes a protection domain, the supervisor revokes permission to ac-
cess memory owned by the domain from all domains. If another domain has a pointer
to memory owned by the deleted domain, accessing that memory will cause a fault. This
problem of dangling pointers is common to system which are decomposed into independent
services [vECC+99], and its resolution is beyond the scope of this thesis.

Memory dynamically allocated by a domain must be freed when the memory supervisor
deletes a domain, to prevent a resource leak. The memory supervisor does not track the

79

allocating domain for dynamically allocated memory, so it trusts the kernel to free the
memory allocated by a domain before deleting the domain.

Nooks [SBL03] uses its fault recovery mechanism to track kernel objects that must be
reclaimed when a domain is deleted pragmatically or because it experiences a fault. A
fault recovery mechanism for Mondrix should be designed to allow Mondrix to reclaim
dynamically allocated memory.

6.7 Memory supervisor data structures

This section describes two important data structures used by the memory supervisor. One
tracks the memory sharing patterns of protection domains, the other tracks group protection
domains.

6.7.1 Tracking memory sharing across domains

The supervisor tracks which domains are sharing memory, where sharing means multiple
domains can access the same memory region. When a program frees a region of memory, the
supervisor can revoke permissions on the region from all, and only, the protection domains
that are sharing it. Programs free memory frequently, and adjusting permissions tables
requires memory accesses and computation, so it is more efficient for the supervisor to
track which domains are sharing memory, and only adjust their tables when memory is
freed.

The data structure which tracks sharing balances performance with accuracy. Most
memory is not shared, but the sharing list must be consulted on every deallocation, and on
every call to mmp mprot which exports permissions. The supervisor maintains a short list of
protection domain identifiers for each page of kernel memory, indicating which protection
domains can access any memory on the page. If domains A and B could both access the
word at address 0xC0129874, the supervisor will revoke permissions from both domains for
all memory freed in the range 0xC0129000-0xC0129FFF. If the sharing list grows too long,
the page is considered global and permissions are revoked from every domain whenever
memory is freed anywhere in the page.

A simpler scheme could have the supervisor maintain a list of all domains to which each
domain has exported permissions. The supervisor would track if domain A has exported
memory to domains B and C. The supervisor would then revoke access rights from B and
C whenever domain A freed memory. Early on, Mondrix used this scheme, but it is quite
inefficient since the kernel exports memory to every other domain and also allocates and
frees the most memory.

6.7.2 Tracking group protection domains

Group domains can contain many disjoint memory regions, and the memory regions that
constitute the group can change frequently. An SST (see Section 3.1) is not an efficient
data structure for permissions regions that change frequently, because on average half of
the records need to be recopied on every insertion or deletion to retain physical contiguity.

Group protection domains use a data structure which maintains an SST for every page
in the kernel virtual address space. This ensures that no SST gets too long, so insertions

80

and deletions are efficient. Each page’s SST can represent the entire region that passes
through that page. For example, the SST for page 0xC123A000 can have an entry which
extends past 0xC123B000. To determine if an address is in a group, the supervisor uses the
page number of the virtual address to index the array of SSTs, and then searches the SST
for that page. Updates write the SST of each page which is intersected by the region being
written.

One subtlety that arises with using this data structure is that information about positive
permissions that extend beyond the page that owns a particular SST can be trusted, while
information about a lack of permissions beyond the page that owns an SST cannot be
trusted. Every SST ends with an entry that specifies no access permission until the end
of memory. This entry should only extend to the end of the page. SSTs from succeeding
pages must be consulted individually to find the next regions with permissions.

The group protection domain implementation restricts any memory location to belong
to at most one group. This restriction simplifies the algorithms for group maintenance,
allowing efficient determination if a given memory range intersects any memory managed
by a group.

81

82

Chapter 7

Mondrix: the MMP-Enabled Linux

Prototype

Operating systems written in unsafe languages are efficient, but they crash too often. OS
crashes are worse than user software crashes because an OS crash requires a time consuming
reboot and may cause multiple users to lose data. With important, non-transient data being
stored on laptops, desktops and a proliferation of embedded devices (like PDAs and digital
cameras), lack of reliability translates directly into personal inconvenience. Crashes and
security breaches incur large costs in lost productivity, increased system administration
overhead, and large business cost. We believe system reliability should be a bigger goal for
OS developers, and we believe that computer architects can do more to help OS developers
write robust software. Page-based protection is not adequate because of high context switch
penalties and inefficient use of memory when modules have complex sharing patterns. Better
memory protection is needed today.

We use Linux as a sample application for MMP because Linux supports software modules
for extensibility (see Section 1). MMP protection domains can isolate these modules, making
failures easier to detect and to recover from. Preventing failures in the operating system
increases system reliability. Linux is a huge and mature code base, so adapting it to use
MMP provides evidence that MMP’s abstractions are useful for software, even software that
was not developed with MMP in mind.

The main challenges to adapt Linux to use MMP are modifying the module loading
process to load modules into independent protection domains; modifying the memory allo-
cation process to be domain aware; and modifying the kernel and its modules to explicitly
manage memory access permissions and cross-domain calls. This chapter describes our
approach to these challenges.

Module maintainers would probably do a better job of demarcating permissions (and
possibly rearranging data structures to make such demarcations more efficient) than I did.
However, the prototype demonstrates that a non-expert can add permissions information
relatively quickly based on the usage patterns present in the kernel.

We call our Linux prototype, “Mondrix.” Features and algorithms that are common to
Linux and Mondrix will be ascribed to Linux, while Mondrix will denote code that is new
or modified for MMP support.

83

L
in

ux
 k

er
ne

l a
nd

to
p

ha
lf

 o
f

m
em

or
y

su
pe

rv
is

or

Protection domain identifiers (PD−IDs)

id
e−

pr
ob

e−
m

od

un
ix

 d
om

ai
n

so
ck

et
s

rt
c

83
90 ne

pr
in

tk

m
m

p−
ke

rn
el

−
sy

m
bo

ls

id
ed

is
k

id
e−

m
od

109876543210

B
ot

to
m

 h
al

f
of

 m
em

or
y

su
pe

rv
is

or

Figure 7-1: How Mondrix loads different modules into different protection domains. The
bottom half of the MMP memory supervisor is a layer of software that manages the MMP
hardware, and has full access to all of memory, and so resides in PD 0. The top half of the
supervisor resides in PD 1, with the bulk of the Linux kernel. Printk is a kernel subsystem
loaded into PD 2. Kernel modules reside in subsequent protection domains, and all modules
loaded into Mondrix are shown.

Figure 7-1 shows how Mondrix uses protection domains. It is similar to Figure 6-1, but
the kernel and top half of the memory supervisor share a protection domain. The supervisor
and the kernel should not share a protection domain, but time for implementation ran out
before the top half of the supervisor could be separated from the rest of the kernel.

7.1 From system reset to kernel initialization

At system reset, the processor starts running at the reset vector in domain 0. The BIOS
loads the bottom half of the memory supervisor into physical memory and transfers control
to it, letting it know how much physical memory is in the machine. Early on, the supervisor
establishes a handler for hardware permission faults.

Once initialized, the supervisor creates a new domain (PD-ID=1) to hold code and data
for the core of the kernel. The supervisor transfers ownership of most of physical memory
to the kernel, retaining enough memory to manage the permissions tables. A more general
approach would have the supervisor partition physical memory among different OSes or
virtual machines or other pieces of code, based on some a priori specification.

To start the kernel, the supervisor first loads the boot loader into PD 1. It initializes
cross-domain calling by allocating memory for the cross-domain call stack, and initializing
the CDST (cross-domain stack top) register. Then it does a cross-domain call to the boot
loader entry point in PD 1. The boot loader loads the kernel image into physical memory,
and returns to the supervisor. The supervisor reads the kernel symbol table to set proper
permissions for the kernel text section, read-only data, etc. The supervisor then starts the
kernel by doing a cross-domain call to its entry point.

84

7.2 Loading modules into protection domains

One of the primary uses of MMP is to enforce modular boundaries that are already present
in software systems. MMP isolates modules by allowing each module to reside in its own
protection domain. Linux kernel modules are object files that a user loads into a running
kernel. Mondrix loads each module into its own domain, as shown in Figure 7-1.

To load a module into the kernel address space, a user calls the insmod program. Insmod
acts like a dynamic linker, resolving the undefined symbols in the object module against the
currently running kernel. For example, if a module has vmalloc as an undefined symbol,
insmod resolves that symbol to the physical address of the first instruction of the kernel’s
implementation of vmalloc. Insmod prepares a module in user space, then passes the
image of the prepared module (whose initial bytes look exactly like a struct module) to
the kernel module loader via a system call. The kernel module loader sanity checks the
module, (e.g., making sure it isn’t bigger than the available memory, that pointers in the
struct module structure do not point outside the boundary of the module, that the address
of the module’s initialization routine (held in the struct module) is in the module’s code
segment, and other consistency checks) and then calls the module initialization routine.

7.2.1 Modifying insmod

The MMP memory supervisor needs two pieces of information, that insmod provides, to
initialize a kernel module. It needs to know the length of the program sections in the
module, and it needs to know the start and end location of every function in the module.
It needs program section information to properly set the initial permissions for the module
(e.g., execute-read for text). It needs function length information for all public functions
(functions that can be called from outside the module) so it can guarantee that switch and
return gates are set only at the start and end of a function, respectively.

Linux’s insmod inserts symbols into the prepared module that indicate the boundaries
of the program sections, and the MMP supervisor reads those symbols.

The supervisor also needs to know the start and end of every public function in the
module that insmod is loading. Linux’s insmod puts symbols in the prepared module
indicating the start of every publicly exported function, but it does not include length in-
formation. Mondrix’s insmod reports the location of every function symbol in a module,
public and private, which allows the supervisor to determine the length of all public func-
tions. Figure 7-2 shows the layout of two kernel functions. In this case, the public function
kmem cache destroy is followed by the private function kmem cache grow. The supervisor
determines the length of a function by finding the distance to the next symbol.

The start of the succeeding function does not always indicate the end of the previous
one. The kernel compilation process places the first instruction of a function on a word
aligned address for performance reasons. It inserts nop instructions between the end of one
function, and the word-aligned beginning of the next, as seen in Figure 7-2. The supervisor
searches backwards from the succeeding symbol (kmem cache grow in the example) for the
return instruction by disassembling the code, and recognizing compiler idioms.

Mondrix could have left insmod unmodified, and used its symbol information to find all
public functions, and then disassembled the functions until finding their exit point. While
separating code from data is not a computable problem in general [Cif94], most modern
compilers separate code and data sufficiently to allow disassembly. Given the complexity of
disassemblers for the x86 instruction set, we rejected this option, and instead augmented the

85

push

nop

ret

kmem_cache_destroy:

kmem_cache_grow:

public function (T)

private function (t)

Figure 7-2: The layout of two kernel functions is shown. kmem cache destroy is a public
function (nm uses the symbol T for such symbols), and it is followed by kmem cache grow

which is a private function (t in nm notation). There is a padding nop between the last
instruction of kmem cache destroy and the start of kmem cache grow.

symbol information provided by insmod. The limited disassembly that the supervisor must
do to skip nops and find the return instruction is vastly simpler than a full x86 disassembler.

7.2.2 Domain creation with module loading

The Mondrix kernel gets ownership of physical memory from the BIOS during the boot
process. It then subdivides itself (using mmp pd subdivide), to isolate major subsystems in
their own domains. While pd subdivide is general enough to be the only domain creation
function, a convenience interface to load kernel modules into a new domain is also provided.

A kernel module is an object file that contains standard Unix program sections, like text,
read-only data, read-write data and read-write bss. mmp module init takes a parameter of
type struct module*, the data structure the kernel uses to track modules. This routine
subdivides the calling domain, loading the kernel module in the new domain, and setting
the permissions on the module to the values specified in the object file (e.g., execute-read
for the text section). It combines domain creation with module loading.

Figure 7-3 shows permissions and ownership information for domain creation with mod-
ule loading. In the before state, the kernel (in PD 1) owns all of physical memory. In the
after state, it has subdivided, and loaded a module into PD 2. Permissions for the module’s
code and static data are given by the shaded regions, and correspond to the object file
layout of program sections. The kernel allows the module in PD 2 to own its static code
and data, but it retains ownership of the rest of the address space.

7.2.3 The mmp-kernel-symbols module

The MMP memory supervisor gets function length information from modules when they
are loaded via insmod, but what about functions in the kernel itself? The kernel’s access
to its own symbol table is limited. Symbols to demarcate program sections can be put in
the loader map (vmlinux.lds), and can then be referred to with extern declarations. But
there is no convenient way to use this mechanism to put the address of every function into
the kernel in a way that could be read as a data structure.

86

BEFORE AFTER

������
���
������
���

����������������������
������������������

������������������
������������������ ����������������������

����������������������

PD 1
O

w
ne

rs
hi

p
Protection domains

None

Read−only

Read−write

Execute−read

Permissions Key

PD 2PD 1

O
w

ne
rs

hi
p

O
w

ne
rs

hi
p

Figure 7-3: A before and after picture for domain creation with module loading. For each
domain, the thicker bar shows the protection information, and the thinner side bar shows
ownership information.

Mondrix gets kernel symbol information the same way system utilities like ps and top

get it—via the System.map file, commonly found in the /boot directory on Linux systems.
The kernel build process generates this file by running nm on the kernel image.

The memory supervisor cannot read the System.map file directly because Linux ker-
nel code cannot read files, it needs a process context for file access. The Linux kernel
always needs some user-level program to read files; Mondrix uses insmod because it already
needed a modified insmod. Mondrix modifies insmod to recognize a special module (called
mmp-kernel-symbols). When it prepares that module for insertion into the kernel, it first
reads the System.map file and inserts all of the symbol information from that file into the
mmp-kernel-symbols module.

