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Abstract

Minimizing program code size reduces power consumption and space, which is espe-
cially important in embedded systems. Existing variable-length instruction formats provide
higher code densities than fixed-length formats, but are ill-suited to pipelined or parallel in-
struction fetch and decode. This thesis presents a new variable-length instruction format
that supports parallel fetch and decode of multiple instructions per cycle, allowing both
high code density and rapid execution for high-performance processors. The new heads-
and-tails (HAT) format splits each instruction into a fixed-length head and a variable-length
tail, and packs heads and tails in separate sections within a larger fixed-length instruction
bundle. The heads can be easily fetched and decoded in parallel as they are a fixed distance
apart in the instruction stream, while the variable-length tails provide improved code den-
sity. Compared to earlier schemes that expand compressed formats on cache refills, the new
format is suitable for direct execution from the instruction cache, thereby increasing effec-
tive cache capacity and reducing cache power. Various implementations of the HAT format
have been evaluated on re-encoded RISC and VLIW instruction sets, yielding compression
ratios between 60% and 75% using only simple statistical compression techniques.
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Title: Assistant Professor
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Chapter 1

Introduction

Many embedded systems have severe cost, power consumption, and space constraints. Re-

ducing code size is a critical factor in meeting these constraints. Program code is often the

largest consumer of memory in control-intensive applications, affecting both system cost

and size. Also, instruction fetches are responsible for a significant fraction of system power

and memory bandwidth.

Existing instruction set architectures generally fall into three categories: Complex In-

struction Set Computer (CISC), Reduced Instruction Set Computer (RISC), and Very Long

Instruction Word (VLIW). CISC instruction sets were designed with similar motivations as

embedded systems to reduce program size and instruction fetch bandwidth, because early

systems had small, slow magnetic core memories with no caches. These variable-length

CISC instructions tend to give greater code density than fixed-length instructions. How-

ever, fixed-length RISC-style instruction sets became popular after inexpensive DRAMs

reduced the cost of main memory and large semiconductor instruction caches became fea-

sible to reduce memory bandwidth demands. Fixed-length instructions simplify high per-

formance implementations because the address of the next instruction can be determined

before decoding the current instruction (ignoring branches and other changes in control

flow). Therefore, they allow fetch and decode to be easily pipelined or performed in paral-

lel for superscalar machines. On the other hand, VLIW architectures have recently become

popular in high-performance and embedded applications. By shifting the responsibility for

detecting instruction-level parallellism to the compiler, complex runtime control circuitry is
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avoided in VLIW schemes, allowing simple implementations to achieve high performance.

The fixed-length instructions and instruction bundles also have the same high-performance

benefits as fixed-length RISC instructions. However, VLIW architectures have a signifi-

cantly larger code size than both RISC or CISC designs.

Although embedded processors have traditionally had simple single-issue pipelines,

newer designs have deeper pipelines or superscalar issue [6, 23, 26] to meet higher perfor-

mance requirements. Fixed-length ISAs reduce the complexity of pipelined and superscalar

fetch and decode, but incur a significant code size penalty.

This work presents a newheads-and-tails(HAT) format, which allows compressed

variable-length instructions to be held in the cache yet remain easily indexable for parallel

fetch and decode. Therefore, we take advantage of high code density of variable-length

instructions while enabling deeply pipelined, superscalar, or VLIW machines.

The thesis is structured as follows. Chapter 2 reviews related work in instruction com-

pression and variable-length instruction encoding. The general overview of the HAT in-

struction format is described in Chapter 3. Chapter 4 and Chapter 5 give two examples that

pack MIPS [19] RISC instructions and IA-64 [17] VLIW instructions, respectively, into a

HAT format using a simple compression scheme. Chapter 6 concludes the thesis.
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Chapter 2

Related Work

Two main approaches to achieving both high performance and high code density are to

compress a fixed-length instruction set and to use a variable-length instruction set. Com-

pression reduces the code size using compressed instructions while enabling the high per-

formance of executing uncompressed fixed-length instructions. Variable-length instruction

sets provide denser code without the complexity of compression and decompression, but

are ill-suited for pipelined or superscalar execution.

2.1 Compression of RISC ISAs

Most of the previous work in code compression has focused on RISC architectures. The

ARM Thumb [25] and MIPS16 [20] instruction sets provide alternate 16-bit versions of

the base fixed-length RISC ISA (ARM and MIPS respectively) to improve code density.

Decompression is a straightforward mapping from the short instruction format to the wider

instruction format in the decode stage of the pipeline. Both ISAs allow dynamic switching

between full-width and half-width instruction formats at subroutine boundaries. The half-

width formats reduce static code size by around 30–40%, but can only encode a limited sub-

set of operations and operand addressing modes and so require more dynamic instructions

to execute a given task. The reduced fetch bandwidth can compensate for the increased in-

struction count when running directly from a 16-bit memory system, but for systems with

an instruction cache, performance is reduced by around 20% [25]. Although they are fixed

11



length, the reduced performance makes these short instruction formats unattractive for a

superscalar implementation, as a simpler approach to boosting performance would be to

revert back to the higher-performing wider format.

Dictionary-based compression is an alternative approach to reducing code size [3, 8,

11]. Common occurring strings in the instruction stream are replaced by fixed-length code

words pointing into a dictionary. Branch addresses are also modified to point to loca-

tions in the compressed instruction stream. The dictionary is preloaded before program

execution starts and forms an additional component of the process state, though it could

potentially be managed as a separate cache. The main advantage of these techniques is that

decompression is just a fast table lookup. However, these schemes have several disadvan-

tages. The table must be preloaded before each program is executed, which complicates

multi-programmed systems, and the table fetch adds latency into the instruction pipeline,

increasing branch mispredict penalties. The interleaving of code words and uncompressed

instructions impedes parallel or pipelined fetch and decode. Although it might be possible

to have parallel fetch and decode from the sequences stored in the dictionary, the common

strings tend to be short — often only a single instruction [3, 4, 8]. For each encoded string,

the dictionary schemes fetch the code word bits from the primary instruction stream as well

as the full-size instruction from the dictionary RAM, thereby expending more energy than

simply fetching uncompressed instructions.

A third approach is to use statistical compression, such as Huffman or arithmetic cod-

ing, which generates variable-size code words by choosing the size of the code word based

on the frequency of the characters to replace. These techniques achieve higher compression

rates than dictionary compression, but require more complex hardware and greater decom-

pression time. Because of the slow decompression, instructions are usually compressed in

main memory then uncompressed when refilling the cache, so that the decompression la-

tency would only affect the cache refill and not the execution from the cache. This idea was

introduced by Wolfe and Chanin in the Compressed Code RISC Processor (CCRP) [29],

and a variety of similar techniques have subsequently been developed and commercialized

[22, 14]. Caching the uncompressed instructions avoids the additional latency and energy

consumption of the decompression unit on cache hits, but decreases the effective capacity
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of the primary cache and increases the energy used to fetch cached instructions. Cache

miss latencies increase for two reasons. First, because the processor uses regular program

counter (PC) addresses to index the cache, cache miss addresses must be translated through

an additional memory-resident lookup table (the Line Address Table (LAT) [29]) to locate

the corresponding compressed block in main memory, although a miss address translation

cache can be added to reduce this penalty (the CLB in [29]). Second, the missing block is

often encoded in a form that must be decompressed sequentially, increasing refill latency

particularly when the requested word is not the first word in the cache line. For systems

with limited memory bandwidth, however, the compressed format can actually reduce total

miss latency by reducing the amount of data read from memory [29].

