Dynamic Zero Compression for Cache Energy Reduction

Luis Villa
Michael Zhang
Krste Asanovic
{luisv|rzhang|krste}@lcs.mit.edu

Conventional Cache Structure

- Energy Dissipation
 - Bitlines (~75%)
 - Decoders
 - I/O Drivers
 - Wordlines
Existing Energy Reduction Techniques

- Sub-banking
- Hierarchical Bitlines
- Low-swing Bitlines
 - Only for reads, writes performed full swing.
- Wordline Gating

Asymmetry of Bits in Cache

- >70% of the bits in D-cache accesses are “0”s
 - Measured from SPECint95 and MediaBench
 - Examples: small values, data types

- Related work with single-ended bitlines
 - [Tseng and Asanovic ‘00] --- Used in register file design with single-ended bitlines.
 - [Chang et. al. ’99] --- Used in ROM and small RAM with single-ended bitlines.

- Differential bitlines preferred in large SRAM designs.
 - Better Noise Immunity
 - Faster Sensing
Dynamic Zero Compression

- **Zero Indicator Bit**
 - One bit per grouping of bits
 - Set if bits are zeros
 - Controls wordline gating

Data Cache Bitline Swing Reduction

Calculation includes the bitline swings introduced by ZIB
Hardware Modifications

- Zero Indicator Bit
- Wordline Gating Circuitry
- Sense Amplifier
- CPU Store Driver
- Cache Output Driver

ZIB and Wordline Gating Circuitry

Small Delay Overhead
Sense Amplifier Modification

- **Zero-valued data:**
 - Not driven onto bus
 - Not in critical path
 - ZIB read w/o delay

CPU Store and Cache Output Drivers

Reduce Data Bus Energy Dissipation
Area Overhead

- **Area Overhead: 9%**
 - Zero-Indicator-Bits
 - Sense Amplifiers
 - WLG Circuitry
 - I/O Circuitry

Byte slice of the sub-bank (Data,ZIB,WLG)

Delay Overhead

- **No delay overhead for writes**
 - Zero check performed in parallel with tag check

- **2 F04 gate-delays for reads**
 - A pessimistic 7% worst case delay
Data Cache Energy Savings

- Savings obtained for a low-power cache with sub-banking, wordline gating, and low-swing bitlines

Bits Distribution for Instruction Cache

- Zeros are not as prevalent in I-Cache.
- Use a recoding scheme to increase the zero-byte in I-cache.
- [Panich '99] --- IWLG technique that compacts the instructions.
 - Use two-address form when src reg = dest reg
 - Shorter immediates
 - Three different instruction length: short, medium, long
 - Gate the unused portion of the instruction to avoid bitline swing
 - Faster read-out for top two bytes (opcode, reg. acc., inter-locks)
Adopting IWLG technique for Dynamic Zero Compression

- Small modification on instruction format
 - Use 8-8-8-8 instead of 16-7-9
- Upper two byte are zero-detected
- Lower two bytes are usage-detected
- Able to eliminate bitline swings of zero-valued bytes in 2 upper bytes
 - *Example: Opcode 000000*
- Slower than IWLG due to wordline gating in the critical path

Instruction Cache Bit Swing Reduction
Conclusion

- **A novel hardware technique to reduce cache energy by eliminating the access of zero bytes.**
 - Small area and delay overhead
 - Area: 9%, Delay: 2 F04 gate-delays
 - Average energy saving: D-Cache: 26%, I-Cache: 18%
 - Processor wide: ~10% for typical embedded processors
 - Completely orthogonal to existing energy reduction techniques

- **Dynamic Zero Compression is applicable to**
 - Second level caches
 - DRAM
 - Datapath [Canal et. al. Micro-33]
Thank You!

http://www.caq.lcs.mit.edu/scale/