The symbol information from the System.map file contains the locations of all kernel
functions, allowing the memory supervisor to check that gate permissions are only set on
the first or last instruction of kernel functions.

The mmp-kernel-symbols module is loaded before any other module, so the memory
supervisor can check the gate permissions for kernel functions imported by successively
loaded modules.

7.2.4 Setting permissions on kernel program sections

The kernel and its modules, like user-level executable programs, have several program sec-
tions. From a protection perspective, the important sections are the code (text section),
the read-only data section, and the combination of the read-write data, and read-write bss
sections.

In general, the memory supervisor places the obvious permissions on each section (e.g.,
execute-read permission on the text section). However, there are a few interesting com-
plications. The first are the interrupt request (IRQ) handling vectors in the kernel itself.
These are pieces of code that are jumped to by the processor when it receives an interrupt
from an external device. They are executable code but they reside in the read-only data
section. The memory supervisor must mark them as code, not as read-only data.

87

Code in the .text.init section is read as well as executed. The data for an initial page
table is also read from the executable section. This code can be marked execute-read, but
not execute-only (MMP does not support execute-only, so it uses execute-read).

In one case, the module ide-disk has many static strings, which are read by the
module ide-mod. Instead of finding and exporting every string, the module exports its
entire read-only data section. The memory supervisor knows about section boundaries
based on symbols placed in the module by insmod. The memory supervisor exports the
mmp get my ro section method which allows the ide-disk domain to export its entire
read-only data section to the ide-mod domain.

7.2.5 Communicating memory sharing patterns to MMP

Once the kernel loads a module, the module must define its relationship to the rest of the
system. It needs to ask permission to call certain services, it needs to export permission
on the services it provides, and it might need to import or export permissions on data
relating to those services. The MMP system must be notified about these intended sharing
patterns. Because MMP is intended for legacy systems, having the MMP system figure
out the sharing patterns without requiring programmer effort is desirable. We present an
approach which uses symbol information to infer sharing patterns, and explain how it works
better for code than data.

slab.c ide.c

void* kmalloc(size_t, int) {... extern void* kmalloc(size_t, int);

ksyms.c

EXPORT_SYMBOL(kmalloc);

timer.c sched.h

unsigned long volatile jiffies; extern unsigned long

ksyms.c volatile jiffies;

EXPORT_SYMBOL(jiffies);

rtc.c file_table.c

static int rtc_release (if(file->f_op

struct inode* inode && file->f_op->release) {

struct file* file) {... file->f_op->release(inode, file);

struct file_operations rtc_fops = {

release: rtc_release, };

ide-probe.c ide-disk.c

drive->id = kmalloc(idedisk_setup(ide_drive_t *drive) {

SECTOR_WORDS*4, struct hd_driveid *id = drive->id;

GFP_ATOMIC); if(id->max_multsect) {

Figure 7-4: Named and anonymous sharing of code and data. The source file and defining
code snippet appears on the left. The source file and corresponding using code snippet
appears on the right.

88

Figure 7-4 shows examples of how code and data can be shared by name, or anony-
mously. The snippet on the left shows the definition, and the snippet on the right shows
the corresponding use. The first example shows the routine kmalloc is imported via an
extern declaration. The second example shows the data item jiffies is imported by an
extern declaration.

In C, symbols (code or data) that are not declared static may be imported by modules
that are linked into the same address space (via the extern statement). The kernel pro-
gramming environment offers a way to limit the code and data that is visible to a loadable
kernel module. Symbols exported to modules (and symbols exported from the module to
the kernel) must appear in an EXPORT SYMBOL directive. This directive puts the symbol
name and location in a special symbol section of the binary. Insmod looks in this section
to do its symbol resolution.

The second two examples in Figure 7-4 show anonymous export for both code and data.
For code, a pointer to a function that is declared static is placed in a structure, and
passed to the kernel, which calls the function via the pointer. The name of the function is
not involved.

Anonymous export of data is common. In the example, a piece of data is dynamically
allocated and assigned to a pointer that resides within a structure. A pointer to that
structure is passed between modules, and the other module finds the data by traversing
pointers.

There is programmer effort required to notify the MMP memory supervisor how memory
is shared between different modules and between a given module and the kernel. We hoped
to reduce this programmer effort by using symbol information when code or data is shared
by name, but our results with this approach are mixed. For example, while the supervi-
sor places gate permissions on functions exported by name, it relies on the programmer
to explicitly call mmp func gate for functions exported by an anonymous pointer. While
exporting symbols by name is the currently encouraged method for symbol export in the
Linux kernel, there is still plenty of legacy code which export functions using anonymous
function pointers.

Named export for data is more rare than for code, so using symbol information to
automatically resolve data exports does not work well. Most data export needs to be ex-
plicitly managed by the programmer. Symbol use does capture some data sharing patterns,
but then it can be confusing for the programmer to see most data explicitly exported by
module code, while other data is omitted and exported implicitly by the MMP supervisor.
The programmer must remember that the omitted data was exported implicitly via the
EXPORT SYMBOL mechanism rather than explicit calls to the memory supervisor.

The largest disadvantage of using data symbols to indicate memory sharing relationships
is that importing by name is likely to be too generous. For instance, the ide-probe module
imports the symbol ide hwifs. This symbol is the master array containing all of the
information for all EIDE devices attached to the machine. In fact, ide-probe needs only a
subset of this information.

A related disadvantage to this problem is C’s ambiguity between pointer and array.
Often a single record, or a small number of records in an array must be exported, and it is
overly permissive to export the entire array. However the symbol does not provide enough
information to appropriately limit the permissions.

89

7.2.6 Initial RAM disk

Mondrix make Linux more robust by isolating modules in their own protection domain, so
Mondrix wants to load the EIDE disk driver as a module. But the root disk is an EIDE
disk, so EIDE disk support is necessary for a successful boot. The RAM disk support in
Linux lets Mondrix resolve this catch-22. RAM disk support allows the kernel to treat a
block of memory as a disk device. By placing the EIDE driver on an initial RAM disk (and
compiling RAM disk support into Mondrix), the OS startup script (linuxrc) loads the
EIDE modules, and then pivots the root file system to the real disk to continue Mondrix
initialization.

7.2.7 The printk domain

printk and its related functions, (e.g., sprintf, snprintf, vsnprintf, etc.), have enough
special memory access requirements to merit their own domain. These functions are unique
because they must read string arguments from whoever calls them. Additionally, sprintf
and vsprintf must write into buffers whose length is not specified.

Explicit export of every string to the printk domain would be tedious, and not beneficial
for the robustness of the kernel. Mondrix gives the printk domain permission to read most
of kernel memory (excepting kernel code). This approach compromises isolation because the
printk domain can read all kernel data, but the functions within the printk domain are small
and easily audited, and most of the kernel assumes they can read (and write) their string
data already. The MMP protection tables support large permissions regions efficiently, so
giving the printk domain read-only access to a large address range does not compromise
the performance of Mondrix. (The printk domain would not need read permission on so
much of the kernel address space, if the kernel compiler put all all static strings in a special
program section. In this case, the printk domain would need read access only to this section
in the kernel and its modules).

Mondrix does not fully address safety for the sprintf family of functions, for instance,
the prototype lets every domain read and write the kernel stack (details in Section 7.4.3).
However, it implements one technique which could be part of a more complete solution.

By special arrangement with the supervisor, the functions in the printk domain are al-
lowed to get read-write permissions for a memory block whose length is determined by read-
ing the permissions table of the domain that called the printk domain function. If the disk
driver calls sprintfwith a buffer whose address is 0xC012A000, sprintf calls the supervisor
(via the mmp printk rw function) which reads the disk driver’s permissions table. The su-
pervisor might find that the disk driver has read-write permission on the (page-sized) range
0xC012A000--0xC012AFFF, but that it has no access permission on 0xC012B000. The super-
visor will then grant sprintf read-write permission on the memory block from 0xC012A000

to 0xC012AFFF. Before sprintf returns, it calls mmp printk done, which returns the printk
domain’s access permissions to whatever they were before the call to mmp printk rw.

Limiting the permissions for sprintf in this way minimizes, but does not eliminate, the
possibility of data structure corruption. If the calling domain had access to two pages in a
row, this technique would give sprintf permission to write both pages, even if the pages
held distinct data structures.

The Linux implementation of sprintf does write a byte at a time, so a single inac-
cessible word between data structures would be sufficient to prevent buffer overrun. Using
our technique, if the allocator insured the presence of an inaccessible word between each

90

allocation (as was done for malloc in Section 5.4), then this technique would guard again
buffer overruns in sprintf.

7.3 Dynamic memory allocation in Mondrix

The last chapter (Section 6.6) described how a generic memory allocation service would
interact with the MMP memory supervisor. This section describes the details of how
Mondrix integrates the MMP memory supervisor with the dynamic memory allocators in
Linux.

7.3.1 Background on Linux’s memory allocators

There are two major dynamic memory allocators in Linux, and one minor allocator, used
only during the boot process. The first major allocator is the slab allocator [Bon94], which
is accessed via kmalloc and kfree as well as kmem cache alloc and kmem cache free.
This allocator is used for small to mid-sized objects, up to 4KB. It manages entire pages
(slabs), and splits the page into equal, power-of-two sized regions. It keeps its accounting
information in an unused area on the page.

The second main allocator is the buddy allocator, which is accessed via vmalloc and
vfree, as well as alloc pages, get free pages and free pages. This allocator is used
for larger objects, greater than or equal to 4KB.

Linux uses the minor allocator, located in bootmem.c only during the boot process to
allocate and free memory. During mem init any remaining memory is freed en masse, and
put on the buddy allocator’s free list. The memory use of this allocator can either be
ignored, or tracked by the memory supervisor.

Mondrix tracks the allocations made by the bootmem allocator, which creates a chicken
and egg problem since the memory supervisor is a client of the slab allocator which has
not been initialized when the bootmem allocator is active. To resolve the issue, the OS
initializes the memory supervisor in two phases, via calls to mmp early init and mmp init.
The OS calls mmp early init early in start kernel (the Linux kernel startup function),
before the bootmem allocator is used, and before the slab allocator is initialized. The kernel
calls mmp init after the slab allocator is operational.

This chapter will refer to these three allocators as Linux’s memory allocators. In Mon-
drix, they are all resident in the kernel’s protection domain, though they could reside in
their own domain (which would incur only a small additional cost as cross-domain calls
which do not change the PD-ID become cross-domain calls which do change the PD-ID).

7.3.2 Integrating the memory supervisor with Linux’s memory allocators

There are four challenges to integrating Linux’s kernel memory allocators with the MMP
memory supervisor: the allocators must update their data structures and call the supervisor
atomically, the allocators must provide length information to the supervisor when memory
is allocated and when it is freed, the supervisor should not do much computation during
allocation or deallocation, and the supervisor should support kernel allocators for custom
data structures.

91

7.3.3 Executing the allocator and memory supervisor atomically

On uniprocessors, Linux’s allocators disable interrupts so they execute atomically. Mondrix
modifies the allocators to call into the supervisor (via mmp mem alloc and mmp mem free)
once the allocator has updated its internal data structures, but before interrupts are re-
enabled.

Allocator decides that memory region X is free.

Interrupt

Memory region X is reallocated

End interrupt

Allocator calls mmp_mem_free on memory region X.

Figure 7-5: Memory permissions corruption scenario if dynamic memory allocator and
memory supervisor do not execute atomically.

If the allocator does not call the memory supervisor with interrupts disabled, the re-
sultant race condition will cause the supervisor to set the wrong permissions on memory.
Figure 7-5 shows a sequence of events that cause permissions corruption if mmp mem free)
were called after the allocator re-enabled interrupts. The kernel calls the allocator to free
some memory (call it memory region X). After the allocator updates its data structures, it
re-enables interrupts, and calls mmp mem free, but before mmp mem free can disable inter-
rupts, the system takes an interrupt. Memory region X is reallocated during the servicing
of the interrupt. When execution of the original thread resumes, mmp mem free would in-
correctly revoke permissions on memory region X—that memory is now in use. The author
observed this race condition in an early implementation of Mondrix. Even if mmp mem free

itself disabled interrupts, the corruption in Figure 7-5 could happen. On multi-processor
systems, the allocator must call the supervisor while the allocator spin lock is held.

7.3.4 Providing length information to the memory supervisor

Requiring the memory allocator to pass the length of the memory being allocated and
freed means the supervisor does not need to duplicate the (considerable) work of tracking
allocation lengths. Determining the length of an allocation is straightforward because the
user provides the length. Determining the length of a memory region being freed depends on
the details of the allocator. The slab allocator is interesting because it rounds up the size of
a memory request to the nearest power of two. If the client requests 10 bytes, the allocator
provides 16 bytes. However, the allocator passes a length of 10 bytes to mmp mem alloc,
and a length of 16 bytes to mmp mem free. There is no problem if the length being freed
is larger than the length being allocated. By only granting permissions on a subset of a
memory region (e.g., 10 of 16 bytes), the allocator provides a “red-zone” of inaccessible
memory before the next memory block (which starts at a 16 byte offset).

7.3.5 Reducing memory supervisor work during (de)allocation

Memory allocation and deallocation happens frequently, and so it must be efficient. Linux’s
memory allocators are highly optimized. Mondrix adds work to both allocation and deal-
location because the memory supervisor must set or revoke permissions. Mondrix uses the

92

design shown in Section 6.6.1, where the allocator owns its allocation pool. This reduces
the work the memory supervisor performs in the common case to determining ownership for
the caller of mmp mem alloc or mmp mem free. Then the supervisor writes the permissions
table of the domain which called the memory allocator.

If the memory supervisor is told the location of the dynamic memory pool, the ownership
check is reduced to a simple range check. Even if many domains are created, dynamic
memory allocation can still proceed quickly because the ownership test is independent from
the number of protection domains. Mondrix implements this optimization.