2.2 Compression of VLIW ISAs

Early techniques developed to compress code for VLIW machines only removed NOP

fields within a VLIW instruction held in memory, which was then expanded on refills to

include NOPs in the cache [9, 13]. More recent schemes have adapted the above three

approaches to VLIW architectures, but still retain the disadvantages of their RISC coun-

terparts. StarCore’s SC140 [27] uses mixed-width instruction sets, with half-width in-

structions that cannot utilize the full power of the architecture. Previous dictionary-based

schemes [18, 12] are only applicable to traditional VLIW architectures, which have rigid

instruction formats. Modern VLIW processors usually have flexible instruction formats,

in which each sub-instruction within the long instruction word does not necessarily have

to correspond to a specific functional unit. One statistical compression approach [30] has

targeted flexible VLIW architectures, but still uncompresses instructions upon cache refill.

The statistical approach by Aditya et al. [10] is the closest to the HAT scheme for VLIW

instruction set architectures proposed in this thesis. Instructions are held compressed in

cache, and uncompressed on cache hits. Apart from increasing effective cache capacity, this

avoids the need for a LAT or a CLB because program counter values are the same in cache

and in memory. This scheme compresses code by creating special templates and other

instruction fields to eliminate NOPs and encode frequently used operands. The emphasis
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is on generating a custom encoding for a specific implementation of a VLIW designed to

run a specific application, with the goal of reducing the circuitry complexity of instruction

fetch and decode.

2.3 CISC ISAs

The complexity of compressing instructions can be avoided by adopting a more compact

base instruction set. Legacy CISC ISAs, including VAX and x86, provide denser encoding

but were intended for microcoded implementations that would interpret the instruction for-

mat sequentially. Parallel fetch and decode is complicated by the need to examine multiple

bytes of an instruction before the start address of the next sequential instruction is known.

Nevertheless, the economic importance of legacy CISC instruction sets, such as x86, has

resulted in several high-performance superscalar variable-length CISC designs [7, 15, 1, 5].

These all convert complex variable-length instructions into fixed-length RISC-like internal

“micro-ops”. The Intel P6 microarchitecture can decode three variable-length x86 instruc-

tions in parallel, but the second and third instructions must be simple [7]. The P6 takes a

brute-force strategy by performing speculative decodes at each byte position, then muxing

out the correctly decoded instructions once the lengths of the first and second instructions

are determined (further described below). The AMD Athlon design predecodes instruc-

tions during cache refill to mark the boundaries between instructions and the locations of

opcodes, but still requires several cycles after instruction fetch to scan and align multiple

variable-length instructions [1]. The Pentium-4 design [5] improves on the P6 family by

caching decoded fixed-length micro-ops in a trace cache, but similar to the CCRP scheme,

cache hits require full-size fixed-length micro-op fetches and cache misses have longer

latency due to the decoding process.
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Chapter 3

Heads and Tails Format

                                bundle #                      instr #

H0   H1    H2    H3    H4    H5    H6         T6         T4         T3          T1         T0

H0   H1    H2    H3    H4                       T4          T3         T2    T1            T0

H0   H1    H2    H3    H4    H5                            T4        T3         T2              T0

unused

             heads

       tails

last instr #

 4

 6

 5

Figure 3-1: Overview of heads-and-tails format.

The HAT format packs multiple variable-length instructions into fixed-length bundles

as shown in Figure 3-1. The HAT format is used both in main memory and cache, although

additional information might be added to the cached version to improve performance as

described below. A cache line could contain one or more bundles. Bundles contain varying

numbers of instructions, so each bundle begins with a small fixed-length field holding the

number of the last instruction in the bundle, i.e. a bundle holdingN instructions hasN � 1

in this field. The remainder of the bundle is used to hold instructions.

Each instruction is split into a fixed-length head portion and a variable-length tail por-

tion. The fixed-length heads are packed together in program order at the start of the bundle,
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while the variable-length tails are packed together in reverse program order at the end (i.e.,

the first tail is at the end of the bundle). Not all heads necessarily have a tail, though this can

simplify some hardware implementations. The granularity of the tails is independent of the

size of the heads, i.e., the heads could be 11-bits long while the tails are multiples of 5 bits,

though there can be hardware advantages to making the head length a multiple of the tail

granularity as discussed below. When packing compressed instructions into bundles, there

can be internal fragmentation if the next instruction doesn’t fit into the remaining space in

a bundle, in which case the space is left empty and a new bundle is started.

The program counter (PC) in a HAT scheme is split into a bundle number held in the

high bits and an instruction offset held in the low bits. During sequential execution, the PC

is incremented as usual, but after fetching the last instruction in a bundle (as given by the

instruction count stored in the bundle), it will skip to the next bundle, by incrementing the

bundle number and reseting the instruction offset to zero. All branches into a bundle have

their target instruction offset field checked against the instruction count, and a PC error is

generated if the offset is larger than the instruction count.

A PC value points directly to the head portion of an instruction, and because they are

fixed length, multiple sequential instruction heads can be fetched and decoded in parallel.

The tails are still variable length, however, and so the heads must contain enough informa-

tion to locate the correct tail. One approach would be for each head to have a pointer to

each tail, but this would usually require a large number of bits. Fewer bits are needed if the

head just encodes the presence and length of a tail. This length information can often be

folded into the opcode information to further reduce code size, as described below in the

MIPS-HAT scheme, whereas placing a tail pointer on each head would require a separately

encoded field. Similar to a conventional variable-length scheme, the tail size information

in the head of one instruction must be decoded to ascertain the location of the start of

tail for the next instruction. The length information for each instruction is held at a fixed

spacing in the head instruction stream, however, independent of the length of the whole

instruction. This makes the critical path to determine tail alignment for multiple parallel

instructions much shorter than in a conventional variable-length scheme, where theloca-

tion of the length information in the next instruction depends on the length of the current

16



instruction.

3.1 Comparison with Conventional Variable-Length Schemes

Length
1

Inst. 1 Inst. 2 Inst. 3

Length
2

Length
3

Head 1 Head 2 Head 3

+
+

Tail 1Tail 2Tail 3

Length
1

Length
2

Length
3 +

+

Figure 3-2: Comparison of variable-length decoding in a conventional variable-length
scheme and a HAT scheme.

This difference between a regular variable-length scheme and a HAT scheme is illus-

trated in Figure 3-2. The Figure shows a three-issue superscalar length decoder for a con-

ventional variable-length ISA and a HAT ISA scheme. In both cases, instructions vary from

2–8 bytes and length information is encoded in the first byte. In the conventional scheme,

the length decoder for the second instruction cannot produce a value until the first length

decoder drives the mux to steer the correct byte into the second length decoder. Similarly,

the third length decoder has to wait for the first two to complete before its input settles.

The output of the third decoder is needed to determine the correct amount to shift the in-

struction input buffer for the next cycle. This scheme scales poorly, asO(W 2) area and

delay for issue width W, because the number of inputs to the length byte muxes grows lin-

early with the number of parallel instructions. The Intel P6 family reduces this critical path
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by replicating simple decoders at every byte position, then muxing out the correct instruc-

tions. This requires considerable die area and additional power, and still scales asO(W 2)

albeit with a smaller constant for delay. In contrast, the HAT scheme operates all the length

decoders in parallel, and then sums their outputs to determine tail alignments. This addi-

tion can be organized as a parallel prefix sum using carry-save adders, and so delay scales

logarithmically with issue widthO(logW ), and hardware costs grow asO(W logW ).