7.3.6 Supporting custom allocators

The memory supervisor interface is general enough that allocators for custom kernel data
structures can also use it (e.g., the sk buff allocator in the Linux network code). An
sk buff is a data structure that holds packet data. This data structure has a custom
allocator in sock.c, which includes a private free list. A client domain can call the custom
sk buff allocator, which calls mmp mem alloc to give permission on the sk buff to its caller.
Occasionally, the sk buff allocator must call one of the standard Linux allocators to get
more memory to carve up into sk buffs.

As mentioned above, the Linux allocators own dynamically allocated memory, so the
sk buff allocator does not own the memory it allocates. Table 6.1 shows that the mem-
ory supervisor uses a domain’s access permissions to determine its export permissions on
memory it does not own. Therefore, custom memory allocators cannot drop their access
permissions on memory they allocate if they expect to reallocate the memory.

When a custom allocator calls mmp mem alloc or mmp mem free, the memory supervisor
will determine that the domain does not own the memory so it will read the protection
table of the custom allocator’s domain. This is less efficient than the main allocators which
use the ownership test, but custom allocators are not used as much as the general memory
allocators.

Finally, Linux’s allocators and all of the kernel custom allocators reside in protection
domain 1 in Mondrix; however, this fact was not used to optimize the custom allocators.

7.3.7 Trusting the caller of mmp mem free

The current Mondrix implementation trusts that the domain that frees a region of memory
is the domain that allocated it. Mondrix could check the kernel’s behavior by tracking the
domain which performs the allocation and verifying that the same domain performs the
free. The allocator is the easiest place to track the domain, because it already tracks the
length of allocated memory regions. Giving the allocator the responsibility to record and
verify the allocating domain makes the allocator part of the MMP trusted computing base.

7.4 Managing permissions in Mondrix

Mondrix tries to give kernel modules the minimum amount of memory permissions that
still allow the module to function properly. The two most important groups of Linux
modules that Mondrix modifies is the EIDE disk driver, and the (NE2000) network driver.
This section describes how these subsystems share memory in Mondrix, and how Mondrix

93

balances giving modules only the minimal amount of permissions they need with other
factors like ease of programming and performance.

Many kernel drivers are split into two parts, a device-dependent bottom half and a
device-independent top half, where each half is an independently loaded kernel module.
The EIDE disk driver has one top half (ide-mod) and two bottom halves, one to gather
disk controller information (ide-probe-mod), and one to gather disk geometry information
(ide-disk). The NE2000 network driver has a top half (ne) to manage the reception and
transmission of packets, and a bottom half (8390) which manages the details of moving data
onto and off of the network card, and handles device interrupts and device initialization.
Different halves of a driver share data structures, and call each other frequently.

The different modules in a driver must communicate their sharing patterns to the mem-
ory supervisor by exporting permissions to each other. Sometimes finding the minimal
subset of memory that two modules must share is difficult. For example, in the ide-mod

module, finding the subset of the ide hwifs array that the ide-probe-mod module abso-
lutely needs is a tedious and error prone process.

Determining the sharing pattern among modules in a driver is difficult, but simply
loading the modules into different protection domains, and then running the system until a
permissions violation occurs is an effective way to make progress in determining the proper
sharing relations. While this is an ad hoc technique, there is no general method to guarantee
that the sharing patterns described to the supervisor are the minimal (or even sufficient)
set necessary for a module’s function. Perhaps model checking or a specification language
would allow more formal verification.

7.4.1 EIDE disk driver

The most difficult part of adapting the disk driver is determining when write permission
can be revoked from the driver. The EIDE driver writes pages in the page and buffer cache.
Finding the exact program points where the disk driver need to gain write permission to
those pages, and then where they should drop those permissions is challenging, so Mondrix
gives the disk driver permission to write pages in the page or buffer cache when they enter
the cache, and revokes permissions when the pages are freed. This policy compromises
isolation by allowing pages in the buffer cache to be corrupted by a poorly behaved EIDE
disk driver, but all other kernel data structures are protected from the disk driver.

7.4.2 NE2000 network driver

Mondrix controls the permissions on network buffers because the scope of their use is
obvious. The kernel grants read permission on the data portion of an sk buff (the kernel
data structure which holds packet data) just before the driver transmits a packet, and
the kernel revokes the permissions right after the transfer. The kernel grants read-write
permission on the data portion of an sk buff just before the driver receives a packet, and
the kernel revokes the permissions right after the receive. The NE2000 driver does not use
DMA, making the live range obvious. This policy tightly restricts the permissions of the
network driver, at the cost of frequent table updates. If the driver did use DMA, the live
range of the packet data would extend from when the kernel scheduled an operation to the
interrupt that signals that operation’s completion.

If the packet buffer memory is not used for any other purpose before it is freed, the

94

Inaccessible guard words

8KB

Kernel stack

User area

Figure 7-6: How MMP can protect the user area from the kernel stack. The user area and
kernel stack occupy the same two page region, with the kernel stack growing down toward
the user area. MMP would enable inaccessible guard words between the kernel stack and
user area to increase the likelihood of a protection fault if the stack grows into the user
area, rather than the silent corruption that Linux kernel developers fear today.

network scheduler could eliminate the permissions revocation after the packet arrival. The
network driver domain then accumulates permissions on many regions before the permis-
sions are revoked by a free. A wild write during the execution of the driver might overwrite
data from a previous packet, but this level of risk might be acceptable. Lazy permissions
revocation eliminates one update to the permissions table, but increases the window of
vulnerability. This policy was not implemented in Mondrix, the more restrictive policy was
implemented to avoid the window of vulnerability and to stress the MMP system.

7.4.3 Kernel stack/user area

In Mondrix, the memory supervisor places the kernel stack of every process in a global
group protection domain, giving every domain read-write permission on every kernel stack.
Allowing every domain read-write access to all kernel stacks simplifies Mondrix because
domains do not manage permissions on stack allocated memory, it is all read-write. How-
ever, it leaves open the possibility of stack corruption, which is a big problem in practice.
Managing stack permissions in MMP requires additional mechanism and chapter 9 presents
a design.

In Linux, both the kernel stack and the user area both occupy the same two page memory
region, with the kernel stack growing down toward the user area, as shown in Figure 7-6.
The user area (struct task struct is a structure which contains many system details for
a process, like its scheduling state, its memory layout, and its user credentials. Linux kernel
developers are encouraged to not increase the size of the user area, because that increases
the chance that the kernel stack will grown down into it, silently corrupting it. With MMP,
we can add a guard word (or several guard words), which would greatly increase the chance
of a memory protection fault should the stack grow down into the user area. This ability to
detect corruption also helps justify putting the cross-domain call stack in the user area (as
discussed in Section 4.3.2), because the user area is no longer likely to be silently corrupted.

95

7.4.4 Optimizing PLB performance for kernel stack/user area

A Linux processes’ kernel stack is referenced often, as is its user area. Keeping entries for
these data structures resident in the PLB will reduce its miss rate, so these entries should
not be considered for replacement along with every other entry. We statically partition the
PLB into a large area that uses random replacement (60 entries), and a smaller area that
uses FIFO replacement (4 entries).

When the kernel schedules a thread, it notifies the memory supervisor, which writes
two registers, wire base and wire bounds which are the base and bound registers for the
wired region. Any PLB refills from the wired region are put into the FIFO replacement
policy part of the PLB by the PLB miss handler. As we guessed in [WCA02], four is a good
number of entries for this part of the PLB.

We could use software to wire in the entries from the kernel stack and user area into
the smaller part of the PLB (as we suggested in [WCA02]). However, it can be difficult to
predict exactly which areas of the user area will be referenced, so our prototype uses the
slightly more sophisticated hardware model of the two wired registers.

7.4.5 Optimizing function pointers

One common idiom in the kernel is to call services via a function pointer. Often, memory
must be exported to the domain that implements the function. While it is possible to look
up the owner of the function pointer to find the implementing domain, it is expensive: using
the supervisor function mmp code to pd), this lookup requires a log(N) search through the
list of owners (where N is the number of regions in the memory supervisor’s owner list).

Consider this example from fs/file table.c.

inline pd_id_t find_release_pd(void* release_func) {

if(release_func == rtc_release) {

return rtc_pd;

return mmp_code_to_pd(file->f_op->release);

}

...

if (file->f_op && file->f_op->release) {

pd_id_t release_pd = find_release_pd(file->f_op->release);

// rtc.c:636 rtc_release reads file->f_flags

if(release_pd != kern_pd)

mmp_mprot(&file->f_flags, sizeof(file->f_flags), PROT_READ,

release_pd);

file->f_op->release(inode, file);

if(release_pd != kern_pd)

mmp_mprot(&file->f_flags, sizeof(file->f_flags), PROT_NONE,

release_pd);

}

The kernel domain exports read permission to the domain that implements the release
operation for the file variable (which is of type struct file*). In Mondrix, the real time
clock domain is the only one that uses this processing path. Therefore there is a check
in find release pd to see if the release func function pointer is the real time clock’s
implementation of rtc release. This check succeeds all of the time in Mondrix, avoiding

96

the call to the more costly function mmp code to pd. However, the more costly function is
included in case a new module is loaded which also implements the release function. In this
case, the release func function pointer will not point to rtc release, but will point to the
new module’s implementation. The check in find release pd will fail, and the program
calls mmp code to pd to find the PD for the new module. The most efficient alternative for
a small number of possibilities is to use the function pointer to lookup its protection domain
via a series of tests, or a small hash table.

7.4.6 Runtime adjustment of permissions

One attractive property of MMP is that the system can adjust the runtime penalty of
permissions checking during execution by changing the granularity of permissions regions.
A developer might want fine-grained memory protection to help diagnose some intermittent
problem. Initially, he would like the system to run fast so its code is positioned to where
he has observed the problem. Permissions regions can be coarse-grained during positioning,
because the developer does not expect any problems.

When the system reaches the point where the developer has seen the problem, he can
reconfigure the system (by flushing the PLB) for fine-grained memory protection. For
instance, the developer might place inaccessible words between allocated regions (as in
Section 5.4) in an attempt to expose the memory corruption which causes the problem he
observed. (To stay within the C language programming model, no data can move during
the process of making permissions more fine-grained, so the allocators must have already
inserted the guard words, and they must know where they are.) Fine-grained memory
protection can be useful for problem diagnosis, but it can be applied selectively during
system execution.

7.5 Cross-domain calling

This section discusses issues relating to cross-domain calls in the Linux prototype, specifi-
cally: interrupts, argument passing, and inlining.

7.5.1 Interrupts

Handling device interrupts is an important task for an operating system, and MMP allows
them to proceed in a protected way. Linux on the x86 responds to 16 device interrupts. A
table lists, for each interrupt, the address to which the processor will transfer control when
it receives that interrupt. The assembly stubs for each of these entry points call a common
routine, which sets up the stack for a routine written in C, which actually responds to the
interrupt.

Interrupts do not cause a protection domain switch. All of the assembly stubs for the
interrupt entry points have executable permission in every domain. The function call from
the interrupt stub to the C handler routine has a switch gate. This technique makes the
interrupt assembly stubs a shared library, albeit a simple one that has no data.

Because the assembly stubs are resident in every protection domain, a bug in the code
could affect any domain. Luckily, the assembly stubs are on the order of tens of instructions
with two or three branches. Distributing the assembly stubs to all protection domains does

97

not create a new vulnerability since the correct functioning of the machine is dependent on
the correct functioning of the interrupt assembly stubs.

7.5.2 Passing arguments

A goal of MMP is to support the same model for passing arguments in cross-domain calls
that is supported by a standard function call in C. Function calls in C pass arguments
by copying data in registers or on the stack, and by passing pointers to heap-allocated or
stack-allocated storage. No additional mechanism is needed in MMP to support passing
arguments in registers, since data in registers is checked by MMP when it is loaded from or
stored to memory.

The supervisor functions that manage memory permissions are intended for use on
heap-allocated memory. Heap-allocated data structures do not need to be marshaled for a
cross-domain call, domains can set permissions on shared data structures in advance of the
cross-domain call. For example, in a producer-consumer relationship, the producer would
maintain read-write access on a buffer and flag value, while the consumer has read-only
access on the buffer and read-write access on the flag. Once the permissions are established,
they do not need to be modified for every call.

Stack storage is different from heap data because stacks are used by threads that move
between protection domains. Every domain has read-write permissions to the kernel stacks
in Mondrix, so the protection domain structure does not isolate stack-allocated data struc-
tures, leaving them vulnerable to corruption. We present a design for extending MMP
protection to stack storage in Chapter 9.

7.5.3 Inlined functions and protection domains

In C, header files sometimes include inlined functions that reference a module’s internal
data. Any domain which calls the inlined function needs permission to access the inlined
data. Sometimes the domain exporting the inlined function should export permissions on its
data, and sometimes an inlined function should be uninlined to avoid giving other domains
permission to read or write its sensitive data. Mondrix uses both approaches, on a case by
case basis.

Sometimes inlined functions are un-inlined. For example mntput exposes an internal
field of a struct vfsmount* in its implementation just for performance, so this function is
un-inlined to increase modularity. In other cases, extra permissions are exported from the
provider to the client in order to support the inlined test. down in asm-i386/semaphore.h

is a hand-tuned piece of assembly, so the kernel, which owns the semaphores, exports write
permission on them to modules that call this function.

98

Chapter 8

Experimental Evaluation of

Mondrix

This chapter analyzes the performance of Mondrix executing on the bochs [Sou03] machine
simulator. We present a Linux kernel bug that MMP exposed, and then explain our eval-
uation methodology. Section 8.3 explains the limits of boch’s accuracy, and Section 8.4
presents the results of our experiments.

The simulator reports a slowdown, relative to an unmodified kernel, of less than 12%,
according to a simple performance model. For all benchmarks, the MMP protection tables
occupied less than 11% of the memory used by the kernel during the execution of that
benchmark.