The tails in a HAT scheme are delayed relative to the heads, but the head and tail fetches

can be pipelined independently. The performance impact of the additional latency for the

tails can be partly hidden if more latency-critical instruction information is located in the

head portions.

To summarize, the HAT scheme has a number of advantages over conventional variable-

length schemes.

� Fetch and decode of multiple variable-length instructions can be pipelined or paral-

lelized.

� Unlike conventional variable-length formats, it is impossible to jump into the middle

of an instruction (except if PCs are expanded to include tail pointers as described

above).

� The PC granularity is always in units of a single instruction, and is independent of the

granularity at which the instruction length can be varied. This allows branch offsets

to be encoded with fewer bits than a conventional variable-length ISA, where PC

granularity and instruction length granularity are identical (e.g., in bytes). This helps

counteract the code size increase if tail pointers are added to branch target specifiers.

� The variable alignment muxes needed are smaller than in a conventional variable-

length scheme, because they only have to align bits from the tail and not from the

entire instruction length. The fixed-length heads are handled using a much simpler

and faster mux.

� The HAT format guarantees that no variable-length instruction straddles a cache line

or page boundary, simplifying instruction fetch and handling of page faults.

18



3.2 Handling Branches in HAT

While fetching sequentially within a bundle, the HAT instruction decoder is consuming

head bits from one end of the bundle and tail bits from the other end. To avoid having to

decode a new bundle before locating the first instruction’s tail bits, we place tails in reverse

order starting at the end of the bundle. When execution moves sequentially on to a new

bundle, the initial head and tail data can be simply found at either end of the new bundle.

Branches create the biggest potential problems for the HAT scheme. Whereas in a

conventional scheme the branch target address points at the entire instruction, in a HAT

scheme it only locates the head within a bundle. One approach to locate the tail of a branch

target is to scan all earlier heads from the beginning of the bundle, summing their tail

lengths to get a pointer to the start of the branch target’s tail. Although correct, this scheme

would add a substantial delay and energy penalty to branch instructions. We next describe

three different approaches to handling branches in a HAT scheme: tail-start bit vectors, tail

pointers, and an enhanced branch target buffer.

Tail-Start Bit Vector

We can reduce branch penalties to locate the tail by storing auxiliary data structures in the

cache alongside each bundle. These data structures do not impact static code size as they

are only present in the cache, but they increase cache area and the number of dynamic bits

fetched from the cache, potentially increasing cache hit energy. The fastest scheme would

be to hold a separate tail pointer for each possible instruction in a bundle, but this incurs a

large area overhead oflog(N) bits per instruction. A more compact approach is to store a

single bit per tail position, which indicates the start of a tail. A branch into a bundle would

then read the bit vector to find the start of theN th tail. This bit vector approach handles

both fixed and indirect jumps, but adds some additional latency to taken branches to process

the bit vector. This scheme also requires that every instruction has a tail, otherwise a second

bit vector would be required to determine which instructions had tails.
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Tail Pointers

A different approach to reducing branch penalty is to change branch and jump instruction

encodings to include an additional tail pointer field that points to the tail portion of the

branch target. This is filled in by the linker at link time. The tail pointer removes all

latency penalties for fixed-target branch instructions, but increases code size slightly. This

approach, however, cannot be used for indirect jumps where the target address is not known

until run time.

There are two schemes that can be used to handle indirect jumps with tail pointers. The

first scheme is to expand all PC values to contain a tail pointer in addition to the bundle

and instruction offset numbers. Jump-to-subroutine instructions would then write these

expanded PCs into the link register as return PC values, and jump indirect instructions

would expect tail pointers in the PC values held in registers as jump targets. A minor

disadvantage of this scheme is that it reduces the virtual address space available for user

code by the number of bits taken for the target tail pointer. Another disadvantage is that

it becomes possible to branch to the middle of a tail if the user manipulates the target tail

pointer directly.

The second scheme for indirect jumps treats each type of indirect separately. There are

three main uses of indirect jumps: indirect function calls (e.g., virtual functions in C++),

switch statement tables, and subroutine returns. We can eliminate penalties on function

calls and switch tables by noting that a branch to the start of a bundle can always find

the tail bits of the first instruction at the end of the bundle. Therefore by simply placing

function entry points and case statement entry points at the start of a bundle (which might

be desirable for cache performance in any case), we eliminate branch penalties in these

cases. Subroutine returns cannot be handled as easily because the subroutine call could

be anywhere within a bundle. One simple approach is to only allow instructions without

tails between the subroutine call and the end of the current bundle, as a tail-less instruction

does not need the tail pointer to be restored correctly after the subroutine returns. This is

likely to reduce performance and waste code space, as NOPS will have to be inserted if an

instruction with tail is required. Another approach is to store the return PC tail pointer on
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the subroutine return address stack, if the microarchitecture has one to predict subroutine

returns. If the return address stack prediction fails, execution falls back to the algorithm

that scans heads from the beginning of the cache bundle.

BTB for HAT Branches

The third general approach to handling branches in a HAT scheme stores tail pointer infor-

mation in the branch target buffer (BTB). This can handle both fixed and indirect jumps.

Again, if the prediction fails, the target bundle can be scanned from the beginning to locate

a tail in the middle of the bundle. This approach does not increase static code size, but

increases the BTB mispredict penalty.

3.3 Two-Level Extension of Heads and Tails: VLIW-HAT

The above ideas can be extended into a two-level heads-and-tails instruction format suitable

for VLIW architectures, which assemble multiple parallel primitive operations into a single

long instruction word. In this thesis, the operations will be calledinstructionsand the

instruction wordsbundles. The bundles usually hold a fixed number of simple, RISC-

like instructions. In traditional VLIW architectures, each instruction slot corresponds to

a particular functional unit, and all the instructions in the bundle are executed in parallel;

if a functional unit cannot be utilized by the bundle, that particular slot would be padded

with a NOP. An in-memory compression scheme is usually used to remove the NOPs to

reduce static code size, but the bundle is expanded when brought into cache [9]. More

recent VLIW architectures have a more flexible encoding, where only useful instructions

are represented and additional bundle stop bits are used to indicate the boundary between

bundles [17, 28]. These more flexible VLIWs have better compatibility across different

implementations and avoid the overhead of holding NOPs in cache, but have to provide

instruction dispersal networks that route instruction bits from slots in the bundles to the

appropriate functional unit.

To improve the density of VLIW instructions further, it is desirable to compress each

instruction into a variable-length form before packing multiple instructions into bundles.
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BH       BH                               IH        IH           IT                     IT                 IH       IH        IH                 IT              IT          IT
1          2                                 1           2            2                       1                   1         2           3                   3               2            1

BH       BH       BH      BH       IH        IH     IT        IT            IH       IH        IH           IT        IT      IH    IT      IH        IH    IT     IT
1          2          3         4           1          2       2          1             1         2           3             3         1        1       1       1          2       2       1

BH       BH      BH                                             IH       IH             IT               IH       IH        IH     IT   IT    IT         IH              IT
1          2         3                                               1         2                1                 1         2          3       3     2      1           1                1

BT2                                                                                BT1# Bundles

Unused

 IH        IH        IH                            IT                  IT                            IT

 IH        IH        IH        IH                        IT                                  IT                    IT

# Instructions

Unused

  1          2           3                             3                    2                              1

  1          2          3          4                           3                                   2                      1

  IH       IH        IH        IH                                            IT                    IT              IT
1          2          3          4                                              4                      2               1

Single-Level HAT

Two-Level HAT

Figure 3-3: Single-Level vs Two-Level Heads and Tails Format.

This provides greater code density than simple NOP compression, but potentially increases

the complexity of parallel fetch and decode of a bundle. An adaptation of the heads-and-

tails format would provide a higher bandwidth fetch and decode mechanism suitable for

VLIWs.

Although the path to determine variable-length tail alignment is shorter than for con-

ventional variable-length ISAs, it could still be too lengthy for a high-performance VLIW

executing many instructions per cycle. We can further speed VLIW fetch and decode by

applying the heads-and-tails format at two levels: instruction-level and bundle-level. At

the instruction-level, which is similar to the general HAT format, we can pack multiple

variable-length compressed instructions into bundles. Then at the bundle-level, we can

also split each variable-length bundle into a fixed-length bundle-head and a variable-length

bundle-tail, and pack multiple bundles into a fixed-lengthsuper-bundle. Super-bundles

contain varying numbers of bundles, so each bundle begins with a small fixed-length field

specifying the number of bundles, while the rest of the super-bundle holds the actual bun-

dles. Figure 3-3 contrasts the two-level HAT format with the original single-level HAT

format.

As shown in Figure 3-4, the fetch pipeline can now be split into two steps, where the first

step locates bundles using the fixed-length bundle heads. This gives enough information

to locate the start of the next bundle without decoding the instructions within a bundle.
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BH       BH                               IH        IH           IT                     IT                 IH       IH        IH                 IT              IT          IT
1          2                                 1           2            2                       1                   1         2           3                   3               2            1

BT2                                                                                BT1# Bundles

Unused

FU                               FU                               FU                                FU                               FU                              FU

Super-Bundle

Bundles

(Instructions)

BH        IH       IH        IH                  IT              IT          IT                             BH       IH        IH           IT                    IT
  1           1         2          3                    3                2            1                                2          1         2             2                      1

Figure 3-4: Two-Stage Fetch Pipeline.

During the first stage, the next few bundle heads are multiplexed into the second stage

bundle decoders. During the second The second stage works within a bundle to split it

into variable-length instructions for dispersal to the functional units. Although the diagram

shows the conceptual path of instruction tails through the two stages, the instruction tail

bits can be moved in one step from the super-bundle to the functional units.

Some flexible VLIW architectures pack instructions into fixed-length fetch units and

have stop bits separating variable-length parallel instruction groups. There are two choices

of how to use a two-level VLIW-HAT scheme in this case. The super-bundle can either hold

bundles that are fetch units, or bundles that are parallel instruction groups. Encoding paral-

lel instruction groups as bundles poses the difficulty that the groups can potentially be very

long giving a wide variation in bundle tail length. This is a limitation of template schemes

that assume a canonical instruction format [10]. The fetch units are better candidates for

encoding in a bundle since they represent a fixed number of instructions.

When coping with branches, all three techniques described above for the single-level

HAT scheme are also applicable to the VLIW-HAT scheme. With predication, VLIW ma-

chines encounter fewer branches in the dynamic instruction stream, reducing the penalty

for some of the branch tail location strategies.
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Chapter 4

MIPS-HAT

In this section, the HAT format is illustrated using a compressed variable-length re-encoding

of the MIPS RISC ISA [19] as an example.

4.1 MIPS Instruction Set Overview

The MIPS II instruction set can be divided into the following categories:

� Computational Instructions– perform arithmetic, logic, and shift operations on val-

ues in registers.

� Load/Store Instructions– move data between memory and registers.

� Coprocessor 0 Instructions– perform operations on CP0 registers; handle memory

management and exception handling.

� Special Instructions– move data between special and general registers; perform sys-

tem calls and breakpoints.

These instructions can generally be represented by one of three instruction formats – R-

type (register), I-type (immediate), and J-type (jump). The breakdown of these instruction

types into different subfields are shown in Figure 4-1 and explained in Table 4.1.

The MIPS II instruction set has two types of opcodes. The major opcode is specified in

the first 6-bit subfield [31:26]. If this major opcode field is zero, the last 6-bit subfield [5:0],
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      op             rs        rt           rd       sa           funct            R

               6                      5               5                 5                5                     6

      op             rs        rt                   immediate                     I

               6                      5               5                                       16

      op                                  target                                         J

               6                                                         26

Figure 4-1: MIPS instruction formats.

Table 4.1: MIPS Subfield definitions.
Subfield Bits Definition

op 6 major operation code
rs 5 source register specifier
rt 5 target (source/destination) register or branch condition

immediate 16 immediate, branch, or address displacement
target 26 jump target address

rd 5 destination register specifier
sa 5 shift amount

funct 6 function field
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Table 4.2: MIPS Primary and Secondary Opcode Encodings.
OPCODE

28..26
31..29 0 1 2 3 4 5 6 7

0 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 COP0 BEQL BNEL BLEZL BGTZL
3
4 LB LH LW LBU LHU
5 SB SH SW
6
7

SPECIAL FUNCTION
2..0

5..3 0 1 2 3 4 5 6 7
0 SLL SRL SRA SLLB SRLY SRAV
1 JR JALR SYSCALL BREAK SYNC
2 MFHI MTHI MFLO MTLO
3 MULT MULTU DIV DIVU
4 ADD ADDU SUB SUBU AND OR XOR NOR
5 SLT SLTU
6
7

called the function field, specifies a secondary opcode used for three register arithmetic and

logic instructions. Table 4.2 shows the encodings of these two opcode fields for all integer

instructions. All blanks in these tables signify undefined opcodes.

4.2 MIPS-HAT Compression Techniques

The MIPS compression scheme used is based partly on a previous scheme by Panich [24].

To keep instruction decoding simple, the MIPS register specifier fields are never split, so

a 5-bit granularity for the tail encoding is used. Instructions range from 15 bits to 40 bits

long. As discussed later in the hardware section, tail lookup can be simplified if every

instruction has a tail, so the 10-bit heads yeild a minimum instruction size of 15 bits.

As seen in the previous section, the MIPS opcode space is very sparce. Therefore, it

is easy to condense the opcode space into less than 12 bits and still have extra space to
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encode additional information to eliminate operand fields or even additional instructions.

Specifically, the following techniques were used to compress the MIPS instructions by

taking advantage of the extra opcode space.

1. Use the minimum number of 5-bit fields to encode immediates.

2. Eliminate unused register and operand fields.

3. Certain instructions often use a specific value for a register or immediate, for exam-

ple, the BEQ instruction often (�90%) has zero as one operand. New opcodes are

provided for these cases.

4. Two-address versions are provided for instructions that frequently have a source reg-

ister the same as the destination register.

5. Some common instruction sequences are re-encoded as a single instruction. Only

the simplest but most common two types of instruction sequences are re-encoded:

branch instructions with a NOP in the delay slot and multiple loads. New opcodes for

branches and jumps indicate that they are followed by a NOP. The multiple load in-

structions are used by subroutines to restore saved registers from consecutive offsets

from the stack pointer and can be combined into a single instruction by specifying the

initial register, initial offset, and the number of load instructions in the sequence. A

multiple store instruction was considered, but this did not provide sufficient savings

to be justified.