8.1 MMP exposes an error

MMP exposed a case where, during kernel initialization, the kernel freed the stack memory
on which it was executing. The kernel continued to use the stack memory after it freed it,
even calling into dynamically loaded modules.

proc pid lookup is a function in the proc file system (a pseudo-filesystem for processes
control and information) that looks up a task structure (also called the user area) based on
the process identifier. The function calls free task struct on the task it looks up. This
function call should not actually free the task structure because the function decrements a
reference count that was incremented earlier in the proc pid lookup. free task struct

only frees the task structure if the structure’s reference count is zero. However, the reference
count is zero at one point during kernel initialization, so free task struct actually frees
the task structure. Since the task structure and the kernel stack are in the same allocation
unit, the kernel stack is freed along with the task structure. In one case, the kernel frees
the memory for the stack on which it is executing. Since the MMP memory supervisor
revokes all permissions on memory that is freed, the MMP system reports many protection
violations from the kernel reading and writing the stack memory it just freed.

Another call to free task struct is made in proc pid delete inode, where it should
be balanced by a previous increment of the use count on the task struct memory. However

99

this routine also causes the kernel to free the stack memory on which it is executing. The
code that manipulates the reference counts for the task structure was changed during the
development of 2.5, and 2.6.0 uses the new system. We did not check if the new code
manifests the same bug we found in 2.4.19.

While we only found two bugs (or two instances of a single bug), the MMP system
used some of the most generic, well-tested drivers present in Linux. The bochs simulation
environment only supports a model for an NE2000 network card and an EIDE disk, Linux
support for both of which is simple and stable. Drivers for newer hardware, or higher
performance drivers probably have more bugs.

8.2 Experimental methodology

We ran a variety of system-intensive workloads on Mondrix and measured the effect of
isolating kernel modules in separate protection domains that share memory via explicit calls
to the memory supervisor. We booted Mondrix on the bochs [Sou03] machine simulator,
which models hardware in sufficient detail to boot and run Linux. We added a functional
model (with no performance model) of the MMP hardware to bochs, and booted Mondrix
on our modified version of bochs. The MMP memory supervisor in Mondrix manages
the MMP hardware modeled in bochs. This setup is complete enough to check all data
accesses and instruction fetches to verify that the domain performing the action has proper
permissions.

Module Description

kernel
Most of the Linux operating system. This is the program image
decompressed by the boot loader.

printk
This is an ad-hoc collection of the kernel functions and data con-
sisting of printk and related functions (e.g., sprintf, vsprintf).

mmp-kernel-symbols
This is a special module used to give kernel information about its
own symbol table.

ide-mod
ide-disk
ide-probe-mod

Collectively, these are the EIDE disk driver.

rtc The real time clock.

binfmt misc The interpreter loader (supporting #!/bin/sh).

8390
ne

The bottom and top halves of the network driver, controlling an
NE2000 network interface card.

unix Unix domain sockets (used by syslogd).

Table 8.1: The names and descriptions of the modules that Mondrix loads.

The OS was booted fresh before each trail. All utilities were from the Debian Linux
distribution as of November, 2003.

The code in Mondrix is divided into protection domains as described by Table 8.1 (a
picture of the domain structure appears in Figure 7-1). Most of the protection domains hold
kernel modules, but domain 1 holds most of the kernel, and domain 2 holds the collection of
kernel functions that print, write and format strings. The code in each protection domain
must explicitly share memory with code from any other domain.

100

Benchmark Description

boot-shut Boot and shutdown the operating system.

download
Download a 46MB file from a web server (running on the same
machine) using HTTP with the curl utility.

find
find /usr -print — xargs grep kangaroo;
/usr is 183 MB, 912 directories with 10,657 files.

apt

apt-get remove -y gcc gdb automake make perl;
apt-get install -y gcc gdb automake make perl;
These commands remove, and then download and install 5 Debian
packages totaling 5.7 MB in size.

config-xemacs ./configure for xemacs 21.4.14

Table 8.2: The names and descriptions of the benchmarks run by Mondrix to evaluate MMP
support in the Linux kernel

Table 8.2 shows the benchmarks we used to evaluate the Linux prototype. They are
common tasks that Linux users perform often, so users care about their performance. Also,
most of the benchmarks stress the disk and network subsystems of Mondrix. Mondrix
isolates the drivers for these devices in their own protection domain, and includes kernel code
to manage permissions on the memory that holds disk and network data as it goes through
its life cycle of being read, buffered, accessed, and discarded by the kernel. These workloads,
and the accuracy of our simulation framework allow us to evaluate the performance costs
of adapting an application (in this case the Linux kernel) to use MMP.

The boot and shutdown is not a representative workload, because the MMP-enabled
boot was not optimized, and it is slow (symbol lists are dynamically sorted when they could
have been sorted statically). It is provided for completeness. The download benchmark
stresses both the disk and network code as a web server reads files off disk and sends them
across the network to a client. The download benchmark places both the web server and the
downloading client on the same simulated machine to avoid problems with network timing
described below. The file downloaded is a 44.1KHz, 16-bit wav file, losslessly encoded with
shorten. 1 The find benchmark is disk and filesystem intensive. The apt benchmark uses
the Debian package distribution system to remove and then install several useful software
utilities, balancing the use of the network, the disc, and the processor. The configuration of
xemacs is a long running test that stresses process creation, deletion and scheduling, and it
uses the disc by reading and writing files. It is the only test that does not primarily stress
the network or the disc, but it runs for such a long time that the kernel memory allocators
reclaim memory.

All workloads ran on the MMP-enabled version of bochs, which checked correctness,
generated statistics about the workload, and also generates an address trace. A perfor-
mance accurate MMP simulator and cache model consumes the address trace and generates
statistics.

1It is a soundboard recording of the Grateful Dead playing in Austin, Texas on 11/15/71 performing a
cool jam between El Paso and Casey Jones.

101

8.3 Limitations of model accuracy

Our model does not model the interface between the OS and the hardware accurately.
The results account for all reads and writes to the protection tables, but the instructions
necessary for the software to write the tables are not modeled. However, this inaccuracy
is not serious, because the memory supervisor does not write the tables frequently, as the
data in Table 8.4 shows.

The way bochs measures time does not allow realistic network communication between
the simulated system and the real network. We configured bochs to model a 14MHz pro-
cessor. But instead of appearing on the network as a slow computer, it appears to be a
computer that speeds up and slows down randomly, disrupting TCP (transmission con-
trol protocol) traffic. TCP adapts to a computer’s ability to process data, sending more
data if a computer can handle it, and sending less data if it can’t. The erratic behavior
of the simulated system as a network client of a non-simulated server sometimes caused
TCP connections to become very slow, making experimental results non-repeatable. We
measured high variability in the number of instructions needed to transfer data, while the
cache miss rate stayed constant, indicating the same processing path was being executed
a variable number of times. When the simulated system was a server, persistent device
timeouts on transmit made non-simulated clients back off, slowing data transfer and also
making experiments unrepeatable. The only benchmark in which the simulated client con-
tacts a non-simulated server is the apt benchmark, which retrieves 5.7 MB from the Debian
package servers. This amount of data was small enough to allow repeatable results.

A workload executing on bochs appears to speed up and slow down, because boch’s only
notion of time for a 14MHz processor is that the execution of 14,000,000 instructions means
one second has passed. In reality, different workload characteristics means the simulator may
take one second to execute 14,000,000 instructions, but then the instruction mix changes,
and the simulator only executes 7,000,000 instructions in the next second. The simulated
system appears to have slowed down to the outside world, because it takes two real world
seconds to execute the 14,000,000 instructions that bochs counts as one simulated second.

Boch’s primitive notion of time frustrated our attempt to have the system running on
top of bochs communicate via its simulated network device to non-simulated machines.

8.4 Results

The accurate MMP simulator models a 1-MB 4-way associative cache. The processor per-
formance model is simple. Each instruction takes a cycle to execute, but first level cache
misses are free. This is intended to model an out-of-order superscalar processor. In our
model, memory takes 60ns to access, and the processor runs at 5GHz. This is intended to
represent the performance of an aggressive processor in the next few years. The number of
cycles is computed as the number of instructions plus 300 times the number of second level
cache misses.

Table 8.3 shows the results of running the benchmarks on Mondrix on bochs, reporting
instruction counts, memory references, cache misses, and cycles. In addition to counts, the
table reports the percentage increase relative to an unmodified Linux system.

The config-xemacs workload shows an interesting bistability. Sometimes when this
benchmark was run, it causes approximately 800,000 cache misses, and sometimes it causes
approximately 1.2 million. The variation in time to login to the system, mount the disk

102

Benchmark Instrs ·106 Refs ·106 $ misses ·106 Cycles ·106

cnt %incr cnt %incr sw/tb cnt %incr cnt %incr

boot-shut 589 120.4% 315 115.8% (96%/19%) 2.01 71.3% 1192 92.5%

download 450 12.4% 338 41.5% (14%/27%) 4.95 2.5% 1935 4.6%

find 609 11.5% 482 35.9% (13%/23%) 7.76 1.6% 2936 3.5%

apt 513 15.3% 388 41.3% (18%/23%) 5.49 6.9% 2161 8.8%

config-xemacs 1146 12.0% 821 30.5% (14%/16%) 1.15 -12.1% 1491 5.3%

config-xemacs2 1140 11.3% 820 33.4% (17%/17%) 0.80 13.0% 1380 11.6%

Table 8.3: Processor performance data for workloads running with an MMP-enabled Linux
kernel. Instruction counts (Instrs), memory references (Refs), and cache misses from a
1 MB, 4-way associative cache ($ misses) are given. The total cycle cost is the instruction
count plus 300 times the number of cache misses. The cnt column is the count of events,
the %incr column is the percentage increase of the count over executing the same workload
on an unmodified kernel. The sw/tb column breaks down the increased memory references
between references made by the addition of the MMP software (sw), and by references to
the permissions tables (tb).

with the xemacs workload and run it, determines one of the two operating regimes. Both
regimes were observed for Mondrix and Linux, with the low miss regime happening about
25% of the trials. We present both results, where config-xemacs is the more probable
high-miss regime, and config-xemacs2 is the less probable, low-miss regime.

The experiments show a surprising uniformity given the different nature of the work-
loads (discounting the boot, which has not been optimized). The number of additional
instructions is between 10%–15%, and additional number of memory references is between
30%–42%. These memory references consist of references made by the MMP memory su-
pervisor, and the references to the permissions tables made by the hardware PLB miss
handler. The locality of these references is much higher than the locality of the rest of
the kernel since the number of cache misses increased by only -12%–13% (0–7% if discount
config-xemacs).

According to the detailed MMP simulator, all of our benchmarks experience slowdowns
of less than 12%. This number comes close to our design goal of less than 10% slowdown,
and is likely to be lower in practice. These performance degradation figures are exaggerated
because we show only kernel instructions, discounting user and kernel daemon instructions.
If kernel daemons or user programs had greater memory reference locality (and hence MMP
table reference locality), the system-wide overhead numbers would be lower. Table refer-
ences by the PLB miss handler increase the number of memory references made by the kernel
by an average of 21%, while Table 5.3, which shows the results of measuring user programs,
shows a maximum overhead of 7.5% and an average of 2.9%, indicating that user programs
have much more locality than the kernel (a trend noted by other studies [REEBWG95]).
We also discount I/O latency, which would be a dominant cost for every benchmark except
configuring xemacs, making the user-visible performance impact of MMP negligible.

Table 8.4 shows data about the permissions tables. All of the benchmarks require
permissions tables that are less than 11% the size of memory used by the kernel itself. To
account for address space sparsity, we compute the amount of memory used by the kernel
by counting the number of 4 KB pages with at least one byte in use, and multiplying by
4 KB.

The table also shows that references to the permissions table account for 14%–24% of
the total memory references of Mondrix, so permission table references are a limiting factor

103

Benchmark Space X-ref Upd ld/lk Rf/Up mprots frees

boot-shut 1.1 MB 2.8% 9.9% 1.6% 2.5 2,050 86,116 53,808

download 1.4 MB 10.7% 23.7% 1.9% 2.6 576 267,470 207,045

find 2.8 MB 5.0% 20.5% 1.6% 2.5 647 355,665 262,072

apt 1.9 MB 4.2% 19.4% 2.8% 2.6 563 315,773 260,748

config-xemacs 1.7 MB 3.6% 14.1% 5.8% 2.5 644 602,212 514,750

config-xemacs2 1.6 MB 3.6% 14.2% 5.7% 2.5 642 602,939 515,443

Table 8.4: Permissions table data for workloads running with an MMP-enabled Linux
kernel. The Space column shows the absolute size of the permissions tables, and the size
as a percentage of used kernel memory. The X-ref column divides the number of references
to the permission table by the number of memory references made by the MMP-enabled
kernel. Upd is the percentage of memory traffic to the permissions tables that are writes,
ld/lk is the number of loads needed to find the proper entry on each permission table lookup.
The Rf/Up column gives the average number of memory references between updates to
the permissions table (mprots or frees). The mprots and frees columns indicate the count
of calls to allocate and release memory permissions (including those made via memory
allocation).

for system performance. As noted above, these references have much better locality than
the Linux kernel does in general, which mitigates their performance impact.

Table 8.4 also shows that a great majority of table references (95%+) are loads, indi-
cating that the cost of table updates is acceptably low. The number of loads per table
lookup is lower than the figure reported for user programs in Table 5.3. In Table 8.4, the
number is around 2.5 indicating that about half of the memory regions in use are page-sized
or larger. For the user-level programs using fine-grained protection, this figure was closer
to 2.9 indicating almost exclusive use of leaf-level tables. Finally, the number of references
between updates to the permissions table is very small, about six hundred. This number
is much lower and more consistent than the results for user-level programs in Table 5.1,
because the OS is making use of different domains, and is actively managing permissions.