Each instruction can be one of six sizes, ranging from 15–40 bits. One way to specify

the size would be to attach three overhead bits per instruction. However, each instruction

type, e.g., ADDI (add-immediate), typically only uses a few sizes, so the instruction sizes

are folded into new opcodes, e.g. ADDI10b for a 10-bit add-immediate.

This substantially increases the number of possible opcodes, but only a small subset

of these new opcodes is frequently used. The most popular opcodes are selected, together

with several different “escape” opcodes, and encode these in a 5-bit primary opcode field

in the head. The escape opcodes indicate that a secondary opcode is placed in the tail, but
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Table 4.3: The 32 MIPS-HAT primary opcodes.
Instruction Size Freq Instruction Size Freq

Specific Primary Opcodes
addu(rt=0) 15 8.7% lw(imm=0) 15 2.2%

sw 25 5.2% sw 20 1.9%
lw 25 4.7% addu 20 1.8%

addiu 25 4.5% lw 20 1.7%
noop 15 4.3% addiu(-1) 15 1.6%
lui 30 3.6% jr 15 1.5%

addiu(+1) 15 3.2% bne(rt=0) 15 1.4%
jal 25 3.2% beq(rt=0) 15 1.3%

addu(rs=rd) 15 2.6% addiu(rs=rd) 15 1.2%
sw(rw=r2) 20 2.6% addiu(rs=rd) 20 1.2%

addiu 20 2.4% addiu 30 1.1%
j 25 2.2%

Escape Opcodes
I-Load/Store 30 10.0% I-Arithmetic 40 1.5%

R 25 7.2% I-Load/store 40 0.4%
I-Branch 30 6.7% I-Branch 40 0.0%

I-Arithmetic 30 5.4% J 40 0.0%
Break 35 3.3%

also includes critical information required for decode, such as the size of the instruction

and its general category (e.g., arithmetic versus branch). Though both the original and

compressed formats contain two opcode fields, where the secondary field is only used in

conjunction with the escape primary opcode, the functionalities of the secondary field are

very different. In the original MIPS format, the secondary field (also called the function

field) encodes three register arithmetic and logic instructions, and both instruction fields are

very sparce. On the other hand, the secondary field of the compressed format only encodes

the less frequently used opcodes that cannot fit in the primary field

Table 4.3 and Table 4.4 show the most popular primary opcodes and escape opcodes to-

gether with the frequency that they occur across the Mediabench benchmarks. The “Break”

escape opcode is used for all instructions that will cause opcode traps, including SYSCALL

and BREAK.

Figure 4-2 shows the compressed forms of the three types of MIPS instructions —

register (R), immediate (I), and jump (J). All fields are 5 bits wide. The fields in parenthesis
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Table 4.4: MIPS-HAT primary opcodes by category.
Instruction Size Freq Instruction Size Freq

R
addu(rt=0) 15 8.7% addu(rs=rd) 15 2.6%

ESC 25 7.2% addu 20 1.8%
noop 15 4.3% jr 15 1.5%

I-Arithmetic
ESC 30 5.4% addiu(-1) 15 1.6%
addiu 25 4.5% ESC 40 1.5%

lui 30 3.6% addiu(rs=rd) 15 1.2%
addiu(+1) 15 3.2% addiu(rs=rd) 20 1.2%

addiu 20 2.4% addiu 30 1.1%

I-Branch
ESC 30 6.7% beq(rt=0) 15 1.3%

bne(rt=0) 15 1.4% ESC 40 0.0%

I-Load/Store
ESC 30 10.0% lw(imm=0) 15 2.2%
sw 25 5.2% sw 20 1.9%
lw 25 4.7% lw 20 1.7%

sw(rw=r2) 20 2.6% ESC 40 0.4%

J
jal 25 3.2% ESC 40 0.0%
j 25 2.2%

Break
ESC 35 3.3%

  opcode  reg1 (reg2) (reg3)    (op2)R-Type

  opcode  reg1 (reg2) (op2)   (imm)   (imm)   (imm)   (imm)

  opcode (op2) (imm) (imm)   (imm)   (imm)   (imm)   (imm)

I-Type

J-Type

Figure 4-2: Compressed MIPS instruction formats.
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are optional, depending on the actual instruction.

4.3 Bundle Format

Both 128-bit and 256-bit bundles are evaluated for MIPS-HAT. The 128b bundle is split

into a three-bit instruction count field and 25�5b units, holding up to 8�10b heads and up

to 16�5b tail units. The 256b bundle has a four-bit instruction count field, two empty bits,

and 50�5b units which can hold up to 16�10b heads and up to 32�5b tail units. Note

that the head and tail regions are restricted so that neither completely spans the bundle,

but the boundary between head and tail sections is flexible and depends on the instructions

encoded.

4.4 HAT Cache Implementation

MIPS-HAT is designed to be directly executed from cache, and instructions remain in the

same format after being fetched from memory to cache, avoiding additional cache miss

latencies. The new format is only slightly more complex than regular MIPS to decode, and

the decompression is just folded into the decoder.

A conventional variable-length ISA would fetch words of data sequentially from the

cache into fetch buffers that can rotate the data to the correct alignment for the instruction

decoder. MIPS-HAT would use the same scheme for the tails, but in addition would be

fetching a second stream for the fixed-length heads which would not require an alignment

circuit. The cache RAM does not require a second read port to provide the head data stream,

as the heads are always from the same bundle as the tails. The cache RAM sense-amps just

need a separate set of bus drivers onto the head data bus (additional bus drivers are only

needed for the bits in the middle of a span that could either be heads or tails).

Because head information is needed to extract the tails, the tail instruction bits always

lag the heads. To reduce the impact of this additional latency on the execution pipeline,

MIPS-HAT places the instruction category in the head so that the instruction can be steered

to an appropriate functional unit before the tail arrives, allowing the tail to be sent directly
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to the appropriate unit for further decoding.

4.5 Experimental Results

To test the effectiveness of the MIPS-HAT scheme, we selected benchmarks from the Me-

diabench [21] benchmark suite, reencoded the MIPS binaries generated by agcc cross-

compiler (egcs-1.0.3a -O2 ), and took static and dynamic measurements. For the

dynamic measurements, the Mediabench programs were run to completion on the provided

input sets.

4.5.1 Static Compression Ratios

Table 4.5 gives the static compression ratios (compressed-size/original-size) for 128b and

256b versions of MIPS-HAT. The bundle ratios for the two sizes includes the overhead bits

to count the instructions in each bundle and any wasted space due to fragmentation.

The average bundle compression ratio for the 128b bundle is 77.3% and for the 256b

bundle is 74.1%. The smaller bundle incurs relatively more overhead and has more internal

fragmentation. If we adopt the scheme that adds branch tail links to speed taken branches,

the static code size gets worse, 80.0% for 128b bundles and 77.9% for the 256b bundles.

Table 4.6 shows the distribution of static instruction sizes averaged over the benchmark

set, with and without the tail pointer scheme. The majority of instructions are 25 bits or

less.

4.5.2 Dynamic Measures

We measured the reduction in dynamic bits fetched from the instruction cache using the

MIPS-HAT scheme. We report this number as a dynamic fetch ratio (new-bits-fetched/original-

bits-fetched). We evaluated several different schemes to avoid branch penalties

Tables 4.7 and 4.8 show the dynamic fetch ratios for 128b and 256b bundles, respec-

tively, for a variety of implementations. The baseline column shows the ratios including the

cost of fetching the instruction count on every access to a new bundle. The 256b scheme
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Table 4.5: Static Compression Ratios
Input 128b 256b 128b-BrTail 256b-BrTail

adpcm-dec 77.1% 73.8% 80.4% 77.7%
adpcm-enc 77.2% 74.0% 80.4% 77.8%
epic-dec 75.5% 72.2% 78.3% 76.1%
epic-enc 76.5% 73.2% 79.3% 77.2%
g721-dec 76.9% 73.6% 79.6% 77.8%
g721-enc 76.9% 73.6% 79.7% 77.9%
gsm-dec 79.1% 76.1% 82.3% 80.0%
gsm-enc 79.1% 76.1% 82.3% 80.0%
jpeg-dec 73.5% 70.5% 75.8% 74.3%
jpeg-enc 73.3% 70.1% 76.0% 74.1%

mpeg2-dec 79.1% 76.0% 81.9% 79.7%
mpeg2-enc 79.0% 75.8% 81.4% 79.4%
pegwit-dec 79.3% 76.0% 81.5% 79.6%
pegwit-enc 79.3% 76.0% 81.5% 79.6%

average 77.3% 74.1% 80.0% 77.9%

Table 4.6: Instruction Size Distribution
15b 20b 25b 30b 35b 40b

Average (w/o BrTail) 20.8% 20.1% 43.4% 7.9% 2.2% 5.6%
Cumulative 20.8% 40.9% 84.3% 92.2% 94.4% 100.0%

Average (w/ BrTail) 18.1% 23.1% 29.0% 22.5% 2.4% 4.9%
Cumulative 18.1% 41.2% 70.2% 92.7% 95.1% 100.0%
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Table 4.7: Dynamic Compression Ratios - 128b
Input Line Ratio BrBV BrTail

adpcm-dec 72.0% 79.8% 75.0%
adpcm-enc 74.5% 84.0% 76.9%
epic-dec 71.8% 80.1% 74.6%
epic-enc 76.8% 80.6% 78.9%
g721-dec 75.3% 82.2% 78.4%
g721-enc 75.6% 82.2% 78.5%
gsm-dec 75.5% 79.6% 75.9%
gsm-enc 72.0% 74.1% 74.7%
jpeg-dec 68.2% 71.0% 69.1%
jpeg-enc 72.9% 79.9% 73.9%

mpeg2-dec 80.1% 85.3% 82.0%
mpeg2-enc 74.0% 79.1% 75.7%
pegwit-dec 79.1% 83.2% 80.8%
pegwit-enc 78.0% 82.3% 79.8%

average 74.7% 80.2% 76.7%

has a slightly lower fetch ratio (74.1% versus 74.7%) as relatively fewer overhead bits are

fetched.

The BrBV column shows the large increase in dynamic fetch ratio when a bit vector

scheme (Section 3.2) is used to reduce branch taken penalties. The increase is less for the

128b bundles which have a 16b vector per line, and now these have lower fetch ratios than

256b bundles, which must fetch a 32b vector on every taken branch.

The BrTail columns shows the fetch ratio for the tail pointer scheme, where branch

instruction encodings include a tail pointer. These numbers are much lower than for the

BrBV approach.

4.5.3 Results Discussion

The numbers show there is tradeoff between static code size, dynamic fetch ratio, and

taken branch performance, depending on the bundle size and the branch penalty avoidance

scheme. The larger bundle generally gives the best reduction in code size and bits fetched.

Our dynamic results did not measure the expected increase in performance due the

effective increase in cache capacity, which should lower miss rates.
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Table 4.8: Dynamic Compression Ratios - 256b
Input Line Ratio BrBV BrTail

adpcm-dec 71.2% 86.9% 74.5%
adpcm-enc 73.5% 92.5% 76.4%
epic-dec 71.8% 88.4% 74.3%
epic-enc 76.1% 83.8% 78.3%
g721-dec 75.0% 88.9% 78.5%
g721-enc 73.8% 87.7% 78.4%
gsm-dec 74.8% 83.1% 73.8%
gsm-enc 71.3% 75.5% 71.3%
jpeg-dec 67.9% 73.5% 68.8%
jpeg-enc 72.4% 86.3% 74.4%

mpeg2-dec 79.7% 90.1% 79.7%
mpeg2-enc 76.1% 83.8% 75.1%
pegwit-dec 78.2% 86.5% 79.9%
pegwit-enc 77.1% 85.8% 78.8%

average 74.1% 86.6% 75.6%
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Chapter 5

IA64-HAT

In this section, the two-level HAT format is illustrated using a compressed variable-length

re-encoding of the IA-64 ISA [17].

5.1 IA-64 Instruction Set Overview

The IA-64 instruction set architecture has 128-bit fetch units. Each contains a 5-bit tem-

plate field and three 41-bit instructions, as shown in Figure 5-1.

The template field specifies the functional units and stops. The following are the differ-

ent types of IA-64 functional units:

� M: Memory, ALU

� I: Shifts, MM, ALU

� B: Branch

TEMPLATE

INST0                    INST1                     INST2

           41                                          41                                             41                          5

Figure 5-1: IA-64 instruction fields.
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OPCODE           REG3      REG2      REG1     PRED

4            4                6                   7                      7                      7                    6

 (major op)

Figure 5-2: IA-64 instruction fields.

� F: Floating Point

� L+X: Long Immediate

The template types are listed in Table 5.1. A vertical bar after a function unit indi-

cates a stop bit, which delimits a sequence of instructions with no register dependencies.

Therefore, the templates enable a flexible instruction format in which instruction slots do

not always correspond to the same functional unit and execution lengths are independent

of fetch unit lengths.

Each instruction can be be divided into a 14-bit opcode field (containing a 4-bit major

op field), three 7-bit register fields, and a 6-bit predicate field. However, many instructions

have immediates and opcode extension bits that are encoded within the opcode and register

fields.

5.2 IA64-HAT Compression Techniques

To compress IA-64 instructions, we use simple statistical techniques. At the instruction

level, we divide an instruction into seven fields, as shown in Figure 5-2. We compress each

instruction by creating new opcodes that specify values of one or more of these fields as

well as the operation. The most frequently used opcodes are encoded in the instruction

head, and all unspecified fields are encoded in the tail. The tails are fetched slightly after

the heads, and so we attempt to pack critical information in the head to minimize the impact

on pipeline latency. In an in-order flexible VLIW machine, source register information is

critical as it is used to interlock on register reads. Destination register information is only

needed to interlock instructions in the next cycle’s instruction group and so can be delayed
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Table 5.1: IA-64 Templates
Template Instruction Slots

00 M I I
01 M I I j
02 M I j I
03 M I j I j
04 M L X
05 M L X j
06
07
08 M M I
09 M M I j
0A M j M I
0B M j M I j
0C M F I
0D M F I j
0E M M F
0F M M F j
10 M I B
11 M I B j
12 M B B
13 M B B j
14
15
16 B B B
17 B B B j
18 M M B
19 M M B j
1A
1B
1C M F B
1D M F B j
1E
1F
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and placed in the tail. The IA64-HAT encoding always places the first source register field

in the head, while instructions that use a second source register almost always have that

information encoded in the head as a new opcode.