Benchmark Intr Intr% Sched Proc U/K

boot-shut 1,111,546 6.6% 1,075 264 66%/34%

download 3,696,481 29.4% 5,606 7 51%/49%

find 6,790,923 39.5% 3,768 26 60%/40%

apt 3,121,677 25.6% 20,447 154 83%/17%

config-xemacs 1,707,515 4.9% 12,989 3418 89%/11%

config-xemacs2 1,570,121 4.5% 13,828 3418 89%/11%

Table 8.5: OS characterization of workloads running on Mondrix. The Intr column shows
the number of interrupts, while Intr% shows the percentage of instructions executed in the
servicing of interrupts. The Sched column lists the number of scheduling events (calls to
sched). The Proc column lists the number of processes that exited during the benchmark.
The U/K column shows the percentage of time spent in user code versus kernel code.

Table 8.5 gives a characterization of the different workloads in terms of the operating
system services they request. Download, find and apt spend at least a quarter of their
time processing device interrupts for the disk and network. Apt and configuring xemacs

104

cause a lot of process scheduling; the apt workload writes and unpacks many files to disk,
causing many process suspensions, while config-xemacs creates and kills over three thousand
processes. All of the workloads besides config-xemacs, and to some extent apt, spend a
significant period of time in the kernel.

Benchmark MMP Free Grp Kern

boot-shut 8.7% 1.3% 22.7% 87.6%

download 4.0% 2.1% 0.4% 5.8%

find 5.0% 2.1% 2.3% 2.2%

apt 6.0% 2.5% 1.6% 5.2%

config-xemacs 4.1% 2.9% 3.2% 1.8%

config-xemacs2 4.1% 2.9% 3.1% 1.2%

Table 8.6: Breakdown of instruction overheads for workloads running on Mondrix. The
columns attribute the extra instructions caused by MMP support to the following mutually
exclusive catagories: MMP the top half of the MMP memory supervisor; Free instructions
spent in mmp mem free; Grp group protection domain code; and Kern kernel modifi-
cations to call MMP routines. The total of these four columns is the total percentage of
extra instructions.

Table 8.6 attributes the extra instructions to various sources in the memory supervisor
and in the kernel. Instructions added to the kernel to manage memory permissions ac-
count for less than 6% of the additional instructions. Group domain membership and the
checks that must occur when freeing memory are the two largest costs within the memory
supervisor. The overheads sum to the instruction overhead presented in Table 8.3.

Benchmark Scar PLB PLB lcl PC sc GPLB

boot-shut 7.9% 4.0% 58.8% 0.2% 0.3%

download 13.6% 9.1% 62.6% 0.7% 0.3%

find 14.1% 8.0% 48.7% 1.7% 0.6%

apt 11.9% 7.4% 58.4% 0.5% 0.2%

config-xemacs 9.4% 5.2% 55.8% 0.1% 0.5%

config-xemacs2 9.3% 5.3% 56.8% 0.1% 0.1%

Table 8.7: Performance data for the MMP permissions caching hardware for workloads
running on Mondrix. The Scar column gives the miss rate of the address register sidecars,
the PLB column the global miss rate of the PLB, the PLB lcl column the local miss
rate of the PLB. The PC sc column is the percentage instruction fetches that cause the
program counter’s sidecar to miss. The GPLB column is the miss rate of a 512 entry,
4-way associative cache of switch and return gates.

Table 8.7 shows the performance of the hardware on-chip caching structures. The side-
cars were effective, probably due to the locality of the stack and string operations on the
x86. The PLB’s local miss rate is commensurate with second level caches. The table also
shows that the number of misses from the PC sidecar is very low. This reinforces our
decision to encode the gate permissions in their own table. If they shared the standard
permissions table, then any transfer of control across a gate value would result in a PC
sidecar miss, greatly increasing the PLB traffic from the instruction stream. The miss rate
from the gate PLB is low, because it holds a large fraction of the total gates in Mondrix.

105

8.5 Evaluation of cross-domain calling in the Linux kernel

Benchmark Count ·106 Inst/Call I/C cross-dom Self/Other

boot-shut 1.0 623 1,226 49% 51%

dnld 2.5 185 345 46% 54%

find 4.3 145 218 34% 66%

apt 2.7 198 493 60% 40%

config-xemacs 2.6 448 5,171 91% 9%

config-xemacs2 2.6 458 6,652 93% 7%

Table 8.8: Cross-domain calling behavior for workloads running with an MMP-enabled
Linux kernel. The Count column is the number of cross-domain calls in millions. The
Inst/Call is the average number of instructions between cross-domain calls, while I/C
cross-dom is the number of instructions between cross-domain calls that actually cause
a domain change. The Self/Other column indicates the percentage of cross-domain calls
that a domain makes to itself versus those that cause a domain change.

Table 8.8 summarizes cross-domain calls in Mondrix. The denominator for all of these
experiments is the number of instructions executed in the kernel (user/kernel split is in
Table 8.5). The protection domain granularity enforced by MMP is very fine-grained. The
table shows that cross-domain calls are frequent, and many are cross-domain calls from a
domain to itself. A domain makes cross-domain calls to a function that it exports to another
domain (Section 4.3.1). In these experiments the top half of the memory supervisor and the
kernel were in the same protection domain, so calls between them (which are frequent) are
counted as a cross-domain call from a domain to itself. For the benchmarks that stress the
operating system, there are only hundreds of instructions between cross-domain calls. For
the ./configure xemacs workload, which stresses process scheduling more than system
services, there are 5,000–6,000 instructions between cross-domain calls.

During all of these benchmarks, the cross-domain call stack doesn’t grow deeper than
64 entries, indicating that the active part of the cross-domain call stack will easily fit in the
processor data cache, and will not cause additional memory traffic.

The permissions tables of Mondrix consumed less than 11% additional memory space,
and according to a simple performance model, Mondrix ran within 11% of the performance
of an unmodified Linux. Cross-domain calling is very frequent in Mondrix, as much as
a call for every few hundred instructions for some benchmarks. This frequency justifies
architectural support.

106

Chapter 9

Enforcing Stack Permissions

This chapter presents a design for adding protection of stack memory to MMP. Stack storage
can not be managed by MMP’s protection domain mechanism, so this chapter introduces
new hardware mechanisms for stack protection, which are similar to other MMP structures.

Stack permissions are associated with a thread. Stack state is a form of thread-local
storage, while heap data is generally used for a software service. Threads travel between
services (and thus protection domains), referencing the state they store on the stack. MMP’s
protection domain mechanism is insufficient for stack memory, because permissions granted
to a protection domain are granted to all threads in the domain. Using the protection
domain mechanism for stack memory would allow multiple threads in the same protection
domain to access each other’s stack frames.

Stack sharing is difficult to implement in a system that provides hard module boundaries,
but it is necessary to preserve the standard function call model for cross-domain calls, and
supporting stack-allocated data structures increases performance.

Section 9.1 explains why and how the memory supervisor manages stack memory for
all domains. We then present two new hardware mechanisms to provide access permissions
for the stack. The first (in Section 9.2) is a set of three registers that provide a fast acti-
vation frame. The second mechanism (in Section 9.3) is a simple, thread-local permissions
table, which distinguishes writable words on the stack frame. The chapter concludes with
alternatives to sharing stack memory.

9.1 Memory supervisor’s stack responsibilities

Because stacks are used by threads which move between protection domains, no domain
has a unique claim to be the stack owner. We resolve this dilemma by making the memory
supervisor the owner of the stack; the supervisor allocates it, owns it, and manages it.
The supervisor allocates stack segments using the function mmp alloc stack(len). This
call returns a pointer to the stack segment, and the supervisor records the location of the
segment and the domain of the code that created it.

Stack permissions are thread-local, so the supervisor needs to be aware of what thread
is running. When a thread is scheduled on a CPU, the thread manager must make the
supervisor call mmp set stack(stack seg, cpuid) to tell it that a certain stack is now

107

active on a certain CPU. The supervisor checks that this thread manager is from the same
domain as the one that created the stack. When the supervisor receives a call to set stack
permissions, it checks that the request is for the active stack.

9.2 Managing stack permissions with extra registers

Locals (e.g., char buf[12];)
Parameter N
Parameter N−1

Parameter 1 (e.g., buf)
Return Address
Child EBP
Saved Registers
Locals

Callee frame

Caller frame

sl

sb

...

fb

Figure 9-1: Providing stack isolation with three hardware registers. Register sb (stack base)
indicates the base of the stack, and sl (stack limit) indicates its limit (stacks grow down).
The fb (frame base) register indicates where the current frame begins.

Establishing an activation frame should be fast, and the permissions for reading and
writing the frame should be local to the currently executing thread. We introduce two
thread-local registers to enable the fast establishment of an activation frame. We add a
third to provide a simple and efficient mechanism to get read-only access to previous stack
frames.

Figure 9-1 shows the layout for the stack used on the x86 by both Windows compilers
and gcc. We separate the caller’s frame from the callee’s frame. On the right are pictured
the pointers stored in three thread-local registers.

When the kernel schedules a process, it calls into the supervisor to activate the stack for
that process. The supervisor also fills in two registers for that thread—frame base fb, and
stack limit sl. These registers demarcate a read-write region for the currently executing
thread. The hardware allows reads and writes to addresses between sl and fb (stacks grow
down so sl ≤ fb). The fb value points to the base of the current activation frame. The
supervisor manages the save and restore of these registers. The supervisor allocates the
stack for a given thread, so it can initialize the stack limit register and validate the frame
base register.

On a cross-domain call, the processor saves the current value of fb to the cross-domain
call stack, and it copies the current stack pointer into fb. The processor checks that the new
fb value is smaller than the old value, insuring that on cross-domain calls, fb grows down,

108

but not below sl. The memory supervisor insures that when a thread starts executing, fb
points within the stack memory for that thread. Since cross-domain returns can only set
fb to a value that was checked by either the supervisor or the processor, these mechanisms
ensure that fb always points within stack memory.

The supervisor uses the stack base register (sb) to mark the region between fb and
sb with read-only permissions. sb is not essential for correctness, because the fb and sl
pair provide a writable frame, and the table described in the next Section provides read
permission on previous frames. However checking a table is more complicated than checking
the base and bounds of two registers, so the stack base register is a useful optimization.
The memory supervisor initializes sb using its knowledge of the size and location of the
stack. The supervisor saves and restores sb along with fb and sl in storage specific to a
given thread.

9.3 Stack allocated parameters

Domain ID

Buffer

Gate
Lookaside

Buffer

Protection
Lookaside

Gate Table Base

Permissions Table Base

Permissions
Table

Stack Permissions
Table

Switch & Return
Gate Table

Stack Table Base

lookup
Program Counter

CPU

MEMORY
refill

refill

SidecarsAddress Regs

Figure 9-2: The major components of the Mondriaan memory protection, including support
for managing stack permissions.

A thread-local table of 1 bit per word provides a mechanism to allow a thread to write
into a previous stack frame. The three additional registers we propose provide a writable
stack frame, and allow a thread to read previous stack frames, but they do not provide
write permissions on previous frames. For each word in the stack, if its corresponding bit is
set, the word is writable and readable, otherwise it is only readable. This design does not
allow inaccessible words on the stack, as that would require more bits.

Figure 9-2 is a more detailed version of Figure 4-1 that includes the stack permissions

109

table. The stack permissions table is a thread-local table (not a domain-local table), which
allows a thread to pass permissions to successive frames of stack memory, independent from
the domain in which a thread executes. Like the gate permissions table, it is small and
specialized. Unlike the gate permissions table, it is cached in the main PLB.

As an example of how a thread can use the stack permissions table, consider a thread
that will make a cross-domain call to mmp get my ro section, which is a memory supervisor
function (whose prototype is in Appendix A). The thread can make two stack-allocated
long integers writable, and then pass pointers to them to mmp get my ro section. When
the thread enters the memory supervisor domain, it still has write permission on those two
words because they are marked in the stack permissions table. When the OS deschedules
the thread, it notifies the memory supervisor which revokes the threads stack permissions
by flushing the stack address range from the PLB and changing the stack permissions table
pointer.

This model of stack permissions lets a thread manipulate the stack independently from
its protection domain, which might not always be desirable for a given domain. For instance,
consider the case where domain A calls domain B which calls domain C. Domain A can’t
export stack permissions to domain C, without trusting B to not revoke the permissions. A
thread can add or revoke stack permissions in any domain. However, parameters that a
domain must control can always be allocated from the heap.

9.4 Alternatives to sharing stack memory

Designs for protected stack sharing are rare for several reasons: it is difficult for a system
to provide firm module boundaries while allowing sharing of stack memory; using stack-
allocated memory is not necessary for a computer system; and switching stacks is simple
for both hardware and software.

Capability based systems, where capabilities were used for fine-grained memory pro-
tection (e.g., the Cambridge CAP [WN79]), do not provide stack storage for cross-domain
calls. Storage is heap-allocated and capabilities to the storage are passed in the call. Call
gates on Intel’s x86 architecture [Int96] cause the processor to switch stacks and to copy
parameters from one stack to another. Even modern systems intended for inter-domain
safety, like Nooks [SBL03] copy stack parameters and switch stacks in software, disallowing
stack sharing.

An MMP system can use the stack switching techniques of previous systems. Two MMP
domains can switch stacks before or after a cross-domain call in software. The caller might
have permissions to establish an initial stack state, which is verified (or trusted) by the
callee.

110

Chapter 10

Adding Translation to MMP

Up to this point, we have presented Mondriaan memory protection as a memory protection
system, but it can do more. MMP effectively associates metadata with address ranges, and
the flexibility of the MMP permissions tables allows for additional metadata, along with
permissions information. Simple, efficient hardware can interpret the additional metadata,
just as the MMP hardware explained in this thesis efficiently interprets permissions meta-
data. Adding semantics to memory by additional metadata is done in many systems, for
example multi-processor systems keep metadata about the sharing state of cache lines in a
directory data structure which is read by hardware [LLG+90, CKA91, HLH92].