We re-encode instructions into one of seven sizes, ranging from 14 to 56 bits. The

encoding is designed to be straightforward to decode to reduce the complexity of the in-

struction decoder with a only a few formats. The 14-bit heads contain a 7-bit opcode field

and a 7-bit source register field. The opcode field encodes the top 31 most frequently used

opcodes plus an escape opcode for less frequently used opcodes, as shown in Table 5.2.

The opcode field also has two additional bits indicating the existence of the predicate and

r2 fields in the tail portion, since these fields are often not used in the actual instruction

encoding. The tails are also encoded in 7-bit increments. The length of the tail can always

be determined by the head, since the opcodes determine which fields are encoded in the

tail. One of the schemes to handle branches in HAT requires a tail pointer be added to all

branch instructions to point to the location of the tail of the branch target within the target

bundle, as described in Section 3.2. These tail pointers are filled in at link time.

Although the IA-64 is a flexible VLIW architecture, NOPs still occur frequently be-

cause the template encoding is not fully general and requires NOP padding. At the bundle

level, we can eliminate NOPs by encoding their positions within the bundle head. Between

0–3 NOPs can occur in a bundle, and we specify their eight possible positions in a 3-bit

field. These special templates are listed in Table 5.3. Because of NOP compression, each

bundle now encodes a variable number of instructions. The bundle heads also contain the

5-bit template field, and a 5-bit tail size field since the bundle tails range from 0 to 168 bits.

An extra padding bit is added onto the bundle head to make it 14 bits long, so that the head

length is a multiple of the tail granularity. Having a consistent instruction field granularity

throughout the super-bundle simplifies the fetch and alignment hardware.

5.3 Experimental Results

We evaluate the use of both 512-bit and 1024-bit super-bundles to pack IA64-HAT bundles.

The 512b super-bundle is split into a four-bit bundle-count field and 72�7b units holding
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Table 5.2: Special Opcodes
Instruction Group Major Op Op [36:33] Op [32:27] Reg1 [12:6] Bits Saved

A1 ALU 8 0 0 14
A1 ALU 8 0 8
A2 Shift L and Add 8 0 8
A4 Add Imm14 8 8 0 15 21
A4 Add Imm14 8 8 0 1 21
A4 Add Imm14 8 8 0 8 21
A4 Add Imm14 8 8 0 14 21
A4 Add Imm14 8 8 0 33 21
A4 Add Imm14 8 8 0 14
A5 Add Imm22 9 0 0 14
A5 Add Imm22 9 4
A6 Compare 0 4
A6 Compare 4 4
A8 Compare Imm8 14 12 7 6 21
A8 Compare Imm8 14 12 6 7 21
B1 IP-Relative Branch 4 0 0 0 21
B1 IP-Relative Branch 4 4 0 0 21
B1 IP-Relative Branch 4 6 0 0 21
B2 Counted Branch 4 5 63 0 21
B2 Counted Branch 4 5 63 14
B3 IP-Relative Call 5 1 64 15
M1 Int Load 4 0 24 14 21
M1 Int Load 4 0 24 15 21
M1 Int Load 4 0 0 14
M1 Int Load 4 0 8 14
M1 Int Load 4 0 16 14
M1 Int Load 4 0 24 14
M4 Int Store 4 12 24 0 21
M4 Int Store 4 12 0 15
I29 Sxt/Zxt/Czx 0 0 8

NOP 21
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Table 5.3: IA-64 Templates
Original Template NOP Position(s)
09 M M I j 2
0A M j M I 2
0B M j M I j 2
0D M F I j 0,2
0D M F I j 1,2
10 M I B 0,1
11 M I B j 0,1
11 M I B j 1

up to 16 bundles. The 1024b super-bundle is split into a five-bit bundle-count field and

145�7b units holding up to 32 bundles. The limit on the maximum number of bundles

held in a super-bundle is to reduce the number of bits for the bundle-count field, but this

restriction rarely affects the bundle packing.

To test the effectiveness of the IA64-HAT scheme, we selected benchmarks from the

Mediabench [21] and SPECint95 [2] benchmark suites, re-encoded the IA-64 binaries gen-

erated by the Intel Open Research Compiler [16], and took static and dynamic measure-

ments. For the dynamic measurements, the benchmark programs were run to completion

on the provided input sets.

5.3.1 Static Compression Ratios

Table 5.4 gives the static compression ratios (compressed-size/original-size) for 512b and

1024b versions of IA64-HAT. The compression ratios for the two sizes include the overhead

bits to specify the number of bundles in the super-bundle and any wasted space due to

fragmentation.

The average compression ratio is 61.0% for the 512b super-bundle and 58.2% for the

1024b super-bundle. The smaller super-bundle incurs relatively more overhead and has

more internal fragmentation. If we adopt the scheme that adds target tail links to speed

taken branches, the static code size increases, to a compression ratio of 63.1% for 512b

super-bundles and 60.2% for the 1024b super-bundles. The impact on code size is less than

in the MIPS-HAT study because branches are less frequent in the VLIW code.
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Table 5.4: Static Compression Ratios
Input 512b 512b BrTail 1024b 1024b BrTail

adpcm-dec 59.6% 61.7% 56.9% 58.9%
adpcm-enc 59.6% 61.7% 56.9% 58.9%
epic-dec 60.6% 62.7% 57.9% 59.9%
g721-dec 60.2% 62.4% 57.4% 59.6%
g721-enc 60.2% 62.4% 57.4% 59.6%
jpeg-dec 63.6% 65.3% 60.7% 62.4%
jpeg-enc 62.1% 64.0% 59.4% 61.1%

mpeg2-dec 62.0% 64.0% 59.1% 61.1%

compress 60.1% 62.3% 57.4% 59.4%
ijpeg 65.0% 66.6% 62.0% 63.6%

li 59.2% 61.3% 56.6% 58.6%
lzw 60.1% 62.3% 57.4% 59.5%

average 61.0% 63.1% 58.2% 60.2%

Table 5.5: Static Compression Amounts by Level (W/O BrTail)
Input 512b Bundle 512b Instr 1024b Bundle 1024b Instr

adpcm-dec 10.6% 29.8% 16.6% 26.5%
adpcm-enc 10.6% 29.8% 16.6% 26.5%
epic-dec 12.7% 26.7% 18.5% 23.6%
g721-dec 10.0% 29.8% 16.1% 26.5%
g721-enc 10.0% 29.8% 16.1% 26.5%
jpeg-dec 11.7% 24.7% 17.7% 21.6%
jpeg-enc 13.0% 24.9% 18.8% 21.8%

mpeg2-dec 12.2% 25.8% 18.2% 22.7%

compress 11.1% 28.8% 17.1% 20.7%
ijpeg 12.9% 22.1% 18.7% 19.3%

li 15.1% 25.7% 20.6% 22.8%
lzw 10.1% 29.8% 16.2% 26.4%

average 11.7% 27.3% 17.6% 23.8%

Table 5.6: Instruction Size Distribution
0b 14b 21b 28b 35b 42b 49b 56b

Average (w/o BrTail) 32.5% 8.6% 20.5% 16.0% 8.7% 12.0% 1.8% 0.0%
Cumulative 32.5% 41.0% 61.5% 77.5% 86.2% 98.2% 100.0% 100.0%

Average (w/ BrTail) 32.5% 8.4% 18.3% 12.0% 14.4% 11.9% 1.4% 1.1%
Cumulative 32.5% 40.9% 59.2% 71.2% 85.6% 97.5% 98.9% 100.0%
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Figure 5-3: Bundle Size Distribution.

Table 5.5 shows how much the static code size is reduced by each level of compres-

sion. Eliminating NOPs condenses the code by about 11–18%, while re-encoding of the

individual instructions condenses the code by a further 23–27%.

Table 5.6 and Figure 5-3 give the distribution of compressed instruction sizes and bun-

dle sizes, respectively. Almost half of the bundles are compressed by 50% or more from

the original 128-bit wide bundle.

5.3.2 Dynamic Measures

We also measured the reduction in dynamic bits fetched from the instruction cache using

the IA64-HAT scheme. We report this number as a dynamic compression ratio (new-bits-

fetched/original-bits-fetched). The ratio includes all overhead bits that have to be fetched

when executing a new bundle or super-bundle.

Table 5.7 shows the dynamic fetch ratios for 512b and 1024b super-bundles. The aver-

age compression ratio is 60.0% for the 512b super-bundle and 57.8% for the 1024b super-

bundle. The dynamic fetch ratio is only affected by overhead and not internal fragmen-

tation, so the smaller super-bundle incurs a smaller penalty in the dynamic ratios than in
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Table 5.7: Dynamic Compression Ratios
Input 512b 512b BrTail 1024b 1024b BrTail

adpcm-dec 65.0% 66.7% 64.7% 66.4%
adpcm-enc 77.4% 79.1% 77.2% 78.8%
epic-dec 50.9% 51.7% 50.8% 51.6%
g721-dec 63.4% 64.9% 63.4% 64.3%
g721-enc 45.5% 46.8% 45.5% 46.8%
jpeg-dec 59.0% 60.4% 58.8% 60.2%
jpeg-enc 55.7% 57.2% 55.6% 57.0%

mpeg2-dec 56.4% 57.9% 56.2% 57.9%

compress 61.2% 64.4% 61.1% 64.4%
ijpeg 59.4% 61.2% 59.2% 61.0%

li 53.2% 55.4% 53.1% 55.4%
lzw 58.1% 55.6% 55.3% 55.5%

average 60.0% 61.7% 57.8% 59.9%

Table 5.8: Dynamic Compression Amounts by Level (W/O BrTail)
Input 512b Bundle 512b Instr 1024b Bundle 1024b Instr

adpcm-dec 13.9% 21.1% 14.2% 21.1%
adpcm-enc 8.6% 14.0% 9.1% 13.7%
epic-dec 33.2% 15.9% 33.3% 15.9%
g721-dec 11.6% 25.0% 12.2% 24.4%
g721-enc 34.5% 20.0% 34.6% 19.9%
jpeg-dec 21.3% 19.7% 21.5% 19.7%
jpeg-enc 25.0% 19.3% 25.3% 19.1%

mpeg2-dec 21.1% 22.5% 21.3% 22.5%

compress 20.4% 18.4% 20.7% 18.2%
ijpeg 22.6% 18.0% 22.8% 18.0%

li 23.9% 22.9% 24.0% 22.9%
lzw 37.0% 4.9% 37.0% 7.7%

average 22.8% 18.5% 23.0% 18.6%
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the static ratios. The added tail pointer fields also slightly increases the dynamic fetch

ratios, to about 61.7% for 512b super-bundles and 59.9% for 1024b super-bundles. This

increase is even less than the increase in static compression ratios, because the encoded

branch instructions are rarely executed.

The dynamic compression at each level is shown in Table 5.8. The NOP compression

reduces the code size by almost a quarter, and the individual instruction compression re-

duces it by another 18%. The bundle-level compression is more significant in the dynamic

compression than in static code reduction.

5.3.3 Compression Discussion

Other researchers have presented compression numbers for VLIW architectures. Previous

dictionary schemes [18, 12] have obtained compression ratios of 46–60% and 63–51%,

respectively, but are only applicable to rigid VLIW architectures. The more complex com-

pression scheme given in [30] achieves 70–80% compression ratio on TMS320C6x code.

The PICO-VLIW format [10] is similar but uses a customizable template scheme targeted

for application-specific implementations, whereas VLIW-HAT is designed to provide a

portable flexible encoding with low control complexity.

5.3.4 Performance Discussion

The heads-and-tails format enhances performance because it allows instructions to remain

compressed in the cache, thereby increasing the effective cache capacity and lowering the

cache miss rate. On the other hand, it also reduces performance because the decoding of

HAT instructions is more complicated than native VLIW instructions, so an extra decode

stage may have to be added to the pipeline.

Tables 5.9 and 5.10 show the average cache miss rates of compressed and uncom-

pressed instructions using different sized caches and different sized cache line sizes to

execute Mediabench bencharks. The uncompressed instructions always yield a worse miss

rate, anywhere from 1.5–6 times that of the compressed instructions. In order to achieve

a comparable miss rate using uncompressed instructions, the size of the cache needs to be
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Table 5.9: Cache Miss Rates of Different Cache Sizes (64B Cache Line, 4-way Associativ-
ity, 512b Superbundle)

Cache Size Compressed Uncompressed
8 KBytes 0.213% 0.602%
16 KBytes 0.015% 0.090%
32 KBytes 0.007% 0.012%
64 KBytes 0.006% 0.009%

Table 5.10: Cache Miss Rates of Different Cache Line Sizes (32 KB Cache, 4-way Asso-
ciativity, 512b Superbundle)

Cache Line Size Superbundles/Line Compressed Uncompressed
64 Bytes 1 0.007% 0.012%
128 Bytes 2 0.004% 0.007%
256 Bytes 4 0.003% 0.005%

increased. Longer cache lines also reduce the miss rate, but compressed instructions in the

HAT format still achieve a better miss rate than uncompressed instructions for the same

sized cache line. In addition, embedded systems that have L1 cache refilling directly from

off-chip memory incur severe cache miss penalties, which could be ameliorated by HAT’s

decreased cache miss rates. On-chip caches also account for a large percentage of embed-

ded systems’ area and power, and the HAT format enables a much smaller cache to yield

similar performance.

The additional pipeline stage for decoding HAT instructions will reduce the perfor-

mance by increasing branch mispredict penalties. However, in VLIW designs such as IA-

64, predication reduces the number of branch instructions, and complex branch prediction

schemes decrease the misprediction rate, so the increased branch misprediction penalties

should not affect performance significantly.
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Chapter 6

Conclusion

This thesis has introduced a new heads-and-tails (HAT) variable-length instruction format

that separates instructions into fixed-length heads that can be easily indexed and variable-

length tails that provide code compression. The format can provide high code density in

memory and in cache, while allowing parallel fetch and decode for direct superscalar ex-

ecution from cache. A two-level version of this format can also provide both high density

and performance for VLIW schemes. A number of techniques are possible to reduce taken

branch penalties, and these were shown to have differing effects on static code size, dy-

namic bits fetched, and branch penalties. A simple MIPS instruction compression scheme

was developed, and the resulting variable-length instructions were mapped into the HAT

format. These experiments showed that the MIPS-HAT format can provide a compres-

sion ratio of 74.7% and a dynamic fetch ratio reduction of 74.1% while supporting deeply

pipelined or superscalar execution. The two-level HAT format was applied to the IA-64

flexible VLIW format, and achieved a compression ratio of around 60%.
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