The motivating example for additional MMP metadata is zero-copy networking. We use
the term, “zero-copy networking” to refer to any technique which tries to reduce data copies
during the processing path which moves user data to or from the network. Section 10.1
provides background on zero-copy networking. MMP’s approach to zero-copy networking
maintains backwards compatibility with current networking code, specifically the use of the
read system call.

Byte-level translation, along with MMP’s word-level permissions, allow an operating
system to implement zero-copy networking. The OS uses byte-level translation to map
byte-aligned network packet payloads from different packets into a contiguous, user-supplied
buffer (provided as an argument to the read system call). We call the extended system
MMPT, for Mondriaan memory protection with translation. Because non-permissions in-
formation is stored in the “permissions” table, this section will refer simply to tables, not
permissions tables.

Section 10.3 describes MMPT’s byte-level translation. Section 10.3 describes how an
OS would use MMPT to implement zero-copy networking, while Section 10.4 describes the
processor hardware that interprets the translation data. Section 10.5 discusses the compli-
cations to the processor pipeline caused by adding byte-level translation, and how to address
them. It also presents the table representation for translation information. Section 10.6
concludes with an evaluation of MMPT for simulated zero-copy networking.

111

10.1 Zero-copy networking background

There are many proposals in the literature for zero-copy networking
[Chu96, PDZ00, vEBBV95]. Most are successful at eliminating extra copies within the
kernel. The hardest implementation issue is eliminating the copy between the kernel and
the user. Systems like IOLite [PDZ00] change the user/kernel interface and programming
model to pass around collections of pointers. The user is aware that her data is split into
various memory regions, which complicates programming. Another approach lets user han-
dlers manage the copy from the network interface directly [MKF+98]. Direct access to the
network interface requires special hardware, does not interact well with multi-programming
and demand paging, and results in the entire packet, not just the payload, being transfered
to user space.

A final approach [Chu96] uses page remapping, which can be implemented under the
standard read system call. The implementation in [Chu96] is for ATM networks where
the maximum transfer unit (MTU) is greater than a 4 KB hardware page size. Since it
uses page remapping techniques, it is limited to the hardware page granularity. The largest
standard Ethernet packet is less than 1512 bytes, which is smaller than most modern page
sizes.

We believe the remapping approach is the best for zero-copy networking, and MMPT
eliminates the page size restriction and extends the approach to data that is split among
multiple packets or packet fragments. It offers the programming ease, and backwards com-
patibility of linear buffers with the performance of zero-copy networking stacks.

10.2 Memory translation

To support address translation, the processor stores a translation offset for each address
register, and adds the contents of the translation register to the effective address calculation
for loads and stores.

Figure 10-1 shows two translated memory regions in a protection domain. When code
in the domain accesses addresses in the range 0x80002800–0x800028FF, it can read and
write that memory. When code accesses addresses in the range 0x1200–0x12FF, the pro-
cessor restricts its access to read-only, and adds 0x80001600 to the address. So accesses
to address range 0x1200-0x12FF actually load data from the address range 0x80002800–
0x800028FF. Different memory regions can have different translation values, so memory
that is discontiguous can be translated so that its images are contiguous, as shown in the
figure.

10.3 Implementing zero-copy networking with MMPT

Figure 10-2 shows how translation can implement zero-copy networking with a standard
read system call interface. The kernel buffers packets as they arrive on a TCP connection.
It then maps the payload from these packets into contiguous segments (provided by read)
which the user can then access. Permissions are only given for access to the data payload
so the network stack is isolated from a malicious or buggy user.

In Figure 10-2, the client domain passes a buffer (a 3KB buffer occupying the address
range 0x1000–0x12FFF) to the kernel via read. The kernel becomes the owner of the

112

Protection

Domain

Space

Address

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
������������������������

�������������
�������������
�������������

�����������
�����������
�����������
�����������

0x1000

0x1200

+0x80001000

+0x80001600

0x1300

0x80002000

0x80002200

0x80002800

0x80002900

Figure 10-1: An example of byte-level translation. Two buffers, starting at 0x80002000 and
0x80002800 are translated down to start at 0x1000 and 0x1200, respectively. Code in the
protection domain can read and write the buffers in high memory, but can only read the
buffer’s translated image in low memory. The arrow from low memory to high is labeled
with the address offset that translates the low buffer to the high.

buffer, and it remaps the packet payloads into the buffer without copying them. When
the user reads the buffer (e.g., 0x1000), the processor adds the translation offset so the
data comes from 0x80002000 which is where the packet payload resides. The translation is
represented by two user segments which have translation information, i.e., <0x1000, 0x200,

RO, +0x80001000>, and <0x1200, 0x100, RO, +0x80001600>. The final segment field
holds the translation offset. The packet headers are not translated into the client domain.
The client never sees the packet headers.

Segment translation does not preclude other levels of memory translation. For an em-
bedded system that uses a physical address space, segment translation could be the only
level of memory translation in the system. For a system that uses virtual addresses, the
result of segment translation is a virtual address which is translated to a physical address
by another mechanism. Translations are not recursive, a translated segment cannot be the
target of other translations.

The MMP system does not dictate policy, but one reasonable choice is that only the
protection domain that owns a segment can install a translation, and the translation must
point to another segment owned by the same protection domain. This property would be
checked by the supervisor when it is called to establish the mappings.

10.4 Translation hardware implementation

MMPT requires sidecar registers, storing a translation offset in the the address sidecar
register as shown in Figure 10-3. The processor adds the translation offset to every memory
address calculation, allowing a region of memory to appear to reside in a different address

113

Client

Domain

Kernel

Domain

Address

Space

�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Header

Header

Segment specifiers with translation information

0x80002900

<0x1200,0x100,RO,+0x80001600>

<0x1000,0x200,RO,+0x80001000>0x1000

0x1200

0x1300

0x80002000

0x80002200

0x80002800

Figure 10-2: Using memory protection and segment translation to implement zero-copy
networking. The network interface card uses DMA to copy packets into the kernel. The
kernel exports the packets to an untrusted client by creating segments for the payload of
the packets. Segment translation presents the illusion to the client that the packet payloads
are contiguous in memory at 0x1000-0x12FF.

Addr (32)

Address register Sidecar

Valid (1) Base (32) Bound (32) Perm (2)

Figure 10-3: The layout of an address register with sidecar which has translation information
(shaded portion).

range. This will increase the typical two operand add used for address arithmetic to a three
operand add. The additional 3:2 carry-save adder will add a few gate delays to memory
access latency.

Segment translation does not cause cache hardware aliasing problems, because transla-
tion occurs before the access is sent to the cache and memory system. In the example in
Figure 10-1, no data is cached for address 0x1000, because data is never fetched from that
address, it is fetched from 0x80002000. This can create a software pointer aliasing problem
if software assumes that only numerically equal pointers point to the same data. In the
example, 0x1000 and 0x80002000 point to the same memory, but they are not numerically
equal. Software is often written to assume that pointers which are numerically unequal do
not point to the same memory.

Since all memory meta-data is changed via supervisor calls, the supervisor can enforce
policies that mitigate the negative effects of software pointer aliasing. One policy would
be that, since a domain must own both the translated segment and its image, the domain
can only export the segment, and not the image. This prevents other domains from see-
ing the translation and becoming confused, but would support applications like zero-copy
networking.

114

10.5 Complications from byte-level translation

Byte-level translation interacts with multi-byte loads and stores to create two architectural
complications. The first is that addresses which appear to be aligned can create unaligned
references when used. The address issued by the processor is the user address plus the
translation offset. If a segment is translated to an odd-byte boundary (e.g., <0x1000,

0x200, +0x80002003>), then a reference to user address 0x1000 becomes an unaligned
reference to 0x80003003. Some modern processors can handle unaligned loads from the
same cache line in a single cycle, but require two cycles for unaligned loads that cross cache
line boundaries.

The second issue arises when a single multi-byte load crosses translation boundaries.
Returning to the example in Figure 10-2, consider the case where the first packet has one
fewer byte of data payload: 0x1FF bytes instead of 0x200. We can almost represent this
situation with the segments <0x1000, 0x1FF, RO, +0x80001000> and <0x11FF, 0x101,

RO +0x80001601>, but the length of our segments and their base address must be word
aligned, because the entire table is word-aligned. The problem is with the word at address
0x11FC. The first three bytes must come from the first segment, and the last byte must
come from the second segment.

We call a word that spans segment translation boundaries a seamed word. The permis-
sions table must represent seamed words. To simplify their representation, they are defined
to be single word segments that must occur on the first word of two adjacent segments,
e.g., the word at address 0x11FC in our example. With this restriction, an entry needs only
a single bit to represent that two adjacent table segments have a seam between them, and
then two bits to indicate how many bytes of the seamed word come from the first segment.
Any multi-byte quantity can be seamed, and can use the word-oriented table representation.
For instance, an 8-byte load can have a seam in the first word, or the second.

A seamed load requires the processor to collect the bytes within a single word load
from different addresses. Fortunately, the pipeline mechanism is almost identical to what is
needed for unaligned loads that cross cache line boundaries—bytes from different locations
must be shifted and muxed together. The only difference with seamed loads is that the two
locations being read are not within three bytes of each other.

To simplify the hardware, we impose a restriction that seamed stores are not supported.
Allowing a store to be broken into two separate pieces located at very different cache
addresses can cause severe complications for SMP cache coherence.

10.5.1 Adding translation to sorted segment table entries

Figure 10-4 shows the records in a sorted segment table with translation information. The
SST’s simplicity allows translation information to be concatenated onto the segment record.
There are 32 bits of translation for each segment, with a bit to indicate if the segment has
a seam, and two bits to indicate after how many bytes in the last word of the segment does
the seam cross into the next segment.

10.5.2 Adding translation to run-length encoded entries

Figure 10-5 shows the run-length encoded record that represents seamed words and trans-
lation information. The record is six words long and is pointed to by a table entry which is

115

0

Binary
Search

Address (30)

Address (30)

0x00100020

0x0

Perm (2)

00

01

Translation (32)

+0x0

...
000x00100040 +0x0

+0x2841

Seam?(1) Seam cross

0

0

00

0

0

Figure 10-4: A sorted segment table (SST) with translation information. Entries are kept
in sorted order and binary searched on lookup.

first(7)seam(2) mid0(6) mid1(6)

translation first (32)

seam cross0(16) seam cross1(16)

translation mid0 (32)

translation mid1 (32)

translation last (32)

last(11)

seam0 seam1

Figure 10-5: The format for a record with a run-length encoded entry and translation
information.

a type 10 pointer (see Table 3.2). There are 32 bits of translation for each segment.

The upper two bits of the RLE, used for type information when the RLE entry appears
in a non-leaf position, are reallocated in this record to indicate the location of seamed
words. The type bits are available, because the translation record is pointed to by the
type 10 pointer, which only points to translation records. The arrow heads indicate where
seamed words are allowed to occur. The bits are independent and if the first bit (seam0)
is set, there is a seam between table segments first and mid0. If the second bit is set
(seam1), there is a seam is between mid1 and last. The last word of the record contains
two 16-bit fields. Each represents the byte cross-over point for the corresponding seamed
entry. In the example given above, the cross-over point is 3 bytes because 0x11FC–0x11FE
come from the first segment and 0x11FF comes from the second segment. While only 4 bits
of seam cross information is needed (two bits for each seam), the format reserves an entire
word to keep the records word aligned.

This record format restricts the system to two seamed entries in every 16 words, and
requires that translated segments be representable by a run-length encoded entry. If there
are many small regions (e.g., many small network packets or packet fragments) it is better
to copy the contents rather than construct many translated or seamed regions.

All fields of the record type are not always needed. The initial word in the run-length
encoded entry establishes how many segments there are and if there are any seams. This

116

determines how many additional words are necessary. Records in the MMPT prototype are
fixed length for simplicity, but they could be variable sized to reduce space consumption.

PLB entries in an MMPT system must be at least six words long, to accommodate the
translation record.

10.6 Evaluation

We recorded a web client receiving 500 KB of packets and simulated the action of a kernel
driver which accepts the packets into kernel memory and then translates the packet payload
segments into a contiguous segment provided by the client via the read system call. The
client then streams through the entire payload. In this scenario, the kernel reads the packet
headers, and writes the permissions tables to establish the translation information. The
client reads the data, causing the system to read the translation and permissions data from
the protection table. This experiment used only the MMP table simulator (as in Chapter 5),
and did not include Mondrix—the actions of the OS were simulated by directly accessing
the MMP tables.

We compare the number of memory references required for the segment translation
solution with the number of memory references required for the standard copying imple-
mentation. In the copying implementation the kernel reads the headers, and then reads
the packet payloads and writes them to a new buffer. The client streams through the new
buffer.

Zero-copy networking saves 52% of the memory refereces of a traditional copying im-
plementation. It has a size overhead of 29.6% for the permission tables. 61% of that 29.6%
overhead is for permissions tables and the remaining 39% is for the translation records.
11% of the references are unaligned and cross cache line boundaries. 0.5% of the references
are seamed. If we charge 2 cycles for the unaligned loads that cross cache line bound-
aries, 10 cycles for the seamed loads and discount all other instructions, the translation
implementation still saves 46% of the reference time of a copying implementation.

117

118

Chapter 11

Additional Applications, Future

Work, and Conclusions

This chapter examines other applications of MMP, besides isolating modules. We also
present additional applications for the byte-level translation extension presented in the last
chapter. The chapter continues with a discussion of how programming languages interact
with MMP. Finally, we conclude.

11.1 Additional applications for MMP

We believe that fine-grained protection offers exciting opportunities for application develop-
ers. Appel [AL91] surveys some applications that make use of page-based virtual memory.
Many of these applications could perform better with finer grain protection and with effi-
cient cross-domain calls.

Fine-grained protection can provide support for efficient array bounds checking. Bounds
checking is useful for program debugging and if implemented by MMP would be available
to the kernel.

Unsafe languages allow buffer overruns, in stack-allocated and heap-allocated memory,
which are a common source of security holes [WFBA00]. A memory allocator could use
MMP to place inaccessible guard words between heap allocation units which would catch a
program’s attempt to write off the end of a piece of memory. A compiler or run-time system
could place an inaccessible guard word between local parameters and a procedure’s return
address, so any attempt to overwrite the return address by overflowing a stack-allocated
data structure generates a fault.

A related application, data watchpoints [Wah92], can be easily implemented with MMP.
A data watchpoint generates a trap when the processor stores a value into a given word in
memory. Some processors support a handful of watched memory locations [KH92, Int97],
but MMP scales to allow any number of individually protected words.

MMP can eliminate data copying between the user and kernel, increasing performance.
The kernel’s address space is usually inaccessible to user code, but some of it could be made
writable to the user. MMP would ensure that user code could only write into the data

119

portions of a kernel data structure, and could not overwrite (or even read) pointers and
other sensitive data. Allowing the user to write directly into kernel memory would allow
the kernel to avoid copying the user’s data on system calls and it would ensure that the data
was memory resident (if the kernel had the user write into pinned memory). The kernel
interface should not be tied to the details of the layout of a kernel data structure, since the
layout might change, but a standard interface could be implemented by direct copying from
user to kernel address space.

Generational garbage collectors [LH83] segregate objects into two classes, “new” and
“old”, where new objects are garbage collected more frequently than old objects. The
runtime system relies on the invariant that old objects do not point to new objects. Checking
in software that updates to old objects do not cause them to point to new objects is time
consuming. The runtime system could use MMP to write protect all pointers in all old
objects. Whenever the program writes one of these locations, the runtime system is notified
by the memory supervisor which handles the protection fault. The runtime system checks
the newly written pointer to determine if an old object is being updated to point to a new
object. If it is, the new object (and everything it points to) is now considered old, and the
runtime system has preserved the invariant that old objects do not point to new objects.

Infiniband[Ass01] is a high-performance switched interconnect architecture for proces-
sors and I/O devices. Infiniband supports Remote Direct Memory Access (RDMA) op-
erations where the initiator of the operation specifies both the source and destination of
a data transfer as memory addresses, resulting in zero-copy data transfers with minimum
involvement of the CPUs. MMP could be used in a processor or I/O device to regulate
access to these remote memory windows.

Flexible sub-page protection enables distributed shared memory systems like Shasta
[SGT96] and its predecessor [SFL+94]. Shasta found significant benefit from breaking up dif-
ferent data structures into different sized chunks to manage consistency. But since Shasta’s
line sizes did not map to virtual address pages, it performed access checks in software.
While the authors of Shasta used impressive compiler techniques to reduce the cost of these
software access checks, MMP would reduce this cost further.

The C region library [JKW95] also allows programmers to maintain coherence for
arbitrary-sized data regions, and so would benefit from MMP’s ability to mark such data
regions as inaccessible if they were owned exclusively by another processor.

Fine-grained memory protection enables security-oriented software to make stronger
claims about information flow, e.g., that a particular memory word was never read. Having
a “no access” permission value is important for this application.

11.1.1 Combining fine-grained protection and translation

Combining fine-grained protection with byte-level translation is useful for applications other
then zero-copy networking. For instance, we can use it to implement stacks efficiently in a
thread package. A persistent problem for supporting large numbers of user threads is the
space occupied by each thread’s stack [GN96]. Each thread needs enough stack to operate,
but reserving too much stack space wastes memory. With paged virtual memory, stack
memory must be allocated in page sized chunks. This strategy requires a lot of physical
memory to support many threads, even though most threads don’t need a page worth
of stack space. With MMP segment translation, the kernel can start a thread and only
translate a very small part of its stack (e.g., 128 bytes). If the thread uses more stack

120

memory, the kernel can translate the next region of the stack to a segment non-contiguous
with the first, so the stack only occupies about as much physical memory as it is using, and
that memory does not have to be physically contiguous.

Similarly, if a system is low on physical memory, it can use MMP translation to map
non-contiguous memory regions into a more usable contiguous chunk.

Segment translation is also useful because it allows data structures to be linked without
a pointer. If A has a pointer to B, that pointer must be loaded in order to find B. If A
and B are translated to be contiguous, then indexing off the end of A will find B. The
address computation of translation replaces the memory reference of the pointer load. This
approach would eliminate the latency of loading and dereferencing the pointer, and might
reduce memory traffic.

A common data structure that MMP protection and translation could optimize is the
mostly-read-only data structure. An example comes from the widely-used NS network
simulator [ns00]. Each packet has mostly read-only data. When simulating a wireless
network, packets are “broadcast” to nodes, which read the read-only data, but also write
a small node-specific scratch area in the packet (e.g., to fill in the receive power which is
node specific). The current NS simulator supports this data structure by making a copy
of the packet for each node, so that each node has its own scratch area. This copying
reduces the size of simulations that are possible with a given amount of physical memory,
and takes cycles that could be used for computation. Splitting the packet into read-only
and read-write sections and managing them separately is possible, but it complicates a core
data structure. By using fine-grained MMP translation, a single read-only payload can be
made visible at different addresses within multiple protection domains. Each domain can
then have a private read/write region allocated contiguously to the read-only view. This
solution allows the nodes to share the read-only part of each packet, while providing each
node with a private scratch area.

11.2 MMP and programming languages

This section discusses how a programming language could present an interface to MMP
functionality. It also discusses how an MMP system can support programming language
exceptions and continuations.

11.2.1 Language-level interface to MMP

Some language features (extant and imagined) can use MMP for their implementation.
C++ name spaces could be implemented as different protection domains. The scope of the
name space can be determined statically, and all public functions in the name space would
be available. Most of the MMP setup work could be done by the compiler at compile time,
and instantiated during program initialization.

For strongly typed languages, the language itself is sufficient for access control, but
MMP is useful in these systems to guard against implementation bugs. Class loaders in
Java are the mechanism by which a reference to a class name from a running program
becomes an executable representation of that class. The JVM’s primordial class loader
would likely want to load trusted classes into some number of reserved protection domains
to protect them against implementation bugs. User-level class loaders already offer a rich

121

set of methods for obtaining an executable Java class. MMP would be an additional useful
tool to help control the trust relationships for the class implementation that is being loaded.

A language could provide a read-only type qualifier which could be implemented by
MMP.

11.2.2 Implementing exceptions and continuations in MMP

Programming language exceptions can be implemented by several methods [RJ00]. One
set of techniques cuts the stack, setting the stack pointer and program counter to the
exception address. These techniques make exceptions fast, but penalize non-excepting paths
by disallowing register allocation of callee-saved registers. Stack cutting between domains is
not possible with switch/return gates. For instance, switch and return gates are insufficient
to implement setjmp/longjmp, which is a stack cutting exception method.

The other set of exception implementation techniques unwind the stack, which removes
the penalty of entering the scope of an exception handler, but requires more work for an
exception. It also requires more work for each function call because each call can have
multiple return values, and the caller must decide if the function is returning because of an
exception condition. Switch and return gates support a stack unwinding implementation of
exceptions with interpreted multiple return values. This method is used in the MIT Flex
compiler [RAB+03] to implement exceptions in the Java language.

Interpreting multiple return values can hurt performance, and multiple return sites
can eliminate the need to interpret abnormal return codes [RJ00]. An abnormal condition
returns control, not to the instruction following the call, but a succeeding instruction, which
is usually a branch to exception handling code. MMP cross-domain calling can support this
idiom by allowing multiple return address in a single cross-domain call record. The processor
would have to check each of these addresses on a cross-domain return, and it would have
to push and pop a variable number of words for each cross-domain call.

Switch and return gates are not sufficient to implement continuation passing style. A
gate type that did not push a record on the cross-domain call stack could be provided,
and continuations would use them to denote entry points. The hardware would not check
returns.

11.3 Conclusion

MMP finally makes practical the longstanding goal of fine-grained memory protection. It
provides fine-grained protection with backwards compatibility for operating systems, ISAs
and programming models, and does without confusing new programmer-visible abstractions.
Most of the best ideas for system structure that proponents of segmentation or capabilities
have proposed can be implemented with MMP in a way that is minimally disruptive to
existing software.

Our experience in adapting Linux to use MMP indicates that the programming model
provided by the MMP hardware fits naturally with how modern software is designed and
written. Designers of large software projects use modular boundaries, and MMP can provide
hardware enforcement for the module boundaries that already exist.

Programs grow as complex as programmers, tools, and the hardware substrate allow.
Delivering a complex feature set with a reliable program has been a constant challenge of

122

computing. MMP will help programmers uncover programming errors more quickly during
testing, and allow programmers to design their system to continue functioning if one module
fails because of an error.

Modularity as a technique to provide system stability has a long history in computer
architecture and operating systems. Many techniques to increase the modularity of memory
are now in widespread use. We hope that MMP continues the tradition.

123

124

Appendix A

Interface file for Mondrix memory

supervisor

#ifndef _MMP_H

#define _MMP_H

#include <asm/mman.h> // PROT_NONE PROT_READ, PROT_WRITE, PROT_EXECUTE

// Switch domains gate

#define PROT_SGATE 0x8

// Return gate

#define PROT_RGATE 0x10

// Convenience

#define PROT_RW (PROT_READ|PROT_WRITE)

typedef unsigned int pd_id_t;

//

// Initialization

// Called very early, before kmalloc is safe, from main.c. It allows

// us to record the allocation of memory for the initial RAM disc in

// arch/i386/kernel/setup.c, and pagetables in arch/i386/kernel/init.c

void mmp_early_init(void);

// Called once kmalloc is safe, from main.c

void mmp_init(void);

//

// Main memory permissions manipulation interfaces.

// The main interface for setting permissions for myself or other domains.

void mmp_mprot(const void* ptr, unsigned int len, int prot, pd_id_t pd);

// Put an sgate on the function. If pd == caller’s pd, put an rgate

125

// on the return.

void mmp_func_gate(const void* func, pd_id_t pd);

// Read protection tables

void mmp_get_prot(const void*, pd_id_t, int*);

// Find the PD that owns this address. Use code or static data, it

// won’t work for dynamically allocated memory.

pd_id_t mmp_code_to_pd(const void* addr);

// This allows ide-disk.c to export its strings.

void mmp_get_my_ro_section(unsigned long* base, unsigned long* len);

//

// Memory allocator interface

void mmp_mem_alloc(const void* ptr, unsigned int len);

void mmp_mem_free(const void* ptr, unsigned int len);

//

// Protection domain creation

struct mmp_req {

const void* ptr;

unsigned int len;

int prot;

int steal;

};

pd_id_t mmp_pd_subdivide(struct mmp_req* req_vec[]);

// Protection domain deletion

void mmp_pd_free(pd_id_t, int recursive);

// Module interface

struct module;

void mmp_module_init(struct module* mod);

void mmp_module_free(struct module* mod);

//

// Group protection domains. These are software managed protection

// domains, whose protections are ORed into a real protection domain,

// when that pd joins the group.

// 0 is not a legal value for gpd_id_t. They start at 1.

// Make a memory group. It takes an estimate of the number of regions

// in the group.

typedef unsigned int gpd_id_t;

// Create a group

gpd_id_t mmp_gpd_create(const char* name, int nregions);

// Destroy a group

void mmp_gpd_destroy(gpd_id_t);

// Add a memory region to a group domain

int mmp_gpd_export(gpd_id_t, void* ptr, unsigned int len, int prot);

// Delete a memory region from a group domain

int mmp_gpd_unexport(gpd_id_t, void* ptr, unsigned int len);

126

// Add a group domain to the currently executing domain

int mmp_gpd_add(gpd_id_t);

// Get rid of a group domain from the currently executing domain

int mmp_gpd_unadd(gpd_id_t);

//

// Special function for printk-family functions to get read-write

// permission on a buffer whose length is determined by the supervisor

// reading the printk caller’s protection table.

void mmp_printk_rw(void* ptr);

void mmp_printk_done(void* ptr);

//

// Names of the domains which house common kernel modules.

extern pd_id_t kern_pd;

extern pd_id_t printk_pd;

extern pd_id_t ide_mod_pd;

extern pd_id_t idedisk_pd;

extern pd_id_t binfmt_pd;

extern pd_id_t rtc_pd;

extern pd_id_t pd_8390;

extern pd_id_t ne_pd;

extern pd_id_t unix_pd;

#endif // _MMP_H

127

128

Bibliography

[Ado02] Adobe Systems Incorporated. Adobe PDF Plugin, 2002. http://www.adobe.
com/.

[AL91] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs.
In Proceedings of the 4th International Conference on Architectural Support
for Programming Languages and Operating System (ASPLOS), pages 96–
107, 1991.

[Apa03a] Apache Software Foundation. Apache web server, 2003. http://www.

apache.org/.

[Apa03b] Apache Software Foundation. mod perl, 2003. http://perl.apache.org/.

[ARM00] ARM Ltd. ARM940T Technical Reference Manual (Rev 2), ARM DDI
0144B 2000.

[ASG97] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive inlin-
ing. In Proceedings of the ACM SIGPLAN ’97 Conference on Programming
Language Design and Implementation, pages 134–145, 1997.

[Ass01] InfiniBand Trade Association. InfiniBand Specification 1.0a, June 2001.

[BALL89] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and
Henry M. Levy. Lightweight remote procedure call. In Proceedings of the
12th ACM symposium on operating systems principles (SOSP), pages 102–
113, Dec. 1989.

[Ber80] Viktors Berstis. Security and protection in the IBM System/38. In Proceed-
ings of the 7th International Symposium on Computer Architecture, pages
245–250, May 1980.

[Bon94] Jeff Bonwick. The slab allocator: An object-caching kernel memory alloca-
tor. In USENIX Summer, pages 87–98, 1994.

[BSP+95] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gn Sirer,
Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan J. Eggers.
Extensibility, safety and performance in the SPIN operating system. In
15th Symposium on Operating Systems Principles, pages 267–284, Copper
Mountain, Colorado, 1995.

[Bur61] Burroughs Corporation. The Descriptor—a Definition of the B5000
Information Processing System., 1961. http://www.cs.virginia.edu/

brochure/images/manuals/b5000/descrip/descrip.html.

129

[Car96] Martin Carlisle. Olden: Parallelizing Programs with Dynamic Data Struc-
tures on Distributed-Memory Machines. PhD thesis, Princeton University,
June 1996.

[Cha95] Jeffrey Chase. An Operating System Structure for Wide-Address Architec-
tures. PhD thesis, University of Washington, August 1995.

[Chu96] H. K. Jerry Chu. Zero-copy TCP in Solaris. In USENIX Annual Technical
Conference, pages 253–264, 1996.

[Cif94] Christina Cifuentes. Reverse Compilation Techniques. PhD thesis, Queens-
land University of Technology, July 1994.

[CKA91] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directo-
ries: A scalable cache coherence scheme. SIGPLAN Notices, 26(4):224–234,
1991.

[CKD94] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware
support for fast capability-based addressing. In Proceedings of the Sixth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, pages 319–327, San Jose, California, 1994.

[DH66] Jack B. Dennis and Earl C. Van Horn. Programming semantics for mul-
tiprogrammed computations. Communications of the ACM, 9(3):143–155,
March 1966.

[EA03] Dawson Engler and Ken Ashcraft. RacerX: Effective, static detection of
race conditions and deadlocks. In Proceedings of the 19th Symposium on
Operating Systems Design and Implementation, 2003.

[ECC01] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as inconsistent
behavior: A general approach to inferring errors in systems code. In Proceed-
ings of the 18th ACM Symposium on Operating System Principles (SOSP
’01), pages 57–72, Oct. 2001.

[Fab74] Robert S. Fabry. Capability-based addressing. CACM, 17(7):403–412, July
1974.

[Fot61] John Fotheringham. Dynamic storage allocation in the Atlas computer,
including an automatic use of backing store. Communications of the ACM,
4(10):435–436, October 1961.

[GN96] Dirk Grunwald and Richard Neves. Whole-program optimization for time
and space efficient threads. In Proceedings of Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 50–59, 1996.

[HEV+98] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and
Jochen Liedtke. The Mungi single-address-space operating system. Software
Practice and Experience, 28(9):901–928, 1998.

[Hew02] Hewlett-Packard Corporation. PA-RISC 2.0 architecture, 2002.

130

[HHL+97] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schonberg,
and Jean Wolter. The performance of microkernel-based systems. In Proceed-
ings of the 16th ACM Symposium on Operating System Principles (SOSP),
pages 66–77, Oct. 1997.

[HLH92] Erik Hagersten, Anders Landin, and Seif Haridi. DDM - a cache-only mem-
ory architecture. IEEE Computer, 25(9):44–54, 1992.

[HLP+00] Andreas Haeberlen, Jochen Liedtke, Yoonho Park, Lars Reuther, and Volk-
mar Uhlig. Stub-code performance is becoming important. In Proceedings of
the 1st Workshop on Industrial Experiences with Systems Software (WIESS),
San Diego, CA, Oct. 2000. USENIX Association.

[HSH81] Merle E. Houdek, Frank G. Soltis, and Roy L. Hoffman. IBM System/38
support for capability-based addressing. In Proceedings of the 8th Symposium
on Computer Architecture, pages 341–348, May 1981.

[IBM02] IBM Corporation. PowerPC Microprocessor Family: The Programming En-
vironments for 32-Bit Microprocessors G522-0290-01, 2002.

[Int96] Intel. Pentium Pro Family Developer’s Manual, Vol 2, 1996.

[Int97] Intel Corporation. Volume 1: Basic architecture. Intel Architecture Software
Developer’s Manual, Volume 1: Basic Architecture, 1997.

[Int02] Intel. Intel Itanium Architecture Software Developer’s Manual v2.1, 2002.

[JJD+79] Anita K. Jones, Robert J. Chansler Jr., Ivor Durham, Karsten Schwans,
and Seven Vegdahl. A multiprocessor operating system for the support of
task forces. In Proceedings of the 7th Symposium on Operating Systems
Principles, pages 117–127, Dec 1979.

[JKW95] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-
performance all-software distributed shared memory. ACM Operating Sys-
tems Review, SIGOPS, 29(5):213–226, 1995.

[JMG+02] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings of USENIX
annual technical conference, June 2002.

[KCE92] Eric J. Koldinger, Jeffrey S. Chase, and Susan J. Eggers. Architectural
support for single address space operating systems. SIGPLAN Notices,
27(9):175–186, 1992.

[KH92] Gerry Kane and Joseph Heinrich. MIPS RISC Architecture (R2000/R3000).
Prentice Hall, 1992.

[Lam71] Butler Lampson. Protection. In Proceedings of the 5th Annual Princeton
Conference on Information Sciences and Systems, pages 437–443, Princeton
University, 1971.

[Lev84] Henry M. Levy. Capability-Based Computer Systems. Digital Press, Bedford,
Massachusetts, 1984.

131

[Lev03] Markus Levy. ARM gets more deeply embedded. Microprocesor Report,
17(10):26–28, October 2003.

[LH83] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on
the lifetimes of objects. Communications of the ACM, 26(6):419–429, June
1983.

[Lie95] Jochen Liedtke. On micro-kernel construction. In Proceedings of the Sym-
posium on Operating Systems Principles (SOSP), pages 237–250, 1995.

[LLG+90] Daniel E. Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta,
and John L. Hennessy. The directory-based cache coherence protocol for
the DASH multiprocessor. In Proceedings of the 17th annual international
symposium on computer architecture (ISCA ’90), pages 49–58, June 1990.

[MKF+98] Kenneth Mackenzie, John Kubiatowicz, Matthew Frank, Walter Lee, Victor
Lee, Anant Agarwal, and M. Frans Kaashoek. Exploiting two-case delivery
for fast protected messaging. In HPCA, pages 231–242, 1998.

[Moz03] Mozilla Organization. Mozilla web browser, 2003. http://www.mozilla.

org/.

[MPC+02] Madanlal Musuvathi, David Park, Andy Chou, Dawson R. Engler, and
David L. Dill. CMC: A Pragmatic Approach to Model Checking Real Code.
In Proceedings of the Fifth Symposium on Operating Systems Design and
Implementation, December 2002.

[MWA+96] James Montanaro, Richard T. Witek, Krishna Anne, Andrew J. Black, Eliz-
abeth M. Cooper, Daniel W. Dobberpuhl, Paul M. Donahue, Jim Eno, Ale-
jandro Fatell, Gregory W Hoeppner, Davidk Kruckmeyer, Thomas H. Lee,
Peter Lin, Liam Madden, Daniel Murray, Mark Pearce, Sribalan Santhanam,
Kathryn J. Snyder, Ray Stephany, and Stephen C. Thierauf. A 160MHz 32b
0.5W CMOS RISC Microprocessor. In IEEE International Solid-State Cir-
cuits Conference, Slide Supplement, February 1996.

[Nat97] National Software Testing Laboratories. NSTL Final Report for Ratio-
nal Software: Performance test of Rational Software’s software product
Purify, October 1997. http://www.rational.com/media/whitepapers/

pnt-nstl.pdf.

[Nec97] George C. Necula. Proof-carrying code. In Conference Record of POPL ’97:
The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 106–119, Paris, France, Jan 1997.

[Nel81] Bruce J. Nelson. Remote procedure call. PhD thesis, Carnegie-Mellon Uni-
versity, 1981. CMU-CS-81-119.

[ns00] NS Notes and Documentation. http://www.isi.edu/vint/nsnam/, 2000.

[PDZ00] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-Lite: a unified I/O
buffering and caching system. ACM Transactions on Computer Systems,
18(1):37–66, 2000.

132

[PS03] Rina Panigrahy and Samar Sharma. Sorting and searching using ternary
CAMs. IEEE Micro, 23(1):44–53, Jan/Feb 2003.

[RAB+03] Martin Rinard, C. Scott Ananian, Chandrasekhar Boyapati, Brian Demsky,
Viktor Kuncak, Patrick Lam, Darko Marinov, Alex Salcianu, Karen Zee,
and Wes Beebee. The FLEX Compiler Infrastructure, 1999–2003. http://

www.flex-compiler.csail.mit.edu.

[Rat02] Rational Software Corporation. Purify, 2002. http://www.rational.com/

media/products/pqc/D610 PurifyPlus unix.pdf.

[Red74] David Redell. Naming and Protection in Extendible Operating Systems. PhD
thesis, University of California, Berkeley, September 1974.

[REEBWG95] Mendel Rosenblum, Stephen A. Herrod Edourd E. Bugnion, Emmett
Witchel, and Anoop Gupta. The impact of architectural trends on oper-
ating system performance. In Proceedings of the 15th ACM Symposium on
Operating System Principles (SOSP ’95), pages 285–298, Oct. 1995.

[RJ00] Norman Ramsey and Simon Peyton Jones. A single intermediate language
that supports multiple implementations of exceptions. In ACM SIGPLAN
2000 Conference on Programming Language Design and Implementation
(PLDI’00), 2000.

[SA93] Rabin A. Sugumar and Santosh G. Abraham. Efficient simulation of caches
under optimal replacement with applications to miss characterization. In
Joint International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’93), pages 24–35, 1993.

[Sal74] Jerome H. Saltzer. Protection and the control of information sharing in
Multics. Communications of the ACM, 17(7):388–402, July 1974.

[SBL03] Michael Swift, Brian N. Bershad, and Henry M. Levy. Improving the reli-
ability of commodity operating systems. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[SFL+94] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt,
James R. Larus, and David A. Wood. Fine-grain access control for dis-
tributed shared memory. In Proceedings of architectural support for pro-
gramming languages and operating systems (ASPLOS-VI), 1994.

[SGT96] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath.
Shasta: A low overhead, software-only approach for supporting fine-grain
shared memory. In Proc. of the 7th Symp. on Architectural Support for
Programming Languages and Operating Systems (ASPLOSVII), pages 174–
185, 1996.

[Sha99] Jonathan S. Shapiro. EROS: A Capability System. PhD thesis, University
of Pennsylvania, 1999.

[SN02] Robert R. Schneck and George C. Necula. A gradual approach to a more
trustworthy, yet scalable, proof-carrying code. In Proceedings of Conference
on Automated Deduction, pages 47–62, 2002.

133

[Sof03] Software Engineering Institute. CERT Coordination Center, 2003. http:/

/www.cert.org/.

[Sou03] Open Source. bochs: The cross platform IA-32 emulator, 2003. http://

bochs.sourceforge.net/.

[SS75] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. In Proceedings of the IEEE 63 9, pages 1278–1308,
1975. http://web.mit.edu/Saltzer/www/publications/protection/

index.html.

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS:
a fast capability system. In Symposium on Operating Systems Principles,
pages 170–185, 1999.

[Sun96] Sun Microsystems. UltraSPARC user’s manual, 1996.

[SW92] Walter R. Smith and Robert V. Welland. A model for address-oriented soft-
ware and hardware. In Proceedings of the 25th Hawaii International Con-
ference on System Sciences (HICSS-25), volume 1, pages 720–729, January
1992.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous mul-
tithreading: Maximizing on-chip parallelism. In 22nd Annual International
Symposium on Computer Architecture, June 1995.

[THK95] Madhusudhan Talluri, Mark D. Hill, and Yousef Y. A. Khalidi. A new
page table for 64-bit address spaces. In Symposium on Operating Systems
Principles, pages 184–200, 1995.

[Tor03] Linus Torvalds. Linux kernel modules, 2003. http://www.kernel.org/.

[vEBBV95] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-
net: A user-level network interface for parallel and distributed computing.
In Symposium on Operating Systems Principles, pages 303–316, 1995.

[vECC+99] Thorsten von Eicken, Chi-Chao Chang, Grzegorz Czajkowski, Chris Haw-
blitzel, Deyu Hu, and Dan Spoonhower. J-kernel: A capability-based op-
erating system for java. In Secure Internet Programming, pages 369–393,
1999.

[Wah92] Robert Wahbe. Efficient data breakpoints. In Proceedings of the 5th interna-
tional conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-V), Oct 1992.

[WCA02] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory pro-
tection. In Proceedings of the 10th international conference on architectural
support for programming languages and operating systems (ASPLOS-X), Oct
2002.

[WCC+74] William A. Wulf, Ellis S. Cohen, William M. Corwin, Anita K. Jones, Roy
Levin, C. Pierson, and Fred J. Pollack. HYDRA: The kernel of a multipro-
cessor operating system. Communications of the ACM, 17(6):337–345, July
1974.

134

[WFBA00] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken.
A first step towards automated detection of buffer overrun vulnerabilities.
In Network and Distributed System Security Symposium, pages 3–17, San
Diego, CA, February 2000.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation. Proceedings of the 14th symposium
on operating systems principles (SOSP), pages 203–216, December 1993.

[WN79] Maurice V. Wilkes and Roger M. Needham. The Cambridge CAP Computer
and Its Operating System. North Holland, New York, 1979.

[WRBS00] Jonathan D. Pincus William R. Bush and David J. Sielaff. A static analyzer
for finding dynamic programming errors. Software—Practice and Experi-
ence, 30(7):775–802, 2000.

[WSW+94] Robert Welland, Greg Seitz, Lieh-Wuu Wang, Landon Dyer, Tim Harring-
ton, and Daniel Culbert. The newton operating system. In Proceedings of
the 39th IEEE Computer Society International Conference, page ???, San
Francisco, 1994.

[Zil01] Craig B. Zilles. Benchmark health considered harmful. Computer Architec-
ture News, 29(3):4–5, 2001.

135

